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Abstract

We prove that the only 3-connected binary non-regular matroids with
no minor isomorphic to a rank 5, 9-element binary matroid known as
P ∗9 are the rank 3 and 4 binary projective geometries, a 16-element rank
5 matroid, and two maximal 3-connected infinite families of matroids
of rank r ≥ 5 that we call monarchs: the well-known infinite family
of binary spikes with 2r + 1 elements and a new infinite family with
4r − 5 elements. Both families are in matrix format. This is one of very
few excluded-minor classes of matroids for which the members are so
precisely determined. As a consquence, if M is a simple binary matroid
of rank r ≥ 6 with no P ∗9 minor, then |M | ≤ r(r+1)

2
, with this bound being

attained for M ∼= M(Kr+1), where Kr+1 is the rank r complete graph.

1 Introduction

In [4] we gave a reproof of the structural characterization of binary matroids with
no M(W4)-minor. This was a 1987 result by Oxley that appeared in [9]. He proved
this result using Seymour’s Splitter Theorem [11]. The main component of Oxley’s
proof was a complete identification of the class of binary matroids with no minor
isomorphic to P9 or P ∗9 . Matrix representations for P9 and P ∗9 are shown below.

P9 =


1 · · · 4 5 6 7 8 9

0 1 1 1 1
I4 1 0 1 1 1

1 1 0 1 0
1 1 1 1 0

, P ∗9 =



1 · · · 5 6 7 8 9

0 1 1 1
I5 1 0 1 1

1 1 0 1
1 1 1 1
1 1 0 0


Oxley showed that the excluded minor class for these two matroids contains

one infinite family of 3-connected matroids known as the binary spikes Zr. Matrix

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



S.R. KINGAN/AUSTRALAS. J. COMBIN. 79 (3) (2021), 302–326 303

representations for Zr and Z∗r are shown below, where we use the name of the matroid
to also stand for the matrix representing it:

Zr =



b1 · · · br a1 a2 · · · ar−1 ar cr

0 1 · · · 1 1 1
1 0 · · · 1 1 1

Ir 1 1 · · · 1 1 1
...

...
. . .

...
...

...
1 1 · · · 0 1 1
1 1 · · · 1 0 1


,

Z∗r =



b1 · · · br+1 a1 a2 · · · ar−1 ar

0 1 · · · 1 1
1 0 · · · 1 1

Ir+1 1 1 · · · · · ·
...

...
. . .

...
...

1 1 · · · 0 1
1 1 · · · 1 0
1 1 · · · 1 1


.

We call Zr a rank r monarch. In general, let M be a class of matroids closed
under minors. A 3-connected rank r matroid in M that has no further 3-connected
extensions in M is called a rank r monarch for M.

Following the terminology in [10], let EX(M) denote the class of matroids with no
minors isomorphic to M . Ding and Wu characterized the binary matroids in EX(P9)
in terms of 3-sums in Theorem 1.2 of [2]. They proved that a binary 3-connected
non-regular matroid M has no P9-minor if and only if M is one of the 16 internally
4-connected non-regular minors of R∗16; or M is a binary spike Zr, Z

∗
r , Zr\br, or

Zr\cr, for some r ≥ 4; or M is formed by taking t disjoint triangles T1, T2, . . . , Tt
of M∗(K3,p), M

∗(K ′3,p), M
∗(K ′′3,p), or M∗(K ′′′3,p), where p ≥ 2 and 1 ≤ t ≤ p, and

t copies of F ∗7 and performing 3-sum operations consecutively. The last infinite
family is formed by 3-summing copies of the Fano matroid to M∗(K3,p), M

∗(K ′3,p),
M∗(K ′′3,p), or M∗(K ′′′3,p), where p ≥ 2. This result extended Oxley’s characterization
of EX(P9, P

∗
9 ) to EX(P9). Ding and Wu’s result uses a chain theorem for internally

4-connected binary matroids [1]. We use a different proof technique, using the Strong
Splitter Theorem in [6] to obtain the monarchs of EX(P ∗9 ).

The next result is the main result of this paper.

Theorem 1.1 A binary 3-connected non-regular matroid M has no P ∗9 -minor if and
only if M is isomorphic to F7, PG(3, 2), R16, Zr for r ≥ 4, Ωr for r ≥ 5, or one of
their 3-connected deletion-minors.

In Theorem 1.1, F7 is the Fano plane, P (3, 2) is the rank 4 binary projective
geometry, and Zr is the binary spike, which can be represented by the matrix [Ir|D],
where D has r+ 1 columns. The first r columns of D have zeros on the diagonal and
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ones elsewhere and the last column is a column of ones as shown above and in [9]. A
matrix representation for R16 is given below. Note that R16 = R17\17, where R17 is
the largest rank 5 matroid with no minor isomorphism to the prism M∗(K5\e) [5].
The matroid R17 is AG(3, 2) × U1,1, which is the binary matroid obtained from the
direct sum of AG(3, 2) and a coloop by completing the 3-point lines between every
element in AG(3, 2) and the coloop. It was first described by Mayhew and Royle
in [8].

R16 =



1 · · · 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 1 1 0 0 1 1 1 1
1 1 0 0 1 1 1 0 0 1 1

I5 1 1 1 0 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 1 1 1
0 0 1 1 1 1 1 1 0 0 1


The new rank r monarch in this larger class of binary matroids with no P ∗9 -minor

is the rank r binary matroid Ωr for which a matrix representation is given in Figure
1. It has 4r− 5 elements, and an intricate pattern. The fact that a pattern exists is
quite surprising.

Figure 1: The rank r matroid Ωr with 4r − 5 elements, for r ≥ 5

Section 2 has the preliminaries and techniques used. The manner in which Ωr is
constructed is explained in Section 3, and the proof of Theorem 1.1 is in Section 4.

2 Preliminaries

The main technique used in the proof of Theorem 1.1 is the Strong Splitter Theorem
[6]. How to use this result has been described in a fair amount of detail in [4], but
the rank r monarch Ωr has size 4r−5 and is much more complicated than the binary
spikes Zr of size 2r+1. So more details are provided, especially on how single-element
extensions and coextensions are computed.

