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Excluded minors for the class of split matroids
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Abstract

Split matroids form a minor-closed class of matroids, and are defined
by placing conditions on the system of split hyperplanes in the matroid
base polytope. They can equivalently be defined in terms of structural
properties involving cyclic flats. We confirm a conjecture of Joswig and
Schröter by proving an excluded-minor characterisation of the class of
split matroids.

1 Introduction

The class of split matroids was recently introduced by Joswig and Schröter [7], who
successfully deployed them as a tool in tropical linear geometry. The definition
arises from natural considerations in the polyhedral view of matroids. Let M be a
matroid on the ground set {1, . . . , n}. Any subset of {1, . . . , n} is identified with
its characteristic vector in Rn. The matroid base polytope, P (M), is the convex
hull of the characteristic vectors of the bases of M . Roughly speaking, a split of a
polytope is a division into two polytopes by a hyperplane, called a split hyperplane.
If all pairs of split hyperplanes in a matroid polytope satisfy a certain compatibility
condition, then the matroid is split. Although the motivation for split matroids arises
from tropical linear geometry, natural questions also arise in the area of structural
matroid theory, and it is one of these questions that we address here.

First we provide more detail on the polyhedral background. Let X be a set of
points in Rn. The convex hull of X is the intersection of all closed half-spaces that
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contain X. A polytope is the convex hull of a finite set of points. The intersection of
two polytopes is also a polytope. If X is empty, then so is its convex hull. Let P be
the convex hull of the non-empty finite set X. Let A be the affine subspace of Rn

spanned by P , and let H be any hyperplane of A. Thus A − H is partitioned into
two open half-spaces of A. If one of these has an empty intersection with P , then
H ∩ P is a face of P . Note that the empty set is a face. In addition, we declare P
itself to be a face of P . A face is a facet if it is properly contained in exactly one
face, namely P . A vertex is a minimal non-empty face. A point in P that is in no
face other than P itself is in the relative interior of P . Every vertex of P is a point
in X. Every face of P is the convex hull of the vertices it contains, and is therefore
a polytope.

The notion of a polytope split originated in [1] (see [2, Section 5.3.3]). The
definition we use here is from [6]. We let P be a polytope. A split of P is a
collection, C, of polytopes such that:

(i) the empty polytope is in C,

(ii) if Q is in C, then all the vertices of Q are also vertices of P ,

(iii) if Q is in C, so are all the faces of Q,

(iv) the intersection of any two distinct polytopes Q1, Q2 ∈ C is a face of both Q1

and Q2,

(v)
⋃

C∈C C = P , and

(vi) there are exactly two maximal polytopes in C.

The members of C are called the cells of the split. The affine subspace spanned by
the intersection of the two maximal cells is called a split hyperplane.

Let ∆(r, n) be the (n− 1)-dimensional hypersimplex : that is, the convex hull of
those 0, 1-vectors in Rn with exactly r ones. Hence ∆(r, n) is the base polytope of the
uniform matroid Ur,n. Note that the polytope of any rank-r matroid on n elements
is contained in ∆(r, n). Let M be a rank-r matroid with ground set {1, . . . , n}. If x
is in Rn, then xi stands for the entry of x indexed by i ∈ E(M). Edmonds [3] proved
that

P (M) =

{
x ∈ ∆(r, n) :

∑
i∈F

xi ≤ r(F ) for all flats F of M

}
.

Let F be a flat of M . Then H(F ) is the set{
x ∈ Rn :

∑
i∈F

xi = r(F )

}
.

If F is minimal under inclusion with respect to H(F ) intersecting P (M) in a facet
of P (M), then we say that F is a flacet of M . (This definition originated in [4].) If,
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in addition, H(F ) ∩∆(r, n) spans a split hyperplane of ∆(r, n), then we say that F
is a split flacet of M . In this case, we can think of H(F ) as separating P (M) from a
portion of ∆(r, n) that does not intersect P (M). Roughly speaking, the split flacets
are the hyperplanes we use when carving off portions of ∆(r, n) to obtain P (M).

