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Abstract

The forgotten index of a graph is the sum of cubes of all its vertex degrees,
which plays a significant role in measuring the branching of the carbon-
atom skeleton. In this paper, we mainly explore sufficient conditions,
in terms of the forgotten index, for a graph to be k-edge-hamiltonian,
k-path-coverable, traceable and Hamilton-connected. The conditions ob-
tained cannot be dropped.

1 Preliminaries

Throughout this paper we consider connected graphs without loops and multiple
edges. Let G = (V (G), E(G)) be a graph with n = |V (G)| vertices and m = |E(G)|
edges. The number of edges in G that are incident to a vertex v ∈ V (G) is said
to be its degree and is denoted by dG(v). A sequence of non-negative integers π =
(d1, d2, . . . , dn) is said to be the degree sequence of G if di = dG(vi) holds for any
vi ∈ V (G), i = 1, 2, . . . , n. In particular, if the vertex degrees are non-decreasing,
we use π = (d1 ≤ d2 ≤ · · · ≤ dn) to denote the degree sequence for simplicity. We
denote by Kn and Kn the complete graph with n vertices and its complement graph,
respectively.
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As usual, a cycle (respectively, path) passing through each vertex of a graph
is said to be a Hamiltonian cycle (respectively, Hamiltonian path). For a certain
integer k, a connected graph G is said to be k-edge-hamiltonian if any collection of
vertex-disjoint paths with at most k edges altogether belong to a hamiltonian cycle
in G. A graph G is k-path-coverable if its vertex set can be covered by k or fewer
vertex-disjoint paths, and we call the graph traceable if there exists a Hamiltonian
path in it. A graph G is called Hamilton-connected if every two vertices in G are
connected by a Hamiltonian path. In the subsequent sections, we always omit the
subscript G from the notation if there is no confusion from the context. For other
undefined graph-theoretic notation and terminology, the reader may refer to Bondy
and Murty [8].

2 Motivation

Configuration of nodes and connections occurs in a variety of applications, which also
represent organic molecules. Fortunately, graph theory has successfully provided sci-
entists with a lot of useful tools, topological indices for instance. A topological index
is a numeric quantity related to a molecule graph, which is a structural invariant and
mathematically derived in an unambiguous and direct manner from the structural
graph. It can be used to characterize properties of the corresponding graph. A series
of topological indices, such as the Wiener index [32] and the Harary index [20, 28],
have been introduced and found a large amount of useful applications. More details
and information may be found in [17, 29, 30] and references therein.

It is stated that the authors in [18] proposed an approximate formula for the total
π-electron energy (in short, E). One of the main terms occurring in this expression is
the first Zagreb index of the corresponding molecular graph. It is worth mentioning
that this numeric quantity was precisely interpreted to be useful in measuring the
extent of branching of the carbon-atom skeleton for molecules. A large number of
scientists concentrated on this topological index and obtained a series of meaningful
results; we encourage readers to consult [16, 22, 27] and references therein for more
information. Another considerable contribution for the expression of E is the sum of
the cubes of all vertex degrees:

F (G) =
∑
u∈V

(dG(u))
3,

which also plays a significant role in measuring the branching of the carbon-atom
skeleton for the underlying molecule graph. The authors in the same paper call this
the forgotten index of graphs. It was in 2016 that the authors in [15] investigated this
graph parameter of several widely used chemical structures. We refer the interested
reader to [1, 12, 14] for more information and details.

The problem of determining whether a graph keeps some property is often difficult
and meaningful in graph theory. It is reported in [21] that determining whether a
graph is traceable or Hamiltonian is always NP -complete. From then on, exploring
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such sufficient conditions for graphs, which attracts a vast number of mathematicians,
became an important and meaningful aspect of graph theory. For example, the
authors studied the traceability of graphs and presented a sufficient condition in
terms of the Harary index; see [19]. In the same year, a similar problem was also
considered in [33], and new sufficient conditions were found for a graph to be traceable
in terms of the Wiener index. Subsequently, these results mentioned previously were
generalized by means of other techniques; we suggest the reader consults [3, 4, 6, 7,
10, 11, 13, 25, 26, 31] for more details. To the best of our knowledge, there are few
such conditions in terms of the degree-based and distance-based topological indices.

Motivated by the results in [2], in subsequent sections we attempt to explore suffi-
cient conditions in terms of the forgotten index for graphs to be k-edge-hamiltonian,
k-path-coverable, traceable and Hamilton-connected.

3 k-egde-hamiltonian graphs

We begin with an auxiliary result which will be used in later analysis.

Lemma 3.1 ([23]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a degree sequence with n ≥ 3
and 0 ≤ k ≤ n− 3. If

di−k ≤ i ⇒ dn−i ≥ n− i+ k for k + 1 ≤ i <
n + k

2
,

then π is k-edge-hamiltonian.