A triad is a 3-element cocircuit whose removal does not disconnect the matroid.
The next result is the Strong Splitter Theorem.
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Theorem 2.1 Suppose N is a 3-connected proper minor of a 3-connected matroid
M such that, if N is a wheel or a whirl, then M has no larger minor isomorphic to
a wheel or whirl, respectively. Let j = r(M) − r(N). Then there is a sequence of
3-connected matroids M0,M1, . . . ,Mt such that M0

∼= N , Mt = M , and Mi−1 is a
minor of Mi such that:

(i) For 1 ≤ i ≤ j, r(Mi)− r(Mi−1) = 1 and |E(Mi)− E(Mi−1)| ≤ 3; and

(ii) For j < i ≤ t, r(Mi) = r(M) and |E(Mi)− E(Mi−1)| = 1.

Moreover, when |E(Mi)−E(Mi−1)| = 3, for 1 ≤ i ≤ j, E(Mi)−E(Mi−1) is a triad
of Mi. �

Given a class M of matroids closed under minors, we may focus on the 3-
connected members ofM since matroids that are not 3-connected can be pieced to-
gether from 3-connected matroids using the operations of 1-sum and 2-sum [10](8.3.1).
Let us denote a simple single-element extension of M by an element e as M + e and
a cosimple single-element coextension of M by an element f as M ◦ f . Note that a
simple extension of a 3-connected matroid is also 3-connected. Likewise for cosimple
coextensions.

SupposeN is a 3-connected proper minor of a 3-connected matroidM such that, if
N is a wheel or a whirl, then M has no larger minor isomorphic to a wheel or whirl,
respectively. The Splitter Theorem states that there is a sequence of 3-connected
matroids M0,M1, . . . ,Mt such that M0 = N , Mt

∼= M , and for 1 ≤ i ≤ t either
Mi = Mi−1+e or Mi = Mi−1◦f . See [10](12.2.1). Thus to reach a matroid isomorphic
to M , one may start with N and perform simple single-element extensions and
cosimple single-element coextensions. The Splitter Theorem imposes no conditions
to restrict how N can grow to (a matroid isomorphic to) M . Theorem 1.2 optimizes
the Splitter Theorem by proving that after two simple single-element extensions
a cosimple single-element coextension must be performed, and it puts additional
restrictions on how the coextensions are obtained.

A minor-closed class M may have several rank r monarchs of varying sizes. For
example the class in this paper has two rank r monarchs: Zr for r ≥ 4 and Ωr for
r ≥ 5. Since Zr is the rank r monarch for the class of binary matroids with no minors
isomorphic to P9 nor P ∗9 (see the original proof in [9] and the new proof in [4]), we
can use that result to begin with P9 and exclude P ∗9 . This new subclass has just one
rank r monarch Ωr. Our strategy is to take a large excluded minor class and break it
down into smaller excluded-minor classes, repeatedly applying Theorem 1.2 to find
rank r monarchs.

Theorem 1.2 implies that every 3-connected rank r monarch in M is a simple
extension of a 3-connected rank r matroid Mr, where Mr is obtained from a 3-
connected rank r − 1 matroid Mr−1 in the following ways:

(1) Mr = Mr−1 ◦ f ;
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(2) Mr = Mr−1 + e ◦ f , where f is added in series to an element in Mr−1; or

(3) Mr = Mr−1 + {e1, e2} ◦ f , where {e1, e2, f} is a triad.

There is no reason to asssume a priori that Mr is unique for a specific excluded minor
class. However, if Mr happens to be unique, we get a recursive way of defining it,
and consequently a recursive way of defining the corresponding rank r monarch.

The focus then shifts to identifying the matroid Mr in the above description. We
will call Mr the rank r seed corresponding to the rank r monarch and denote it by
αr. Thus Theorem 1.2 implies that every rank r monarch in M is the extension of
a rank r seed αr such that:

1. αr is a cosimple single-element coextension of the rank (r − 1) matroid αr−1;
or

2. αr is a cosimple single-element coextension of the simple single-element exten-
sions of αr−1 formed by adding elements in series to existing elements; or

3. αr is a cosimple single-element coextension of the simple double-element exten-
sions of αr−1 formed by adding a triad made up of the two extensions elements
and the coextension element.

It is possible for αr = Ωr, which would make the proof easier. However, if they are
distinct, then finding the rank r seed αr is more important than than finding the
rank r monarch Ωr, because within αr lies the pattern of the infinite family. In [4]
the monarch has just two more elements than the seed, so the distinction between
seed and monarch was not really needed. In this paper the rank r monarch Ωr is
much larger than than the rank r seed αr. Identifying rank r seeds and rank 4r
monarchs when they differ by many elements requires the Strong Splitter Theorem.

In summary, the Strong Splitter Theorem implies that every 3-connected rank r
monarch Ωr in M is a simple extension of a 3-connected rank r seed αr, where αr

is obtained from a 3-connected rank r − 1 seed αr−1 in very specific ways because
|E(αr) − E(αr−1)| = 3. As described earlier, αr is a cosimple single-element coex-
tension of αr−1, or a cosimple single-element coextension of a simple extension of
αr−1 or a cosimple single-element coextension of a double element simple extension
of αr−1. There are additional restrictions in the second and third case.

Next, we have to describe our method for computing single-element extensions
and coextensions. Let N be a GF (q)-representable n-element rank r matroid repre-
sented by the matrix A = [Ir|D] over GF (q). For q = 2, 3, 4 a 3-connected matroid
over GF (q) is uniquely representable, but for q ≥ 5, there are inequivalent repre-
sentations, so the method described below has to be modified considerably using
the ideas in [3]. For this paper q = 2 and we do not need to consider inequivalent
representations and the difficulties they create.