Definition 1.1 ([7]) Assume thatM is a rank-r matroid with ground set {1, . . . , n}.
Let A be the affine subspace of Rn spanned by P (M). We use [0, 1]n to denote the
closed unit cube. Assume that the following holds for any distinct split flacets, F1

and F2, of M : no point in H(F1) ∩ H(F2) is in the relative interior of A ∩ [0, 1]n.
Then we say that M is a split matroid.

Joswig and Schröter observe that the matroid polytopes of split matroids are
exactly those polytopes whose faces of codimension at least two are contained in
the boundary of ∆(r, n). They use split matroids and the Dressian to construct
a number of nonrepresentable tropical linear spaces, and give a characterisation of
matroid representability in terms of these spaces. In addition, they prove that the
class of split matroids contains the (possibly dominating) class of sparse paving
matroids.

The following result is [7, Proposition 44].

Proposition 1.2 The class of split matroids is closed under duality and under taking
minors.

In light of Proposition 1.2, we naturally ask what the excluded minors are for
the class of split matroids. Joswig and Schröter identify five excluded minors. Our
main theorem shows that their list of excluded minors is complete. Figure 1 shows
geometric representations of four connected rank-3 matroids, each with six elements.
Note that S∗1

∼= S2, whereas S3 and S4 are both self-dual matroids. In addition, we
define S0 to be the matroid constructed from the direct sum U2,3 ⊕ U2,3 by adding
one parallel point to each of the two connected components. Thus S0 is the direct
sum of two copies of M(W2), where W2 is the graph obtained by adding a parallel
edge to a triangle.

S1 S2 S3 S4

Figure 1: Connected excluded minors for split matroids.

Theorem 1.3 The excluded minors for the class of split matroids are S0, S1, S2,
S3, and S4.

Any unexplained matroid terms can be found in [8].
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2 Reducing to the connected case

To prove Theorem 1.3, we employ Joswig and Schröter’s equivalent formulation of
Definition 1.1 that relies entirely on structural concepts.

We say that a flat, Z, of the matroid, M , is proper if 0 < r(Z) < r(M). A set
X ⊆ E(M) is cyclic if the restriction M |X contains no coloop. The next result is
[7, Proposition 1].

Proposition 2.1 Let Z be a flat of the connected matroid M . Then Z is a flacet if
and only if it is proper, and both M |Z and M/Z are connected.

Proposition 2.2 Let Z be a flat of the connected matroid M . Then Z is a split
flacet if and only if it is proper and cyclic, and both M |Z and M/Z are connected.

Proof: Let E = {1, . . . , n} be the ground set of M , and let r be the rank of M .
Assume Z is a proper cyclic flat of M and that M |Z and M/Z are connected. Then
Z is a flacet by Proposition 2.1. We know that 0 < r(Z) < |Z|, since Z is a proper
flat and is not independent. As Z and E−Z are non-empty, we can find an element
in E − Z that is not a coloop (since M is connected). These are the conditions
required to apply Lemma 6 of [7]. From this lemma, we see that the equation

(r − r(Z))
∑
i∈Z

xi = r(Z)
∑
i/∈Z

xi, or equivalently, r
∑
i∈Z

xi = r(Z)
∑
i∈E

xi.

defines a split hyperplane of ∆(r, n). The intersection of H(Z) with ∆(r, n) satisfies
the equation

∑
i∈Z xi = r(Z). By multiplying both sides of this equation by r, and

using the fact that in ∆(r, n) we have the equality
∑

i∈E xi = r, we again obtain

r
∑
i∈Z

xi = r(Z)
∑
i∈E

xi.

This shows that the intersection H(Z) ∩∆(r, n) is a split of ∆(r, n), so Z is a split
flacet, as desired.