Let G1 and G2 be two vertex-disjoint graphs, denote by G1 ∪ G2 the union of
these two graphs; and G1 ∨G2 the join which is obtained from the disjoint union of
G1 and G2 by connecting each vertex in G1 with that in G2.

Theorem 3.2 Let G be a connected graph of order n ≥ 9 with 0 ≤ k ≤ n− 3.

(1) For k = n− 4, if

F (G) >

(
n− k − 2

2

)(
n+ k − 2

2

)3

+ 2

(
n + k

2

)3

+

(
n+ k − 2

2

)
(n− 1)3,

then G is k-edge-hamiltonian, unless G ∼= Kn−3 ∨ (K1 ∪K2).

(2) For k = n− 3 or k = n− 5, if

F (G) >

(
n− k − 1

2

)(
n + k − 1

2

)3

+

(
n + k − 1

2

)3

+

(
n+ k − 1

2

)
(n− 1)3,

then G is k-edge-hamiltonian, unless G ∼= Kn−2 ∨ 2K1 or G ∼= Kn−3 ∨ 3K1.

(3) For k ≤ n− 6, if

F (G) > (k + 1)3 + (n− k − 2)(n− 2)3 + (k + 1)(n− 1)3,

then G is k-edge-hamiltonian, unless G ∼= Kk+1 ∨ (K1 ∪Kn−k−2).
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Proof. We assume that G is a graph of order n ≥ k + 3 which is not k-edge-
hamiltonian. In view of Lemma 3.1, there must exist an integer i such that di−k ≤ i
and dn−i ≤ n− i+ k − 1 for k + 1 ≤ i ≤ n+k−1

2
. Recall that 0 ≤ k ≤ n− 3, then we

have

F (G) ≤(i− k)i3 + (n− 2i+ k)(n− i+ k − 1)3 + i(n− 1)3

=3i4 − (7n+ 8k − 6)i3 + (9n2 + (18k − 15)n+ 9k2 − 15k + 6)i2

−(4n3 + (15k − 9)n2 + (15k2 − 24k + 6)n+ 5k3 − 12k2 + 9k − 1)i

+(k + n)(k + n− 1)3.

For simplicity, we define the following function on [k + 1, n+k−1
2

]:

ϕ1(x) =3x4 − (7n+ 8k − 6)x3 + (9n2 + (18k − 15)n+ 9k2 − 15k + 6)x2

−(4n3 + (15k − 9)n2 + (15k2 − 24k + 6)n + 5k3 − 12k2 + 9k − 1)x

+(k + n)(k + n− 1)3.

Directly from the expression of ϕ1(x) we get

ϕ′
1(x) =12x3 − 3(7n+ 8k − 6)x2 + 6(3n2 + (6k − 5)n + 3k2 − 5k + 2)x

−(4n3 + (15k − 9)n2 + (15k2 − 24k + 6)n+ 5k3 − 12k2 + 9k − 1)

and

ϕ′′
1(x) =36x2 − 6(7n+ 8k − 6)x+ 6(3n2 + (6k − 5)n + 3k2 − 5k + 2).

It is routine to check that the discriminant of ϕ′′
1(x) is 
 = 36[−23n2+(36−32k)n−

8k2+24k− 12] < 0. Hence, ϕ1(x) is a convex function on the interval [k+1, n+k−1
2

],
and therefore ϕ1(x) ≤ max{ϕ1(k + 1), ϕ1(

n+k−1
2

)}.
In the following, we need to consider two cases:

Case 1. n+ k − 1 is even.

It is routine to check that

ϕ1(k + 1)− ϕ1

(
n+ k − 1

2

)
=

1

16
k4 +

(
1

8
n+

3

4

)
k3 −

(
3

8
n− 27

8

)
k2

−
(
5

8
n3 − 9

2
n2 +

81

8
n− 41

4

)
k

+

(
7

16
n4 − 39

8
n3 + 18n2 − 217

8
n+

249

16

)
.

For convenience, we use ρ(k), k ∈ [0, n − 3], to denote the right-side of the above
expression. By direct calculations, we have

ρ′(k) =
1

4
k3 +

(
3

8
n +

9

4

)
k2 −

(
3

4
n− 27

4

)
k

−
(
5

8
n3 − 9

2
n2 +

81

8
n− 41

4

)
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and

ρ′′(k) =
3

4
k2 +

(
3

4
n+

9

2

)
k −

(
3

4
n− 27

4

)
.

To continue the proof, we consider the following three possibilities.

Subcase 1.1. k = n− 3 or n− 5.

It is routine to check that ρ(k) ≤ 0, that is, ϕ1(x) ≤ ϕ1(
n+k−1

2
). Hence, F (G) ≤

(n−k−1
2

)(n+k−1
2

)3 + (n+k−1
2

)3 + (n+k−1
2

)(n − 1)3, a contradiction. As desired, G is
k-edge-hamiltonian.