The columns of A may be viewed as a subset of the columns of the matrix that
represents the projective geometry PG(r − 1, q). Let M be a simple single-element



S.R. KINGAN/AUSTRALAS. J. COMBIN. 79 (3) (2021), 302–326 307

extension of N over GF (q). Then N = M\e and M may be represented by [Ir|D′],
where D′ is the same as D, but with one additional column corresponding to the
element e. The new column is distinct from the existing columns and has at least
two non-zero elements. If the existing columns are labeled {1, . . . , r, . . . , n}, then
the new column is labeled (n + 1). We can systematically construct all the non-
isomorphic single-element extensions of N by adding the columns of PG(r − 1, q)
that are missing in A one by one and keeping only the non-isomorphic single-element
extensions. This procedure is similar to adding an edge to a rank r graph in all
possible ways and keeping a list of the non-isomorphic edge-additions. Just like a
rank r graph is a restriction of the complete graph Kr+1, a rank r (simple) binary
matrix A is a restriction of the matrix representing PG(r − 1, q), so this method
works even though binary matroids are exponentially larger objects than graphs.

Suppose M is a cosimple single-element coextension of N over GF (q). Then
N = M/f and M may be represented by the matrix [Ir+1|D′′], where D′′ is the
same as D, but with one additional row. The new row is distinct from the existing
rows and has at least two non-zero elements. The columns of [Ir+1|D′′] are labeled
{1, . . . , r+ 1, r+ 2, . . . , n, n+ 1}. The coextension element f corresponds to column
r + 1. The coextension row is selected from PG(n− r − 1, q). We can visualize the
new element f as appearing in the new dimension and lifting several points into the
higher dimension. Observe that f forms a cocircuit with the elements corresponding
to the non-zero entries in the new row. Note that in [Ir+1|D′′] the labels of columns
beyond r are increased by 1 to accomodate the new column r + 1. This method is
similar to computing all possible non-isomorphic rank (r + 1) graphs obtained by
splitting a vertex in a rank r graph. Again, vertex splits are easy to compute (and
visualize), whereas doing a similar computation for a rank r binary matroid is much
more complicated.

We refer to the simple single-element extensions of N as Type (i) matroids and
the cosimple single-element coextensions of N as Type (ii) matroids. The structure
of Type (i) and Type (ii) matroids are shown in Figure 2.

Figure 2: Structure of Type (i) and Type (ii) matroids

Once the simple single-element extensions (Type (i) matroids) and cosimple
single-element coextensions (Type (ii) matroids) are determined, the number of per-
missable rows and columns give a bound on the choices for the cosimple single-
element coextensions of the Type (i) matroids and the simple single-element exten-
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sions of the Type (ii) matroids, respectively. The structure of the cosimple single-
element coextensions of a Type (i) matroid and the simple single-element extensions
of a Type (ii) matroid are shown in Figure 3.

Figure 3: Structure of M , where |E(M)− E(N)| = 2

When computing the cosimple single-element coextension of a Type (i) matroid,
there are three types of rows that may be inserted into the last row.

(I) Rows that can be added to the original matroid N to obtain a coextension,
augmented by a 0 or 1 as the last entry;

(II) The identity rows augmented by a 1 in the last position; and

(III) Rows “in-series” to the right-hand side of the matrix with the last entry re-
versed.

When computing the simple single-element extensions of a Type (ii) matroid, there
are three types of columns that may be inserted into the last column.

(I) Columns that can be added to the original matroid N to obtain an extension
augmented by a 0 or 1 as the last entry;

(II) The identity columns augmented by a 1 in the last position; and

(III) Columns “in-parallel” to the right-hand side of matrix with the last entry
reversed.

Note that this method can be applied to GF (q)-representable 3-connected ma-
troids, for q = 2, 3, 4, but this paper is only on binary matroids, so we will talk only
of zeros and ones.

Suppose N ′ is a simple double-element extension of N formed by adding columns
e1 and e2 and M is a cosimple single-element coextension of N ′ by element f . By
Theorem 1.2 M\e1 or M\e2 is 3-connected except when {e1, e2, f} is a triad. Thus
the only 3-connected coextension of N ′ we must check is the one formed by adding
row [00 . . . 011] to D. Moreover, no further calculations are necessary.
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3 The rank r monarch Ωr

Our goal in this paper is to find the binary matroids in EX(P ∗9 ). The rank r seed
matroid αr is unique and it has 3r − 5 elements. A matrix representation is shown
in Figure 4. The vertical and horizontal lines in the representation of αr in Figure 4
shows how it is recursively constructed from α5 shown below, which is the starting
matroid for this family:

α5 =



b1 · · · b5 a1 a2 a3 a4 a5

0 1 1 1 1
I5 1 0 1 1 1

1 1 0 1 0
1 1 1 1 0
0 0 0 1 1

.

Figure 4: The rank r seed αr with 3r − 5-elements, for r ≥ 5

The rank 6 seed matroid α6 shown below is obtained from α5 by adding two
columns c5 = [11000]T and d5 = [00110]T and lifting by row [0000011]:

α6 =



b1 · · · b6 a1 a2 a3 a4 a5 c5 d5

0 1 1 1 1 1 0
I6 1 0 1 1 1 1 0

1 1 0 1 0 0 1
1 1 1 1 0 0 1
0 0 0 1 1 0 0
0 0 0 0 0 1 1

.

In other words add c5 and d5 to form triangles with {b1, b2, c5} and {b3, b4, d5},
respectively; then lift elements c5 and d5 into the next dimension to form a triad
{c5, d5, b6} with the new lift element b6. medskip In general, αr is formed as follows:
add parallel elements {c5, c6, . . . , cr−1} so that each forms a triangle with basis points
b1 and b2; add parallel elements {d5, d6, . . . , dr−1} so that each forms a triangle with
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basis points b3 and b4; do a sequence of lifts by adding new basis elements {b6, . . . , br}
to form triads {bi, ci−1, di−1} for i = 6, . . . , r. Observe that

αr/br\{cr−1, dr−1} = αr−1.