For the converse, we let Z be a split flacet. Then Z is a proper flat and both M |Z
and M/Z are connected by Proposition 2.1. We need only show Z is cyclic. Since
H(Z) ∩ ∆(r, n) is a split of ∆(r, n), [7, Proposition 4] asserts there is a positive
integer, µ, which satisfies r > µ > r − |Z|. This implies |Z| > 1. Proposition 13 in
[7] says that any flacet of M with at least two elements is a cyclic flat. Therefore Z
is cyclic and the proof is complete. 2

Definition 2.3 Let M be a connected matroid, and let Z be a proper cyclic flat of
M . If both M |Z and M/Z are connected matroids, but at least one of them is a
non-uniform matroid, we say that Z is a certificate for non-splitting.
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Lemma 2.4 Let M be a connected matroid. Then M is split if and only if it has no
certificate for non-splitting.

Proof: Theorem 11 in [7] states that M is split if and only if M |Z and M/Z are both
uniform, for every split flacet Z. So the lemma follows immediately from Proposition
2.2. 2

The following result combines Lemma 10 and Proposition 15 of [7].

Proposition 2.5 Let U1, . . . , Ut be the connected components of the matroid M ,
where t > 1. Then M is a split matroid if and only if each connected matroid, M |Ui,
is a split matroid, and at most one of these matroids is non-uniform.

Note that a characterisation of connected split matroids now immediately leads
to a characterisation of all split matroids, by use of Proposition 2.5. Note also
that S0 has two connected components that are non-uniform, and hence S0 is not a
split matroid. It is also easy to check that S0 is an excluded minor for the class of
split matroids. We now show that it is the only disconnected excluded minor. The
following result is a consequence of [5, Theorem 4.1].

Proposition 2.6 Every connected non-uniform matroid has an M(W2)-minor.

Proposition 2.7 The only disconnected excluded minor for the class of split ma-
troids is S0.

Proof: Suppose M is a disconnected excluded minor, so M is not a split matroid, but
every proper minor of M is. Let the connected components of M be U1, . . . , Ut, where
t > 1. As each M |Ui is a proper minor of M , we see that M |Ui is a split matroid
for each i. If at most one component of M is non-uniform, then M is split, which
is a contradiction. So let M |Ui and M |Uj be non-uniform, where 1 ≤ i < j ≤ t.
Now M |(Ui ∪ Uj) has two components, Ui and Uj. Both M |Ui and M |Uj are split
but non-uniform, so M |(Ui ∪Uj) is not split. Therefore it cannot be a proper minor
of M . From this we deduce that i = 1 and j = t = 2. By Proposition 2.6, each of
the two components of M contains M(W2) as a minor. Hence M contains a minor
isomorphic to S0

∼= M(W2)⊕M(W2). As S0 is an excluded minor, and no excluded
minor can properly contain another, we now see that M is isomorphic to S0, as
desired. 2

3 Proof of the main theorem

Lemma 3.1 Let M be a connected matroid. If M has a proper cyclic flat, Z, such
that M |Z is connected and has an M(W2)-minor, then M has a minor isomorphic
to S2, S3, or S4.
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Proof: Let M be a counterexample chosen so that its ground set is as small as
possible. We let Z be a proper cyclic flat of M such that M |Z is connected with an
M(W2)-minor. Amongst all such flats, we assume that we have chosen Z to be as
small as possible. Since M is a counterexample, it has no minor isomorphic to S2,
S3, or S4.

3.1.1 If e is any element of Z, then (M |Z)\e has no M(W2)-minor.

Proof: We assume otherwise. It is well-known and easy to verify that Z − e is a flat
of M\e. As Z contains an M(W2)-minor, we see that |Z| ≥ 4. First we consider
the case that (M |Z)\e = M |(Z − e) is connected. Since M |(Z − e) is a connected,
non-empty matroid, it contains no coloops. This shows that Z − e is a cyclic flat of
M\e. Since M |(Z − e) has an M(W2)-minor, it has rank greater than zero. As e is
not a coloop of M , or of M |Z, we also have rM\e(Z−e) = rM(Z) < r(M) = r(M\e).
This establishes that Z − e is a proper cyclic flat of M\e. Assume that M\e is
not connected, and let (U, V ) be a separation. Since M |(Z − e) is connected, we
can assume that Z − e is a subset of U . As Z is a cyclic flat, e is spanned by
Z − e in M . From this it follows that (U ∪ e, V ) is a separation of M , which is
impossible. Therefore M\e is a connected matroid, and Z − e is a proper cyclic flat
of M\e such that (M\e)|(Z− e) = (M |Z)\e is connected and has an M(W2)-minor.
We have shown that M\e is a smaller counterexample to the lemma, and from this
contradiction we deduce that (M |Z)\e is not connected.