If k = n − 3 or n − 5 and F (G) = (n−k−1
2

)(n+k−1
2

)3 + (n+k−1
2

)3 + (n+k−1
2

)(n − 1)3,
then all inequalities concerned previously should be equalities. Hence, i = n+k−1

2
and

therefore d1 = d2 = · · · = dn−k−1
2

= n+k−1
2

, dn−k+1
2

= n+k−1
2

and dn−k+3
2

= · · · = dn =

n− 1, thus G ∼= 2K1 ∨Kn−2 (resp. 3K1 ∨Kn−3) for k = n− 3 (resp. for k = n− 5),
which is not k-edge-hamiltonian. Hence, the conditions in Theorem 3.2 cannot be
dropped.

Subcase 1.2. 1 ≤ k ≤ n− 7.

Direct calculations show that ρ′′(k) > 0, implying that ρ′(k) is an increasing function
on the interval [0, n− 7]. Thus, we have ρ′(k) ≤ ρ′(n− 7) = −9

2
n2 + 51

2
n− 25

2
n < 0,

which yields that ρ(k) is decreasing for k ∈ [0, n − 7]. Hence, ρ(k) ≥ ρ(n − 7) =
6n2 − 30n + 2 > 0. As desired we confirm that ϕ1(k + 1)− ϕ1

(
n+k−1

2

)
> 0. Hence,

F (G) ≤ (k + 1)3 + (n − k − 2)(n − 2)3 + (k + 1)(n − 1)3, which is a contradiction.
Hence, G is k-edge-hamiltonian.

Subcase 1.3. k = 0.

It is not difficult to find that ρ(0) = 7
16
n4 − 39

8
n3 + 18n2 − 217

8
n+ 249

16
> 0 for n ≥ 9.

Hence, ϕ1(k + 1) − ϕ1

(
n+k−1

2

)
> 0, and consequently F (G) ≤ (k + 1)3 + (n − k −

2)(n− 2)3 + (k + 1)(n− 1)3, again a contradiction. Hence, G is k-edge-hamiltonian.

If F (G) = (k + 1)3 + (n − k − 2)(n − 2)3 + (k + 1)(n − 1)3, then all inequalities in
previous proof should be equalities. Hence, i = k + 1 and therefore d1 = k + 1, d2 =
· · · = dn−k−1 = n− 2 and dn−k = · · · = dn = n− 1, thus G ∼= Kk+1 ∨ (K1 ∪Kn−k−2),
which is not k-edge-hamiltonian. Hence, the conditions in Theorem 3.2 cannot be
dropped.

Case 2. n+ k − 1 is odd.

It routine to check that

ϕ1(k + 1)− ϕ1

(
n + k − 2

2

)
=

1

16
k4 +

(
1

8
n +

1

2

)
k3 −

(
3

4
n− 3

)
k2

−
(
5

8
n3 − 9

2
n2 + 12n− 23

2

)
k

+

(
7

16
n4 − 17

4
n3 + 15n2 − 47

2
n+ 14

)
.
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Denote by �(k) the right-side of the previous expression for k ∈ [0, n− 4]. By taking
the first and second derivatives of �(k), we get

�′(k) =
1

4
k3 +

(
3

8
n+

3

2

)
k2 −

(
3

2
n− 6

)
k

−
(
5

8
n3 − 9

2
n2 + 12n− 23

2

)

and

�′′(k) =
3

4
k2 +

(
3

4
n + 3

)
k −

(
3

2
n− 6

)
.

To continue the proof, we consider the following three possibilities.

Subcase 2.1. k = n− 4.

It is easy to declare that �(n − 4) = 0, implying that ϕ1(x) ≤ ϕ1(
n+k−2

2
). Hence,

F (G) ≤ (n−k−2
2

)(n+k−2
2

)3 + 2(n+k
2
)3 + (n+k−2

2
)(n− 1)3, a contradiction. Hence, G is

k-edge-hamiltonian.

Furthermore, F (G) = (n − 3)3 + 2(n − 2)3 + (n − 3)(n − 1)3 happens only if all
inequalities in previous proof should be equalities. Hence, i = n+k−2

2
= n − 3 and

therefore d1 = n − 3, d2 = d3 = n − 2 and d4 = d5 = · · · = dn = n − 1, thus
G ∼= Kn−3 ∨ (K1 ∪K2), which is not k-edge-hamiltonian. Hence, the conditions in
Theorem 3.2 cannot be dropped.

Subcase 2.2. k ∈ [2, n− 6].