Once the construction of the rank r seed is understood, the construction of the rank
r monarch follows by adding more columns. To obtain Ω5 add the following five
columns to α5:

c5 = [11000]T ,

d5 = [00110]T ,

e5 = [11100]T ,

f5 = [00111]T ,

g5,1 = [111100]T

to get:

Ω5 =



b1 · · · b5 a1 a2 a3 a4 a5 c5 d6 e5 f5 g5,1

0 1 1 1 1 1 0 1 0 1
I5 1 0 1 1 1 1 0 1 0 1

1 1 0 1 0 0 1 1 1 1
1 1 1 1 0 0 1 0 1 1
0 0 0 1 1 0 0 0 1 0

.
To obtain Ω6 add the following six columns to α6:

c6 = [110000]T ,

d6 = [001100]T ,

e6 = [111000]T ,

f6 = [001110]T ,

g6,1 = [111100]T ,

g6,2 = [111101]T

to get:

Ω6 =



b1 · · · b6 a1 a2 a3 a4 a5 c5 d5 c6 d6 e6 f6 g6,1 g6,2

0 1 1 1 1 1 0 1 0 1 0 1 1
I6 1 0 1 1 1 1 0 1 0 1 0 1 1

1 1 0 1 0 0 1 0 1 1 1 1 1
1 1 1 1 0 0 1 0 1 0 1 1 1
0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 1

.
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In general, to obtain Ωr from αr add the following r columns:

cr = [110000, . . . , 00]T ,

dr = [001100, . . . , 00]T ,

er = [111000, . . . , 00]T ,

fr = [001110 . . . 00]T ,

gr,1 = [11110000, . . . , 000]T ,

g2,2 = [11110100, . . . , 000]T ,

g2,3 = [11110010, . . . , 000]T , . . . ,

g2,r−5 = [1111000, . . . , 010]T ,

gr,r−4 = [1111000, . . . , 001]T .

Column gr,1 has ones in the first four positions and zeros elsewhere. The rest of the
columns gr,t, where 2 ≤ t ≤ r − 4, have five ones (See Figure 1). Observe that

Ωr/br\{cr, dr, gr,r−4} = Ωr−1.

Proposition 3.1 The matroid αr has no P ∗9 -minor.

Proof: Observe that P ∗9 has odd size circuits and α5 has no odd size circuits. If P ∗9
were a deletion-minor of α5, then the odd size circuits in P ∗9 would remain in α5.
Since αr is obtained from α5 by adding only triangles and triads, P ∗9 is not a minor
of α5. 2

Proposition 3.2 The matroid Ωr has no P ∗9 -minor.

Proof: The proof is by induction on r ≥ 6. Since Ωr/br\{cr, dr, gr,r−4} = Ωr−1, and
by induction Ωr−1 has no P ∗9 -minor, any possible P ∗9 -minor in Ωr must have columns
cr, dr, gr,r−4 and row br. Therefore,

Ωr/{b7, . . . br−1}\{c7, d7, . . . , cr−1, dr−1, er, fr, gr,1, . . . , gr,r−5}

gives the following matrix:
0 1 1 1 1 1 0 1 0 1
1 0 1 1 1 1 0 1 0 1

I6 1 1 0 1 0 0 1 0 1 1
1 1 1 1 0 0 1 0 1 1
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0


will have a P ∗9 -minor, which is not true. 2

The matroid αr has two 3-connected non-isomorphic binary single-element ex-
tensions in EX(P ∗9 ):
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1. αr,1 formed by adding columns cr, dr or gr,1; and

2. αr,2 formed by adding any one of the remaining columns er, fr, gr,2, . . . gr,r−4.

This will follow from the induction argument in the proof of Theorem 1.1 (as we will
see later) using the automorphism in Ωr that takes

(bi, bj, ci−1, dj−1, g7,i−4, g7,j−4)

to
(bj, bi, dj−1, ci−1, g7,j−4, g7,i−4)

for bj > bi ≥ 6, and leaves the remaining columns unchanged. To obtain the pattern
in Ωr shown in Figure 1, αr,1 is formed by adding column cr and αr,2 is formed by
adding column er. The matroid αr,1 has two non-isomorphic single-element exten-
sions αr−1,1,1 formed by adding dr and αr−1,1,2 formed by adding er. The matroid
αr,2 has two non-isomorphic single-element extensions αr−1,1,1 and αr−1,2,2. Note that
αr−1,2,2 is formed by adding fr to αr,2. The notable matroid that gives rise to the
rank (r + 1) seed matroid is αr,1,1.

4 Proof of Theorem 1.1.

The proof of Theorem 1.1 is by induction on r ≥ 5. The base case is somewhat
longer than in a typical induction proof. But it is quite straightforward in the sense
that only careful computation of small rank matroids is required and that is also
greatly reduced by repeated application of Theorem 1.2.

Proof: Let M be a 3-connected binary non-regular matroid. If M has no P9 or P ∗9 -
minor, then M is isomorphic to F7 or a deletion-minor of Zr, for r ≥ 4 [9]. Therefore
assume that M has a P9-minor, but no P ∗9 -minor. The proof is by induction on the
rank. The base case r ≤ 6 is in the Appendix.

Assume a binary non-regular 3-connected matroid with rank at most (r − 1) is in
EX(P ∗9 ) if and only if it is a member of the known classes of matroids. In other
words, the rank (r − 2) seed αr−2 has no cosimple coextensions in EX(P ∗9 ); its
simple single-element extensions αr−2,1 and αr−2,2 have no cosimple coextensions;
their simple single-element extensions αr−2,1,1, αr−2,1,2, and αr−2,2,2 have as their
only cosimple single-element coextension the rank (r − 1) seed αr−1; and finally
these matroids extend to the rank (r − 1) monarch Ωr−1. (See Figure 5 and note
that the position of the monarchs are not drawn to scale since they are too large.)

We must prove that the rank (r − 1) seed αr−1 has no cosimple coextensions in
EX(P ∗9 ); its simple single-element extensions αr−1,1 and αr−1,2 have no cosimple
coextensions; their simple single-element extensions αr−1,1,1, αr−1,1,2, and αr−1,2,2
have as their only cosimple single-element coextension the rank r seed αr; and finally
these matroids extend to the rank r monarch Ωr.
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Figure 5: Growth pattern of the seed and monarch

We summarize this in short by saying we will show that the rank (r − 1) seed αr−1
gives rise to the rank r seed αr, and αr extends to the rank r monarch Ωr and prove
the assertions in the form of two claims, both using the induction hypothesis.