Let (U1, . . . , Ut) be the partition of Z − e into connected components of (M |Z)\e,
where t > 1. Thus (M |Z)\e = (M |U1)⊕ · · · ⊕ (M |Ut). Since M(W2) is a connected
matroid, we can assume that M |U1 has an M(W2)-minor [8, Proposition 4.2.20]. As
U1 is a connected component of (M |Z)\e with at least four elements there are no
coloops in M |U1. It follows that U1 is a cyclic flat of (M |Z)\e. Assume that U1 is not
a flat of M , and let z be an element in clM(U1)−U1. Note that clM(U1) ⊆ clM(Z) =
Z, so z is in Z. If z = e, then (U1 ∪ e, U2 ∪ · · · ∪Ut) is a separation of the connected
matroid M |Z, so z 6= e. Let C be a circuit containing z such that C ⊆ U1 ∪ z. Then
C contains elements from both U1 and U2 ∪ · · · ∪ Ut, and as (U1, U2 ∪ · · · ∪ Ut) is
a separation of (M |Z)\e, we have a contradiction. Therefore U1 is a cyclic flat of
M . Now rM(U1) ≤ rM(Z) < r(M), and obviously rM(U1) > 0, so U1 is a proper
cyclic flat of M . Moreover M |U1 is connected and has an M(W2)-minor. But we
chose Z to be the smallest possible cyclic flat with these properties, and U1 does not
contain any element of U2∪· · ·∪Ut so it is strictly smaller than Z. This contradiction
completes the proof. 2

3.1.2 If x is an element in the complement of Z, then M\x is not connected.

Proof: Assume otherwise. Note that rM\x(Z) = rM(Z) < r(M) = r(M\x), so it
is obvious that Z is a proper cyclic flat of M\x. Moreover (M\x)|Z = M |Z is
connected and has an M(W2)-minor. This contradicts the minimality of M , so M\x
is not connected. 2
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3.1.3 The complement of Z is a series pair of M .

Proof: Choose an arbitrary element, x, in the complement of Z. Using 3.1.2, we let
(U1, . . . , Ut) be the partition of E(M)−x into connected components of M\x, where
t > 1. As M |Z is connected, we can assume that Z ⊆ U1. Then Z is a cyclic flat
of M |U1. If it is a proper cyclic flat of M |U1, then M |U1 is a connected matroid
with a proper cyclic flat such that the restriction to this cyclic flat is connected
with an M(W2)-minor. This contradicts the minimality of M , so Z spans U1. It is
straightforward to verify that U1 is a flat of M , using some of the same arguments
as in 3.1.1. Hence Z = U1.

Let y be an element of U2. Again using 3.1.2, we see that M\y is not connected.
Therefore M/y is connected [8, Theorem 4.3.1]. We can easily check that clM/y(Z) is
a cyclic flat of M/y, and that (M/y)|(clM/y(Z)) is connected with an M(W2)-minor.
So if clM/y(Z) is a proper cyclic flat of M/y, we have contradicted the minimality of
M . Therefore Z is not a proper cyclic flat of M/y, meaning that r(Z) = r(M)− 1.
Hence Z is a hyperplane of M , and its complement is a cocircuit. However,

r(M) = r(M\x) = r(U1) + · · ·+ r(Ut) = r(Z) + r(U2) + · · ·+ r(Ut).

From this, and the fact that M has no loops, we deduce that t = 2, and that
r(U2) = 1. Assume that |U2| > 1, and let z be an element in U2 − y. Then {y, z} is
a parallel pair. But deleting an element from a parallel pair in a connected matroid
always produces another connected matroid, so we are led to a violation of 3.1.2.
Thus U2 = {y}, and we conclude that the complement of Z is the series pair {x, y}.