The variable k assumes values between 2 and n−6. In that interval the function �′(k)
monotonically increases, since �′′(k) > 0. Hence, �′(k) ≤ �′(n− 6) = −9

2
n2 + 51

2
n−

49
2

< 0 for n ≥ 5. It immediately yields that �(k) is decreasing in the accordingly
interval. Hence, �(k) ≥ �(n − 6) = 6n2 − 30n + 26 > 0, and therefore ϕ1(k + 1) −
ϕ1

(
n+k−2

2

)
> 0. Thus, we have F (G) ≤ (k+1)3+(n−k−2)(n−2)3+(k+1)(n−1)3,

again a contradiction. Hence, G is k-edge-hamiltonian.

Subcase 2.3. k = 0 or 1.

We can find that �(0) = 7
16
n4− 17

4
n3+15n2− 47

2
n+14 > 0 and �(1) = 7

16
n4− 39

8
n3+

39
2
n2 − 289

8
n + 465

16
> 0 for n ≥ 5. Therefore, ϕ1(k + 1)− ϕ1

(
n+k−2

2

)
> 0. Thus, we

have F (G) ≤ (k+1)3+(n−k−2)(n−2)3+(k+1)(n−1)3, which is a contradiction.
Hence, G is k-edge-hamiltonian.

Furthermore, F (G) = (k + 1)3 + (n − k − 2)(n − 2)3 + (k + 1)(n − 1)3 happens
only if all inequalities in previous proof should be equalities. Hence, i = k + 1 and
therefore d1 = k + 1, d2 = · · · = dn−k−1 = n − 2 and dn−k = · · · = dn = n− 1, thus
G ∼= Kk+1 ∨ (K1 ∪Kn−k−2), which is not k-edge-hamiltonian. Hence, the condition
in Theorem 3.2 cannot be dropped. �
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4 k-path-coverable graphs

We begin with an important lemma from [9, 24] will be helpful to the proofs of the
subsequent main result.

Lemma 4.1 Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a degree sequence and k ≥ 1. If

di+k ≤ i ⇒ dn−i ≥ n− i− k for 1 ≤ i <
n− k

2
,

then π is k-path-coverable.

Let k1, k2 be two non-negative real numbers in terms of n:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
k1 =

49n− 3
√
4m2

51
−

3
√
2(4n2 + 324n− 936)

102 3
√
m2

k2 =
49n− 3

√
4m4

51
−

3
√
2(4n2 + 68n− 1088)

102 3
√
m4 − 4

3

,

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m1 = 7807n6 − 46344n5 + 135744n4 − 226826n3 + 228492n2 − 126144n+ 31347

m2 = 7805n3 − 23166n2 + 33480n+ 51
√
3m1 − 1390

m3 = 7807n6 − 46728n5 + 127260n4 − 196446n3 + 179688n2 − 93228n+ 30107

m4 = 7805n3 − 23358n2 + 28662n+ 51
√
3m3 − 12427.

The main result is the following:

Theorem 4.2 Let G be a connected graph of order n and k ≥ 1.

(1) For k1 ≤ k ≤ n− 3 and n− k − 1 is even, if

F (G) >

(
n+ k − 1

2

)(
n− k − 1

2

)3

+

(
n− k − 1

2

)3

+

(
n− k − 1

2

)
(n− 1)3,

then G is k-path-coverable, unless G ∼= Kn−k−1
2

∨ (Kn+k−1
2

∪K1).

(2) For k2 ≤ k ≤ n− 4 and n− k − 1 is odd, if

F (G) >

(
n + k − 2

2

)(
n− k − 2

2

)3

+ 2

(
n− k

2

)3

+

(
n− k − 2

2

)
(n− 1)3,

then G is k-path-coverable, unless G ∼= Kn−k−2
2

∨ (Kn+k−2
2

∪K2).

(3) For 1 ≤ k < k1 and n− k − 1 is even or 1 ≤ k < k2 and n− k − 1 is odd, if

F (G) > (k + 1) + (n− k − 2)(n− k − 2)3 + (n− 1)3,

then G is k-path-coverable, unless G ∼= K1 ∨ (Kk+1 ∪Kn−k−2).
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Proof. Suppose that G is not k-path-coverable; by Lemma 4.1, there must exist an
integer i such that di+k ≤ i and dn−i ≤ n− i− k− 1 for 1 ≤ i < n−k

2
. Thus, we have

F (G) ≤(i+ k)i3 + (n− 2i− k)(n− i− k − 1)3 + i(n− 1)3

=3i4 − (7n− 8k − 6)i3 + [9n2 − (18k + 15)n+ 9k2 + 15k + 6]i2

−[4n3 − (15k + 9)n2 + (15k2 + 24k + 6)n− (5k3 + 12k2 + 9k + 1)]i

+(k − n)(k − n+ 1)3.