Claim A. The rank (r − 1) seed αr−1 gives rise to the rank r seed αr.

Proof. By the Strong Splitter Theorem M must be a cosimple single-element coex-
tension of:

(i) αr−1;

(ii) αr−1,1 or αr−1,2 by adding rows in series; or

(iii) αr−1,1,1, αr−1,1,2, or αr−1,2,2 by adding row [00 . . . 011]);

where

αr−1,1 = αr−1 + cr−1,

αr−1,2 = αr−1 + er−1,

αr−1,1,1 = αr−1 + {cr−1, dr−1},
αr−1,1,2 = αr−1 + {cr−1, er−1},
αr−1,2,2 = αr−1 + {er−1, fr−1}.

If row [00 . . . 011] is added to αr−1,1,1, we get αr, which is the rank r seed matroid. We
will show that the other matroids do not have cosimple single-element coextensions
in EX(P ∗9 ).

Case i. By the induction hypothesis αr−1 is formed by adding row [00 . . . 011] to
αr−2,1,1, and therefore has no further single-element coextension in EX(P ∗9 ).

Case ii(a). Suppose, if possible, M is a cosimple single-element coextension of
αr−1,1 = αr−1 + cr−1. Only Type II and Type III rows may be added to αr−1,1. Type
II rows are the identity rows with a one in the last entry and Type III rows are the
rows of αr−1,1 (shown in Figure 6) with the last entry switched (i.e. put 0 if the last
entry is 1 and 1 if it is 0). The superscripts indicate if the last entry is a 1 or a 0.
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Figure 6: αr−1,1 = αr−1 + cr−1 and αr−1,2 = αr−1 + er−1

Type II rows are:

a11 = [100 . . . 00001],

a12 = [010 . . . 00001], . . . ,

c1r−2 = [000 . . . 00101],

d1r−2 = [000 . . . 00011].

Type III rows are:

b01 = [0111110 . . . 10100],

b02 = [1011110 . . . 10100],

b13 = [1101001 . . . 01011],

b14 = [1111001 . . . 01011],

b15 = [0001100 . . . 00001],

b16 = [0000011 . . . 00001], . . . ,

b1r−2 = [0000000 . . . 11001],

b1r−1 = [0000000 . . . 00111].

However, observe that αr−1,1/br−1\cr−2 ∼= αr−2,1,1. Note the isomorphism instead of
equality. This happens because in αr−1,1\cr−2/br−1 the last two columns dr−2 and
cr−1 are switched. Otherwise it would be exactly equal to αr−2,1,1. By the induction
hypothesis, αr−2,1,1 has exactly one cosimple single-element coextension in the class
(the one formed by row x = [000 . . . 011]). The isomorphism instead of equality is of
no consequence since the last two entries are both ones.

Thus we have Type I rows with a zero or one in the third last entry (the position of
the deleted column cr−2), Type II rows which are the identity rows with a one in the
third last entry, and Type III rows with the third last entry switched. Specifically,
Type I rows are:

x0 = [000 . . . 0011],

x1 = [000 . . . 0111].
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Type II rows are:

a11 = [100 . . . 00100],

a12 = [010 . . . 00100], . . . ,

c1r−3 = [000 . . . 01100],

d1r−3 = [000 . . . 00110],

d1r−2 = [000 . . . 00101].

Type III rows are:

b01 = [0111111 . . . 10001],

b02 = [1011111 . . . 10001],

b13 = [1101000 . . . 01110],

b14 = [1111000 . . . 01110],

b15 = [0001100 . . . 00100],

b16 = [0000011 . . . 00100],

b1r−2 = [0000000 . . . 11100].

The only common rows are [000 . . . 00011], [000 . . . 00111] and [000 . . . 0101]. There-
fore the only matrices that must be checked explicitly for a P ∗9 minor are the ones
shown below formed with these three rows. They have the following three rank 7
minors, respectively, obtained by contracting {b6, . . . , br−2} and deleting

{c5, d5, c6, d6, . . . , cr−3, dr−3}.

M1 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 0 1

I7 1 1 0 1 0 0 1 0
1 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1


, M2 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 0 1

I7 1 1 0 1 0 0 1 0
1 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1


,

M3 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 0 1

I7 1 1 0 1 0 0 1 0
1 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1


.

Each of M1, M2, and M3 has a P ∗9 -minor. Thus M cannot be a cosimple single-
element coextension of αr−1,1.
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Case ii(b). Suppose, if possible, M is a cosimple single-element coextension of
αr−1,2 = αr−1 + er−1 (shown in Figure 6). The argument is similar to that of Case
ii(a). Only Type II and Type III rows may be added to αr−1. Type II rows are:

a11 = [100 . . . 00001],

a12 = [010 . . . 00001], . . . ,

c1r−2 = [000 . . . 00101],

d1r−2 = [000 . . . 00011].

Type III rows are:

b01 = [0111110 . . . 10100],

b02 = [1011110 . . . 10100],

b03 = [1101001 . . . 01010],

b14 = [1111001 . . . 01011],

b15 = [0001100 . . . 00001],

b16 = [0000011 . . . 00001], . . . ,

b1r−2 = [0000000 . . . 11001],

b1r−1 = [0000000 . . . 00111].

However, observe that αr−1,2/br−1\dr−2 = αr−2,1,2. There are no Type I rows to be
added to αr−1,1 by the induction hypothesis. Type II rows that may be added to
αr−1 are:

a11 = [100 . . . 00010],

a12 = [010 . . . 00010],

c1r−2 = [000 . . . 00110],

e1r−1 = [000 . . . 000011].

Type III rows are:

b01 = [0111110 . . . 10111],

b02 = [1011110 . . . 10111],

b13 = [1101001 . . . 01000],

b14 = [1111001 . . . 01000],

b15 = [0001100 . . . 00010],

b16 = [0000011 . . . 00010], . . . ,

b1r−2 = [0000000 . . . 110010].