2

Let {x, y} be the complement of Z, so that {x, y} is a series pair. Since M |Z has
an M(W2)-minor, but 3.1.1 implies we cannot produce such a minor by deleting
any element, we see that there is a subset I ⊆ Z such that (M |Z)/I is isomorphic
to M(W2). Assume I is not independent, and let e be an element contained in
a circuit of M |I. Then (M |Z)/I = (M |Z)/(I − e)\e, so we have a contradiction
to 3.1.1. Therefore I is an independent set. Dualising, we see that (M |Z)∗ =
(M\{x, y})∗ = M∗/{x, y} has a coindependent set, I, such that M∗/{x, y}\I is
isomorphic to M(W2) (as M(W2) is self-dual). Note that {x, y} is a parallel pair in
M∗. As I is coindependent, r(M∗/{x, y}) = r(M∗/{x, y}\I) = r(M(W2)) = 2, so
r(M∗) = 3.

We choose elements a, b, c, and d, so that (M∗/{x, y})|{a, b, c, d} is isomorphic to
M(W2), where {a, b} is a parallel pair in M∗/{x, y}. Note that {a, b, x} has rank two
in M∗, that {c, d, x} is independent, and that neither c nor d is on the line spanned
by {a, b, x}. We divide into two cases, according to whether or not {a, b} is a parallel
pair in M∗.

First assume that {a, b} is not a parallel pair, so that it is independent in M∗. Note
that M∗|{a, b, x, y} is isomorphic to M(W2). The lines cl∗M({c, d}) and cl∗M({a, b, x, y})
intersect in a flat of rank at most one, and this flat cannot contain x. Hence the
intersection of cl∗M({c, d}) and {a, b, x, y} is either empty, or it contains a (up to
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symmetry between a and b). In the first case, the restriction M∗|{a, b, c, d, x, y} is
isomorphic to S4, and in the second it is isomorphic to S3. In these cases, M also
has a minor isomorphic to S3 or S4. Since this is a contradiction, we assume that
{a, b} is a parallel pair of M∗.

If {a, c, d} is independent, then M∗|{a, b, c, d, x, y} is isomorphic to S1, which implies
that M has a minor isomorphic to S∗1

∼= S2. This is a contradiction, so {a, c, d}
has rank two. Note that the restriction to {a, b, c, d} is isomorphic to M(W2). As
M∗ is a connected rank-3 matroid, the complement of the line cl∗M({a, b, c, d}) has
rank at least two. We let z be an element in this complement, chosen so that {x, z}
is independent. The intersection of cl∗M({x, y, z}) and {a, b, c, d} is either ∅, {a, b},
or {c} (up to symmetry between c and d). In the first case, M∗|{a, b, c, d, x, z} is
isomorphic to S4. In the second and third cases, M∗|{a, c, d, x, y, z} is isomorphic to
S3. Thus we have a contradiction in any case, and this completes the proof of the
lemma. 2

Proposition 3.2 Let Z be a proper cyclic flat of the matroid M . If E(M) − Z is
not a proper cyclic flat of M∗, then every element in E(M)− Z is a coloop of M .

Proof: Let E be the ground set of M . The fact that E − Z is a cyclic flat of M∗ is
well-known and easy to verify. Suppose it is not proper; that is, r∗(E −Z) = r(M∗)
or r∗(E − Z) = 0. First, consider the case where r∗(E − Z) = r(M∗) = |E| − r(M).
Then the corank function gives

|E| − r(M) = r(Z) + |E − Z| − r(M).

This implies that r(Z) = |Z|, so Z is an independent set in M . The only independent
cyclic flat is the empty set, and Z is non-empty since it is a proper flat of M . So if
E − Z is not a proper flat, then r∗(E − Z) = 0, and this implies that every element
in E − Z is a coloop of M . 2

Proposition 3.3 Let M be a connected matroid that is not split. There exists M ′ ∈
{M,M∗} such that the following holds: M ′ has a proper cyclic flat, Z, where M ′|Z
is connected and non-uniform.