For simplicity, we define the following function on [1, n−k−1
2

]:

ϕ2(x) =3x4 − (7n− 8k − 6)x3 + [9n2 − (18k + 15)n+ 9k2 + 15k + 6]x2

−[4n3 − (15k + 9)n2 + (15k2 + 24k + 6)n− (5k3 + 12k2 + 9k + 1)]x

+(k − n)(k − n+ 1)3.

By direct computations, we get

ϕ′′
2(x) =36x2 − 6(7n− 8k − 6)x+ 6[3n2 − (6k + 5)n+ 3k2 + 5k + 2].

It is not difficult to verify that ϕ′′
2(x) > 0, implying that ϕ2(x) is a convex function

on the interval [1, n−k−1
2

]. Hence, ϕ2(x) ≤ max{ϕ2(1), ϕ2(
n−k−1

2
)}.

We need to consider the following two possibilities.

Case 1. n− k − 1 is even.

It is routine to check that

ϕ2(1)− ϕ2

(
n− k − 1

2

)
=
17

16
k4 −

(
33

8
n− 33

4

)
k3 +

(
6n2 − 195

8
n+

195

8

)
k2

−
(
27

8
n3 − 45

2
n2 +

375

8
n− 131

4

)
k

+

(
7

16
n4 − 39

8
n3 + 18n2 − 217

8
n+

249

16

)
,

For simplicity, we use the notation ς(k), k ∈ [1, n−3], to denote its right-side. Direct
calculations yield that the two real roots of ς(k) = 0 are

⎧⎪⎨
⎪⎩
k1 =

49n− 3
√
4m2

51
−

3
√
2(4n2 + 324n− 936)

102 3
√
m2

k′
1 = n− 3,

where m1 = 7807n6−46344n5+135744n4−226826n3+228492n2−126144n+31347,
and m2 = 7805n3 − 23166n2 + 33480n+ 51

√
3m1 − 13905.

To complete the proof, we need to consider the following two subcases.
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Subcase 1.1. k1 ≤ k ≤ n− 3.

It is not difficult to verify that ς(k) ≤ 0. Hence ϕ2(1) ≤ ϕ2(
n−k−1

2
). This implies

that F (G) ≤ (n+k−1
2

)(n−k−1
2

)3 + (n−k−1
2

)3 + (n−k−1
2

)(n− 1)3, a contradiction. Hence,
G is k-path-coverable.

Furthermore, F (G) = (n+k−1
2

)(n−k−1
2

)3 + (n−k−1
2

)3 + (n−k−1
2

)(n− 1)3 happens only if
all inequalities in previous proof should be equalities. Hence, i = n−k−1

2
and therefore

d1 = d2 = · · · = dn+k−1
2

= n−k−1
2

, dn+k+1
2

= n−k−1
2

and dn+k+3
2

= · · · = dn = n−1, thus

G ∼= Kn−k−1
2

∨ (Kn+k−1
2

∪K1), which is not k-path-coverable. Hence, the conditions

in Theorem 4.2 cannot be dropped.

Subcase 1.2. 1 ≤ k < k1.

Simple calculations show that ς(k) ≥ 0, implying that ϕ2(1) ≥ ϕ2(
n−k−1

2
). Hence,

F (G) ≤ (k + 1) + (n − k − 2)(n − k − 2)3 + (n − 1)3, a contradiction. Hence, G is
k-path-coverable.

If F (G) = (k+1)+(n−k−2)(n−k−2)3+(n−1)3, then all inequalities in previous
proof should be equalities. Hence, i = 1 and therefore d1 = d2 = · · · = dk+1 = 1,
dk+2 = · · · = dn−1 = n−k−2 and dn = n−1, thus G ∼= K1∨(Kk+1∪Kn−k−2), which
is not k-path-coverable. Hence, the conditions in Theorem 4.2 cannot be dropped.

Case 2. n− k − 1 is odd.

It is routine to check that

ϕ2(1)− ϕ2

(
n− k − 2

2

)
=
17

16
k4 −

(
33

8
n+

17

2

)
k3 +

(
6n2 − 99

4
n+ 24

)
k2

−
(
27

8
n3 − 45

2
n2 + 45n− 63

2

)
k

+

(
7

16
n4 − 17

4
n3 + 15n2 − 47

2
n+ 14

)
.

We use ζ(k) to denote the right-side of the previous expression for k ∈ [0, n− 4]. It
follows from direct calculations that the two real roots of ζ(k) = 0 are as follows:⎧⎪⎨

⎪⎩
k2 =

49n− 3
√
4m4

51
−

3
√
2(4n2 + 68n− 1088)

102 3
√
m4 − 4

3

k′
2 = n− 3,

where m3 = 7807n6− 46728n5+127260n4− 196446n3+179688n2− 93228n+30107,
and m4 = 7805n3 − 23358n2 + 28662n+ 51

√
3m3 − 12427.