The only common row is [000 . . . 00011]. Therefore the only matrix that must be
checked explicitly for a P ∗9 minor is the matrix with row [000 . . . 00011]. This matrix
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has the following rank 7 minor M4 obtained by contracting {b6, . . . , br−2} and deleting
{c5, d5, . . . , cr−3, dr−3}:

M4 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 0 1

I7 1 1 0 1 0 0 1 1
1 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1


.

Since M4 has a P ∗9 -minor, M cannot be a cosimple single-element coextension of
αr−1,2.

Case iii. Suppose, if possible, M is a cosimple single-element coextension of αr−1,1,2
or αr−1,2,2. Then M is formed by adding row [000 . . . 011] to αr−1,1,2 = αr−1 +
{cr−1, er−1} or αr−1,2,2 = αr−1 + {er−1, fr−1}. The matrices formed in this manner
have as minors M5 and M6 shown below obtained by contracting {b6, . . . , br−2} and
deleting {c5, d5, . . . cr−3, dr−3}:

M5 =



0 1 1 1 1 1 0 1 1
1 0 1 1 1 1 0 1 1

I7 1 1 0 1 0 0 1 0 1
1 1 1 1 0 0 1 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1


,

M6 =



0 1 1 1 1 1 0 1 0
1 0 1 1 1 1 0 1 0

I7 1 1 0 1 0 0 1 1 1
1 1 1 1 0 0 1 0 1
0 0 0 1 1 0 0 0 1
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1


.

Observe that M5 and M6 have a P ∗9 -minor.

Claim B. The rank r seed αr extends to the rank r monarch Ωr

Proof. We will prove that the only columns that can be added to αr are

cr, dr, er, fr, gr,1, . . . , gr,r−4.

Adding all these columns give Ωr. To begin with we will show that αr has two
single-element extensions αr,1 and αr,2. Observe that

αr/br\{cr, dr} = αr−1.

By the induction hypothesis the only columns that can be added to αr−1 are

er−1, fr−1, gr,1, . . . , gr,r−5.
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Thus there are three types of columns that can be added to αr. Type I columns are
those that can be added to αr−1, namely, er−1, fr−1, gr,1, . . . , gr,r−5, with a zero or
one in the last entry. Type II and III columns are the columns of αr−1 with the last
entry switched. Specifically, Type I columns are:

e0r−1 = [1110000 . . . 000]T ,

e1r−1 = [1110000 . . . 101]T ,

f 0
r−1 = [0011100 . . . 000]T ,

f 1
r−1 = [0011100 . . . 001]T ,

g0r−1,1 = [1111000 . . . 000]T ,

g1r−1,1 = [1111000 . . . 001]T ,

g0r−1,2 = [1111010 . . . 000]T ,

g1r−1,2 = [1111010 . . . 001]T , . . . ,

g0r−1,r−5 = [1111000 . . . 010]T ,

g1r−1,r−5 = [1111000 . . . 011]T .

Type II columns are:

b11 = [100 . . . 001]T ,

b12 = [010 . . . 001]T , . . . ,

b1r−1 = [000 . . . 011]T

and Type III columns are:

a01 = [0111000 . . . 001]T ,

a02 = [1011000 . . . 001]T ,

a13 = [1101000 . . . 001]T ,

a14 = [1111100 . . . 001]T ,

a15 = [1100100 . . . 001]T ,

c15 = [1100010 . . . 001]T ,

d15 = [0011010 . . . 001]T ,

c16 = [1100001 . . . 001]T ,

d16 = [0011001 . . . 001]T , . . . ,

c1r−2 = [1100000 . . . 011]T ,

d1r−2 = [0011000 . . . 011]T ,

c0r−1 = [1100000 . . . 000]T ,

d0r−1 = [0011000 . . . 000]T .
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Observe that, c0r−1 = cr, d
0
r−1 = dr e

0
r−1 = er, f

0
r−1 = fr, g

0
r−1,1 = gr,1, g

0
r−1,2 =

gr,2, g
0
r−1,r−5 = gr,r−5, and g1r−1,1 = gr,r−4. We will show that the matrices obtained

by adding the other columns have a P ∗9 -minor.

Consider Type I columns e1r−1 and f 1
r−1. Writing out the matrices it is easy to see

that
(αr + e1r−1)/{b6, . . . br−1}\{c5, d5, . . . cr−2, dr−2} = α6 + e16

and
(αr + f 1

r−1)/{b6, . . . br−1}\{c5, d5, . . . cr−2, dr−2} = α6 + f 1
6

which are shown below:

α6 + e16 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 0 1

I6 1 1 0 1 0 0 1 1
1 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

 ,

α6 + f16 =



0 1 1 1 1 1 0 0
1 0 1 1 1 1 0 0

I6 1 1 0 1 0 0 1 1
1 1 1 1 0 0 1 1
0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 1

 .

Both the above matroids have a P ∗9 -minor.

Consider the Type I columns g1r−1,2, g
1
r−1,3, . . . g

1
r−1,r−5. For 2 ≤ k ≤ r− 5, the matrix

αr + g1r−1,k has as minor α7 + g16,1 obtained by contracting b6, . . . , br−1 except bk+4

and deleting c5, d5, . . . , cr−2, dr−2 except ck+3 and dk+3. The matrix α7 +g16,1 is shown
below and it has a P ∗9 -minor:

α7 + g16,1 =



0 1 1 1 1 1 0 1 0 1
1 0 1 1 1 1 0 1 0 1

I7 1 1 0 1 0 0 1 0 1 1
1 1 1 1 0 0 1 0 1 1
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1


.

Consider the Type II columns b11, . . . b
1
r−1. Writing out the matrices we see that for

1 ≤ k ≤ 5

(αr + b1k)/{b6, b7, . . . br−1}\{c5, d5, . . . cr−2, dr−2} = α6 + b1k.