Proof: Let E be the ground set of M . As M is connected and not split, it contains
a certificate, Z, for non-splitting, by Lemma 2.4. Thus Z is a proper cyclic flat
such that both M |Z and M/Z are connected matroids and either M |Z or M/Z is
non-uniform. If M |Z is non-uniform, then we set M ′ to be M and we are done. So
we assume that M/Z is non-uniform. If M contains a coloop, then it is isomorphic
to the uniform matroid U1,1, and is therefore a split matroid. This is impossible, so
M has no coloops. We apply Proposition 3.2 and deduce that E − Z is a proper
cyclic flat of M∗. Note that M∗|(E − Z) = (M/Z)∗ and M∗/(E − Z) = (M |Z)∗.
Both of these matroids are connected, and M∗|(E − Z) = (M/Z)∗ is non-uniform.
Therefore we set M ′ to be M∗ and relabel E − Z as Z. 2
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As an aside, this gives us an alternative characterisation of connected split ma-
troids.

Corollary 3.4 Let M be a connected matroid. Then M is split if and only if, for
every M ′ ∈ {M,M∗} and every proper cyclic flat Z of M ′, when M ′|Z is connected
it is uniform.

Proof: Proposition 3.3 provides us with the “if” direction. For the “only if” direction,
we assume there exists M ′ ∈ {M,M∗} and a proper cyclic flat Z of M ′ such that
M ′|Z is connected and non-uniform. By Proposition 2.6, M ′|Z has an M(W2)-minor.
Lemma 3.1 tells us that M ′ has a minor isomorphic to S2, S3, or S4, so M has a
minor isomorphic to S1, S2, S3, or S4. This implies M is not split. 2

We can now easily prove our main result.

Proof of Theorem 1.3. The connected matroids S1, S2, S3, and S4 all contain cer-
tificates for non-splitting. It is routine to verify that they are excluded minors. Let
M be an excluded minor for the class of split matroids. If M is not connected, then
it is isomorphic to S0 by Proposition 2.7. Therefore we assume that M is connected.
By using Proposition 3.3 and duality, we can assume that M has a proper cyclic flat,
Z, such that M |Z is connected and non-uniform. Proposition 2.6 implies that M |Z
has an M(W2)-minor. Lemma 3.1, and the fact that no excluded minor properly
contains another, implies that M is isomorphic to S2, S3, or S4. (Note that S1 does
not appear in this analysis because of our duality assumption.) 2

Acknowledgments

We thank James Oxley and Michael Joswig for their helpful advice, and the referees
for useful comments. Dillon Mayhew was supported by a Rutherford Discovery
Fellowship.

References

[1] H.-J. Bandelt and A. W. M. Dress, A canonical decomposition theory for metrics
on a finite set, Adv. Math. 92 (1) (1992), 47–105.

[2] J. A. De Loera, J. Rambau and F. Santos, Triangulations, vol. 25 of Algorithms
and Computation in Mathematics, Springer-Verlag, Berlin (2010), Structures for
algorithms and applications.

[3] J. Edmonds, Submodular functions, matroids, and certain polyhedra, In Com-
binatorial optimization—Eureka, you shrink!, vol. 2570 of Lec. Notes in Comp.
Sci., pp. 11–26, Springer, Berlin (2003).



A. CAMERON AND D. MAYHEW/AUSTRALAS. J. COMBIN. 79 (2) (2021), 195–204 204

[4] E. M. Feichtner and B. Sturmfels, Matroid polytopes, nested sets and Bergman
fans, Port. Math. (N.S.) 62 (4) (2005), 437–468.

[5] Z. Gershkoff and J. Oxley, A notion of minor-based matroid connectivity, Adv.
in Appl. Math. 100 (2018), 163–178.

[6] S. Herrmann and M. Joswig, Splitting polytopes, Münster J. Math. 1 (2008),
109–141.
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