To continue the proof, we need to consider the following possibilities.

Subcase 2.1. k2 ≤ k ≤ n− 3.

It follows that ζ(k) ≤ 0, and then ϕ2(1) ≤ ϕ2(
n−k−2

2
). Hence

F (G) ≤ (
n + k − 2

2
)(
n− k − 2

2
)3 + 2(

n− k

2
)3 + (

n− k − 2

2
)(n− 1)3,
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a contradiction. This implies that G is k-path-coverable.

If F (G) = (n+k−2
2

)(n−k−2
2

)3 + 2(n−k
2
)3 + (n−k−2

2
)(n − 1)3, then all inequalities in

previous proof should be equalities. Hence, i = n−k−2
2

and therefore d1 = d2 =
· · · = dn+k−2

2
= n−k−2

2
, dn+k

2
= dn+k+2

2
= n−k

2
and dn+k+4

2
= · · · = dn = n − 1, thus

G ∼= Kn−k−2
2

∨ (Kn+k−2
2

∪K2), which is not k-path-coverable. Hence, the conditions

in Theorem 4.2 cannot be dropped.

Subcase 2.2. 1 ≤ k < k2.

Simple computations show that ζ(k) ≥ 0, and then ϕ2(1) ≥ ϕ2(
n−k−2

2
). Hence,

F (G) ≤ (k+1) + (n− k− 2)(n− k− 2)3 + (n− 1)3, a contradiction. Thus, we have
G is k-path-coverable.

If F (G) = (k+1)+(n−k−2)(n−k−2)3+(n−1)3, then all inequalities in previous
proof should be equalities. Hence, i = 1 and therefore d1 = d2 = · · · = dk+1 = 1,
dk+2 = · · · = dn−1 = n−k−2 and dn = n−1, thus G ∼= K1∨(Kk+1∪Kn−k−2), which
is not k-path-coverable. Hence, the conditions in Theorem 4.2 cannot be dropped.

�

5 Traceable graphs

The following Lemma 5.1 will be useful for our later proof.

Lemma 5.1 ([8]) Let G be a non-trivial graph of order n ≥ 4, with degree sequence
π = (d1 ≤ d2 ≤ · · · ≤ dn). Suppose that there is no integer k < n+1

2
such that

dk ≤ k − 1 and dn−k+1 ≤ n− k − 1, then G is traceable.

Now we shall state the main result:

Theorem 5.2 Let G be a connected graph of order n and k ≥ 2 an integer. If

F (G) > n4 − 11n3 + 51n2 − 105n+ 82,

then G is traceable, unless G ∼= K1 ∨ (2K1 ∪Kn−3) or K2 ∨ (3K1 ∪K2) or K2 ∨ 4K1

or K3 ∨ 5K1 or K4 ∨ 6K1.

Proof. We assume that G is a graph of order n ≥ 4 which is not traceable. It
follows from Lemma 5.1 that there exist an integer k < n+1

2
such that dk ≤ k − 1

and dn−k+1 ≤ n− k − 1. Recall that k ≥ 2, then we have

F (G) ≤k(k − 1)3 + (n− 2k + 1)(n− k − 1)3 + (k − 1)(n− 1)3

=3k4 − (7n− 2)k3 + (9n2 − 12n+ 6)k2

−(4n3 − 6n2 + 3)k + (n4 − 3n3 + 3n2 − n).
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For simplicity, we define the right-side of the previous inequality to be the function
ϕ3(k) on k ∈ [2, n+1

2
), and direct calculations show the second derivative is

ϕ′′
3(k) =36k2 − 6(7n− 2)k + 6(3n2 + 6(3n2 − 4n+ 2).

It is routine to check that the discriminant of equation ϕ′′
3(k) = 0 is Δ = −828n2 +

2448n − 1584 < 0 for n ≥ 4. Hence, ϕ3(k) is a convex function on the interval
[2, n+1

2
).

In what follows, we consider two possibilities.

Case 1. n is odd.

In this case, we have 2 ≤ k ≤ n−1
2
. It follows that ϕ3(k) ≤ max{ϕ3(2), ϕ3(

n−1
2
)}.

Hence, we have

ϕ3(2)− ϕ3

(
n− 1

2

)
=

7

16
n4 − 61

8
n3 +

87

2
n2 − 779

8
n +

1265

16
,

and n1 = 5 and n2 = 8.57 be its two real roots.

To continue the proof, we need to consider the following two subcases.

Subcase 1.1. n = 5 or n ≥ 9.

It is easy to find that ϕ3(2)−ϕ3

(
n−1
2

)
> 0, implying that F (G) ≤ n4−11n3+51n2−

105n+ 82, a contradiction. Hence, G is traceable.