These matrices are shown below:
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α6 + b11 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 0 0

I6 1 1 0 1 0 0 1 0
1 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

 , α6 + b12 =



0 1 1 1 1 1 0 0
1 0 1 1 1 1 0 1

I6 1 1 0 1 0 0 1 0
1 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

 ,

α6 + b13 =



0 1 1 1 1 1 0 0
1 0 1 1 1 1 0 0

I6 1 1 0 1 0 0 1 1
1 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

 , α6 + b14 =



0 1 1 1 1 1 0 0
1 0 1 1 1 1 0 0

I6 1 1 0 1 0 0 1 0
1 1 1 1 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

 ,

α6 + b15 =



0 1 1 1 1 1 0 0
1 0 1 1 1 1 0 0

I6 1 1 0 1 0 0 1 0
1 1 1 1 0 0 1 0
0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 1

 ,

They have a P ∗9 -minor. For 6 ≤ k ≤ r − 1, the matroid αr + bk has minor α7 + b16
obtained by contracting all columns {b6, . . . , br−1} except bk and deleting all columns
{c5, d5, . . . , cr−2, dr−2} except cr−2 and dr−2. The matrix α7 + b16 is shown below and
it has a P ∗9 -minor:

α7 + b16 =



0 1 1 1 1 1 0 1 0 0
1 0 1 1 1 1 0 1 0 0

I7 1 1 0 1 0 0 1 0 1 0
1 1 1 1 0 0 1 0 1 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1


.

Consider the Type III columns a11, a
1
2, a

1
3, a

1
4, a

1
5, c

1
5, d

1
5, c

1
6, d

1
6, . . . , c

0
r−1, d

0
r−1. Writing

out the matrices we see that for 1 ≤ k ≤ 5:

αr + a1k/{b6, b7, . . . , br−1}\{c5, d5, . . . cr−2, dr−2} = α6 + a1k

These matrices are shown below and each has a P ∗9 -minor:

α6 +a11 =



0 1 1 1 1 1 0 0
1 0 1 1 1 1 0 1

I6 1 1 0 1 0 0 1 1
1 1 1 1 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

 , α6 +a12 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 0 0

I6 1 1 0 1 0 0 1 1
1 1 1 1 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

 ,
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α6 +a13 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 0 1

I6 1 1 0 1 0 0 1 0
1 1 1 1 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

 , α6 +a14 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 0 1

I6 1 1 0 1 0 0 1 1
1 1 1 1 0 0 1 1
0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 1

 .

For 6 ≤ k ≤ r − 2. the matrix αr + c1k has as minor α7 + c15 obtained by contacting
columns {b6, . . . , br−1} except bk+1 and deleting columns {c5, d5, . . . , cr−2, dr−2} ex-
cept ck and dk. Similarly, αr + d1k has as minor α7 + d15. The matrices α7 + c15 and
α7 + d15 are shown below and each has a P ∗9 -minor:

α7 + c15 =



0 1 1 1 1 1 0 1 0 1
1 0 1 1 1 1 0 1 0 1

I7 1 1 0 1 0 0 1 0 1 0
1 1 1 1 0 0 1 0 1 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1


,

α7 + d15 =



0 1 1 1 1 1 0 1 0 0
1 0 1 1 1 1 0 1 0 0

I7 1 1 0 1 0 0 1 0 1 1
1 1 1 1 0 0 1 0 1 1
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1


.

Therefore, αr extends to Ωr.

To finish the proof it is easy to see using the above induction argument that αr has
two non-isomorphic single-element extensions αr,1 formed by adding columns cr, dr
or gr,1, and the remaining columns give αr,2. Since the pattern in columns gr,t, where
2 ≤ t ≤ r − 4 begins with α7 we only need to check that:

α7 + g7,2 ∼= α7 + g7,3.

This is true due to the mapping from α7 + g7,2 to α7 + g7,3 that takes:

(b1, b2, b3, b4, b5,b6,b7, a1, a2, a3, a4, a5, c5,d5, c6,d6,g7,2)

to
(b1, b2, b3, b4, b5,b7,b6, a1, a2, a3, a4, a5, c6,d6, c5,d5,g7,3).

Similarly, αr,1 has two non-isomorphic single-element extensions, the notable one
that gives rise to the rank-(r+1) seed matroid is αr,1,1 formed by adding cr and dr
to αr, and αr,2 also has two non-isomorphic single-element extensions. 2

The next result follows immediately since the size of the rank r non-regular infinite
families Zr and Ωr are, respectively, 2r+ 1 and 4r− 5 and the complete graph Kr+1

is the largest rank r regular member with no minor isomorphic to P ∗9 .
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Corollary 4.1 Let M be a simple binary matroid of rank r ≥ 6 with no P ∗9 minor.

Then |M | ≤ r(r+1)
2

, with this bound being attained for M ∼= M(Kr+1). �

The above result may be added to a short list of similar results. See for example
Table 1 in [7] that has a list of size functions for some classes of binary matroids.

Appendix

In many instances we have to check matrices for a P ∗9 -minor. The presence or absence
of the minor has been determined by the matroid software programs Oid and Macek.
While Macek only gives a yes/no answer, Oid gives the columns that must be deleted
and contracted, making it easy to verify by hand.

Suppose M has rank r ≤ 6. Since P ∗9 is a rank 5 matroid, EX(P ∗9 ) contains
PG(3, 2). The matroid P9 has three non-isomorphic simple single-element extensions,
D1, D2, and D3, and eight non-isomorphic cosimple single-element coextensions, of
which just one matroid E7 has no P ∗9 -minor. See Appendix Tables 1 and 2 of [5].
The matroid E7 is shown below. It is α5, the rank 5 seed matroid. Most importantly,
note that since α5 is formed by adding to P9 just one row [00011], α5 has no further
cosimple coextensions in EX(P ∗9 ).

E7 = α5 =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 0
1 1 1 1 0
0 0 0 1 1


We need to show that:

(i) α5 is the rank 5 seed matroid and it extends to the rank 5 monarch Ω5;

(ii) α5 gives rise to the rank 6 seed α6; and

(iii) There is an additional rank 5, 16-element matroid R16 that results in no larger
rank matroids in EX(P ∗9 ).

By the Strong Splitter Theorem M must be a cosimple single-element coextension
of P9, or of its single-element extensions D1, D2, or D3 formed with a row in series
to an existing row, or of its double-element extensions X1, X2, X3 formed with row
[0000011]. The matroids D1, D2, and D3 and X1, X2, X3 are shown below:

D1 =


0 1 1 1 1 1

I4 1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

 , D2 =


0 1 1 1 1 1

I4 1 0 1 1 1 0
1 1 0 1 0 0
1 1 1 1 0 1

 ,
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D3 =


0 1 1 1 1 0

I4 1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 0 1

 ,

X1 =


0 1 1 1 1 1 1

I4 1 0 1 1 1 0 0
1 1 0 1 0 0 1
1 1 1 1 0 1 0

 , X2 =


0 1 1 1 1 1 0

I4 1 0 1 1 1 1 0
1 1 0 1 0 1 1
1 1 1 1 0 0 1

 ,

X3 =


0 1 1 1 1 1 0

I4 1 0 1 1 1 0 0
1 1 0 1 0 0 1
1 1 1 1 0 1 1

 .
In every instance the resulting matroid has an α5-minor or P ∗9 -minor. Observe from
Table 1 shown below that α5 has three simple single-element extensions with no
P ∗9 -minor (extensions 2, 3, and 5).

Extension Columns Name P ∗9 -minor

[00011] [00101] [11101] Ext 1 Yes
[00110] [11000] [11110] Ext 2 (α5,1) No
[00111] [11100] Ext 3 (α5,2) No
[01001] [01010] [01100] [01111] [10001] [10010]
[10100] [10111]

Ext 4 Yes

[01011] [01101] [10011] [10101] Ext 5 (α5,3) No
[11011] Ext 6 Yes

Table 1: Simple single-element extensions of α5

Let α5,1 = (α5, ext2), α5,2 = (α5, ext3) and α5,3 = (α5, ext5). Matrix representa-
tions for α5,1, α5,2, and α5,3 are shown below:

α5,1 =


0 1 1 1 1 1
1 0 1 1 1 1

I5 1 1 0 1 0 0
1 1 1 1 0 0
0 0 1 1 1 0

 , α5,2 =


0 1 1 1 1 1
1 0 1 1 1 1

I5 1 1 0 1 0 1
1 1 1 1 0 0
0 0 1 1 1 0

 ,

α5,3 =


0 1 1 1 1 0
1 0 1 1 1 1

I5 1 1 0 1 0 0
1 1 1 1 0 1
0 0 1 1 1 1

 .

Further, observe that α5,1 is obtained by adding columns a = [00110]T , b =
[11000]T , and c = [11110]T ; α5,2 is obtained by adding column d = [00111]T and
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e = [11100]T ; and α5,3 is obtained by adding column f = [01011]T , g = [01101]T ,
h = [10011]T , and i = [10101]T .

We can check that α5,3 (formed by adding column f to α5) has only one simple
single-element extension in EX(P ∗9 ) and it is obtained by adding any one of columns
g, h, i, d, or e. Up to isomorphism all five columns give the same single-element
extension. Let us call this matroid α5,3,1 obtained by adding, say, column g:

α5,3,1 =


0 1 1 1 1 0 0
1 0 1 1 1 1 1

I5 1 1 0 1 0 0 1
1 1 1 1 0 1 0
0 0 0 1 1 1 1


.

Similarly, adding to α5,3,1 any one of columns h, i, d, e, say h, gives α5,3,1,1, and
so on; we get α5,3,1,1 by adding i; α5,3,1,1,1 by adding d; and finally α5,3,1,1,1,1 = R16

by adding e. This gives all the rank 5 members in EX(P ∗9 ) with an α5,3-minor.

It remains to show that there are no higher rank matroids with an α5,3-minor.
Suppose M is a rank 6 cosimple single-element matroid in EX(P ∗9 ) with an α5,3-
minor. By the Strong Splitter Theorem, M is a cosimple single-element coextension
of α5,3 by Type II and III rows or α5,3,1 with row [0000011]. In every instance M has
a P ∗9 -minor.

Thus we may assume M has an α5,1-minor or α5,2-minor. Renaming columns to fit
the pattern in Ω5, Table 1 shows that α5,1 is formed by adding columns c5 = [11000]T ,
d5 = [00110]T , or g5,1 = [11110]T and α5,2 is formed by adding columns e5 = [11100]T

or f5 = [00111]T . Adding all these columns to α5 gives Ω5. Using the same method
explained above for α5,3 we can show that every cosimple single-element coextension
of α5,1 and α5,2 also has a P ∗9 -minor.

Lastly, α5,1 (with c5) has two simple single-element extensions in EX(P ∗9 ), namely,
α5,1,1, formed by adding d5 or g5,1, and α5,1,2 formed by adding e5 or f5. The matroid
α5,2 (with e5) also has two single-element extensions, α5,2,1 formed by adding c5, d5
or g5,1 and α5,2,2 formed by adding f5:

α5,1,1 =


0 1 1 1 1 1 0
1 0 1 1 1 1 0

I5 1 1 0 1 0 0 1
1 1 1 1 0 0 1
0 0 1 1 1 0 0

 , α5,1,2 =


0 1 1 1 1 1 1
1 0 1 1 1 1 1

I5 1 1 0 1 0 0 1
1 1 1 1 0 0 0
0 0 1 1 1 0 0

 ,

α5,2,2 =


0 1 1 1 1 1 0
1 0 1 1 1 1 0

I5 1 1 0 1 0 1 1
1 1 1 1 0 0 1
0 0 1 1 1 0 1

 .
Further, note that α5,2,1 = α5,1,2.

By the Strong Splitter Theorem we must only check one single-element coex-
tension of α5,1,1, α5,1,2, and α5,2,2, namely the one formed by adding row [0000011].
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Observe that α5,1,1 with row [0000011] is precisely α6, whereas each of α5,1,2 and α5,2,2

with row [0000011] has a P ∗9 -minor. This completes the base case for the induction
argument.

The base case is summarized in Figure 7, where the numbers below the figure
represent the size of the matroids. The rank 5 seed α5 has size 10 and the monarch
Ω5 has size 15. The rank 6 seed α6 has size 13 and the monarch Ω6 has size 19. The
figure also shows how R16 manifests as an extension of α5 via its third single-element
extension α5,3, which has no coextensions in EX(P ∗9 ).

Figure 7: Base case of the induction argument
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