If F (G) = n4−11n3+51n2−105n+82, then all inequalities in previous proof should
be equalities. Hence, k = 2 and therefore d1 = d2 = 1, d3 = · · · = dn−1 = n− 3 and
dn = n− 1, thus G ∼= K1 ∨ (2K1 ∪Kn−3), which is not traceable. This implies that
our conditions in Theorem 5.2 cannot be dropped.

Subcase 1.2. n = 7.

By direct calculation, one can find that ϕ3(2)−ϕ3

(
n−1
2

)
= ϕ3(2)−ϕ3(3) = −36 < 0.

Hence, F (G) ≤ 510, which contradicts with the fact F (G) > 510 > 474 = 74 − 11×
73 + 51× 72 − 105× 7 + 82. Hence, G is traceable.

Furthermore, F (G) = 510 happens only if all inequalities in previous proof should
be equalities. Hence, k = 3 and therefore d1 = d2 = d3 = 2, d4 = d5 = 3 and
d6 = d7 = 6, thus G ∼= K2 ∨ (3K1 ∪K2), which is not traceable. This implies that
our conditions in Theorem 5.2 cannot be dropped.

Case 2. n is even.

In this case, we have 2 ≤ k ≤ n
2
. It follows that ϕ3(k) ≤ max{ϕ3(2), ϕ3(

n
2
)}. It

routine to check that

ϕ3(2)− ϕ3

(n
2

)
=

7

16
n4 − 33

4
n3 +

93

2
n2 − 205

2
n+ 82,

and n1 = 4 and n2 = 10.98 be its two real roots.



GUIFU SU ET AL. /AUSTRALAS. J. COMBIN. 77 (2) (2020), 269–284 280

To continue the proof, we need to consider the following two subcases.

Subcase 2.1. n = 4 or n ≥ 12.

It is routine to check that ϕ3(2) − ϕ3

(
n
2

)
> 0, implying that F (G) ≤ n4 − 11n3 +

51n2 − 105n+ 82, a contradiction. Hence, G is traceable. If n = 4, we can deal with
in a similar way, here omit the details.

If F (G) = n4 − 11n3 + 51n2 − 105n + 82, then all the inequalities in previous proof
should be equalities. Hence, k = 2 and therefore d1 = d2 = 1, d3 = · · · = dn−1 = n−3
and dn = n − 1, thus G ∼= K1 ∨ (2K1 ∪Kn−3), which is not traceable. This implies
that our conditions in Theorem 5.2 cannot be dropped.

Subcase 2.2. n = 6, 8, 10.

If n = 6, direct calculation shows that ϕ3(2) − ϕ3

(
n
2

)
= ϕ3(2) − ϕ3(3) = −74 < 0,

implying that F (G) ≤ 282. This contradicts to the fact F (G) = 282 > 208 =
64 − 11× 63 + 51× 62 − 105× 6 + 82. Hence, G is traceable.

If F (G) = 282, then all inequalities in previous proof should be equalities. Hence,
k = 3 and therefore d1 = d2 = d3 = d4 = 2 and d5 = d6 = 5, thus G ∼= K2 ∨ 4K1,
which is not traceable. This implies that our conditions in Theorem 5.2 cannot be
dropped.

The cases for n = 8 and n = 10 could be solved in a similar way, here we omit the
details. The corresponding counterexample is K3 ∨ 5K1 or K4 ∨ 6K1, respectively.

This completes the proof of Theorem 5.2. �

6 Hamilton-connected graphs

We first introduce a result which will be used in later proofs.

Lemma 6.1 ([5]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a degree sequence with n ≥ 3. If

dk−1 ≤ k ⇒ dn−k ≥ n− k + 1 for 2 ≤ k ≤ n

2
,

then G is Hamilton-connected.

We are now ready to state and prove:

Theorem 6.2 Let G be a connected graph of order n ≥ 3. If

F (G) > n4 − 7n3 + 24n2 − 38n+ 30,

then G is Hamilton-connected, unless G ∼= K2 ∨ (K1 ∪Kn−3) or 3K1 ∨K3.
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Proof. We assume thatG is a graph of order n ≥ 3 which is not Hamilton-connected.
It follows from Lemma 6.1 that there exist an integer 2 ≤ k ≤ n

2
such that dk−1 ≤ k

and dn−k ≤ n− k. Hence,

F (G) ≤(k − 1)k3 + (n− 2k + 1)(n− k)3 + k(n− 1)3

=3k4 − (7n+ 2)k3 + (9n2 + 3n)k2

−(4n3 + 6n2 − 3n+ 1)k + (n4 + n3).

For convenience, we use ϕ4(k) to denote a function for k ∈ [2, n
2
] and the second

derivative is

ϕ′′
4(k) =36k2 − 6(7n+ 2)k + 6(3n2 + n) > 0.

This implies that ϕ4(k) is a convex function on the interval [2, n
2
].

For simplicity, we consider the following two possibilities.

Case 1. n is odd.

In this case, we have 2 ≤ k ≤ n−1
2
. It follows that ϕ4(k) ≤ max{ϕ4(2), ϕ4(

n−1
2
)}.

Hence, we have

ϕ4(2)− ϕ4

(
n− 1

2

)
=

7

16
n4 − 39

8
n3 +

39

2
n2 − 289

8
n+

465

16
,

and n1 = 3 and n2 = 5 are its two real roots.

If n ≥ 5, it is routine to check that ϕ4(2) − ϕ4

(
n−1
2

)
> 0, implying that F (G) ≤

n4−7n3+24n2−38n+30, which is a contradiction. Hence, G is Hamilton-connected.
If n = 3, we can be deal with in a similar way, here omit the details.

Furthermore, F (G) = n4 − 7n3 + 24n2 − 38n+ 30 happens only if all inequalities in
previous proof should be equalities. Hence, k = 2 and therefore d1 = 2, d2 = · · · =
dn−2 = n − 2, and dn−1 = dn = n − 1. Thus G ∼= K2 ∨ (K1 ∪ Kn−3), which is not
Hamilton-connected. Hence, the conditions in Theorem 6.2 cannot be dropped.

Case 2. n is even.

In this case, we have 2 ≤ k ≤ n
2
. It follows that ϕ4(k) ≤ max{ϕ4(2), ϕ4(

n
2
)}. Hence,

ϕ4(2)− ϕ4

(n
2

)
=

7

16
n4 − 11

2
n3 +

45

2
n2 − 75

2
n+ 30

with two real roots n1 = 4 and n2 = 6.275. To continue the proof, we need to
consider the following two subcases.

Subcase 2.1. n = 4 or n ≥ 8.

It is routine to check that ϕ4(2) − ϕ4

(
n
2

)
> 0, implying that F (G) ≤ n4 − 7n3 +

24n2 − 38n+ 30, a contradiction. Hence, G is Hamilton-connected.
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If F (G) = n4 − 7n3 + 24n2 − 38n+ 30, then all inequalities in previous proof should
be equalities. Hence, k = 2 and therefore d1 = 2, d2 = · · · = dn−2 = n − 2, and
dn−1 = dn = n− 1. Thus G ∼= K2 ∨ (K1 ∪Kn−3), which is not Hamilton-connected.
Hence, the conditions in Theorem 6.2 cannot be dropped.

Subcase 2.2. n = 6.

By direct calculation, one can find that ϕ4(2) − ϕ4

(
n
2

)
= ϕ4(2)− ϕ4(3) = −6 < 0.

Hence, F (G) ≤ ϕ4(3) = 456. This contradicts with the fact F (G) = 456 > 450 =
64 − 7× 63 + 24× 62 − 38× 6 + 30. Hence, G is traceable.

If F (G) = 456, then all inequalities in previous proof should be equalities. Hence,
k = 3 and therefore d1 = d2 = d3 = 3, d4 = d5 = d6 = 5, thus G ∼= 3K1 ∨ K3,
which is not traceable. This implies that our conditions in Theorem 6.2 cannot be
dropped. �
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[18] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π-
energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.

[19] H. Hua and M. Wang, On Harary index and traceable graphs, MATCH Com-
mun. Math. Comput. Chem. 70 (2013), 297–300.

[20] O. Ivanciuc, T. S. Balaban and A.T. Balaban, Reciprocal distance matrix, re-
lated local vertex invariants and topological indices, J. Math. Chem. 12 (1993),
309–318.

[21] R.M. Karp, Reducibility among combinatorial problems, in: “Complexity of
Computer Computations,” (Eds. R.E. Miller and J.M. Thatcher), Plenum
Press, New York, 1972, 85–103.

[22] R. Kazemi, Probabilistic analysis of the first Zagreb index, Trans. Comb. 2 (2)
(2013), 35–40.

[23] H.V. Kronk, A note on k-path hamiltonian graphs, J. Combin. Theory 7 (1969),
104–106.



GUIFU SU ET AL. /AUSTRALAS. J. COMBIN. 77 (2) (2020), 269–284 284

[24] L. Lesniak, On n-hamiltonian graphs, Discrete Math. 14 (1976), 165–169.

[25] R. Liu, X. Du and H. Jia, Wiener index on traceable and Hamiltonian graphs,
Bull. Austral. Math. Soc. 94 (2016), 362–372.

[26] R. Liu, X. Du and H. Jia, Some observations on Harary index and traceable
graphs, MATCH Commun. Math. Comput. Chem. 77 (2017), 195–208.
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general Randić index for 0 < α < 1, Discrete Appl. Math. 167 (2014), 261–268.

[30] G. Su, L. Xiong, X. Su and G. Li, Maximally edge-connected graphs and zeroth-
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