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Abstract

The independence polynomial of a graph is the generating polynomial
for the number of independent sets of each size. Two graphs are said to
be independence equivalent if they have equivalent independence poly-
nomials. We extend previous work by showing that the independence
equivalence class of every odd path has size 1, while the class can contain
arbitrarily many graphs for even paths. We also prove that the indepen-
dence equivalence class of every even cycle consists of two graphs when
n ≥ 2 except the independence equivalence class of C6 which consists of
three graphs. The odd case remains open, although, using irreducibility
results from algebra, we show that for a prime p ≥ 5 and n ≥ 1 the
independence equivalence class of Cpn consists of only two graphs.

1 Introduction

A subset of vertices of a finite, simple and undirected graph G is called independent
if the subset induces a subgraph with no edges. The independence number of G is
the size of the largest independent set in G and is denoted by α(G), or just α if the
graph is clear from context. The independence polynomial of G, denoted i(G, x), is
defined by

i(G, x) =

α∑
k=0

ikx
k,

where ik is the number of independent sets of size k in G. Research on the indepen-
dence polynomial has been very active since it was first defined in 1983 [1, 4, 5, 9,
12, 13].
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We say that two unlabelled graphs G andH , are independence equivalent, denoted
G ∼ H , if they have the same independence polynomial. Independence equivalence
is clearly an equivalence relation, so we define the independence equivalence class of
a graph G, denoted [G], to be the set of all graphs that are independence equivalent
to G. If a graph is the only graph in its independence equivalence class, we call this
graph independence unique. As an example, P4 and K3 ∪ K1, both of which have
independence polynomial 1 + 4x + 3x2, are independence equivalent. On the other
hand, each complete graph Kn, is independence unique as it is the only graph with
independence polynomial 1 + nx. As a graph is completely determined by its inde-
pendent sets of cardinality 2, (that is, the non-edges of the graph), it is interesting to
see what information is encoded when we do not have access to all of the independent
sets but only the information encoded by the independence polynomial (that is, only
how many of each size there are). As we have seen, the combinatorial information
about the independent sets is not enough to completely distinguish a graph (it can-
not even determine whether a a graph is connected). In fact, Makowsky and Rakita
[16] showed the proportion of independence unique graphs to graphs tends to zero
as the order (that is, the number of vertices) tends to infinity. Independence unique-
ness and independence equivalence is also of interest in analogy to the corresponding
notion for the chromatic polynomial, the chromaticity of a graph (see chapters 4, 5,
and 6 of [10]). In [17] the authors consider equivalence and uniqueness of a general
polynomial arising from a graph, and they also raise the point that one reason to
study graph polynomials is to help distinguish non-isomorphic graphs.

Figure 1.1: Independence equivalent trees on 8 vertices.

Returning to independence, in [20], Stevanovic showed threshold graphs are inde-
pendence unique among threshold graphs, doing so from the clique polynomial point
of view. There is work done by Brown and Hoshino [6] that provides a full char-
acterization of independence unique circulant graphs and in the process determines
some constructions to obtain graphs that are independence equivalent to circulant
graphs. In [14], Levit and Mandrescu showed well-covered spiders are independence
unique among well-covered graphs.

However, even for the path Pn and cycle Cn of order n, determining the indepen-
dence equivalence classes is tricky and subtle (much more so than for other graph
polynomials). Chism [8] showed that [P2n] contains a few families of graphs (we will
expand upon in Section 2) (Zhang [21] proved the same results via different tech-
niques). In [15], it was shown that the only tree in [Pn] is Pn itself. Most recently,
Oboudi [19] completely determined all connected graphs in the independence equiva-
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lence classes of cycles. In this work, we extend the results of Oboudi [19] and Li et al.
[15] by considering which disconnected graphs can be in [Pn] and [Cn] respectively.

This paper is structured as follows: Section 2 is devoted to exploring [Pn]. For
odd n we show that Pn is independence unique, whereas for even n there can be
arbitrarily many nonisomorphic graphs in [Pn]. In Section 3, we consider [Cn], using
very different methods depending on the parity of n. We find that when n is even
(and n �= 6), or a prime power where the base is at least 5, then [Cn] = {Cn, Dn}
where Dn is the graph obtained by gluing a leaf of Pn−3 to one vertex of a triangle (see
Figure 2.1). Our results for paths and even cycles involve combinatorial analysis that
comes from analyzing the coefficients. Our results for prime cycles and prime power
cycles, however, are proved using algebraic results by examining the reducibility of
the polynomials.

2 Independence Equivalence Classes of Paths

The independence equivalence class of a path has been considered before in [21, 8],
where the it was shown that there are at least 2 disconnected graphs in [P2n] and
in [15] where it was shown that the only connected graph in [Pn] is Pn itself. For
independence polynomials, the highly structured nature of paths allows for an explicit
formula for paths:

Theorem 2.1 (Arocha, [3]). The independence polynomial of a path of order n is
given by

i(Pn, x) =

�n+1
2

�∑
j=0

(
n + 1− j

j

)
xj .

�

Recently, Li, Liu, and Wu [15] completely classified all connected graphs in [Pn]
for all n.

Theorem 2.2 ([15]). For any connected graph G and n ∈ N, if i(G, x) = i(Pn, x)
then G ∼= Pn. �

However, independence equivalence does not necessarily put a restriction on con-
nectivity. In this section we will consider what disconnected graphs can belong to
[Pn]. We start by showing that even paths are very different in the disconnected
case. We will show that we can have arbitrarily many graphs in the independence
equivalence classes of even paths. To do this, we build on the basic results in [8, 21]
that provides an example of a disconnected graph in [Pn] for even n.

Proposition 2.3 ([8, 21]). P2n ∼ Pn−1 ∪ Cn+1 for n ≥ 2. �
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Figure 2.1: The graph Dn

Proposition 2.4 ([8, 21]). Cn ∼ Dn for n ≥ 3 (where Dn is formed from a triangle
by adding a pendant path – see Figure 2.1). �

Proposition 2.5. For any K ≥ 0, there is an even path whose independence equiv-
alence class has cardinality at least K.

Proof. Let N be a positive integer, and set n = 2�N/2�+2 − 2. We claim that Pn

has at least n
2
non-isomorphic graphs in its independence equivalence class. From

Proposition 2.3, P2�N/2�+2−k−2 is equivalent to P2�N/2�+1−k−2 ∪ C2�N/2�+1−k for all k =
0, 1, . . . , �N/2	 − 1. Therefore, by iteratively applying Proposition 2.3, we obtain

Pn ∼ P2�N/2�+1−k−2 ∪
k⋃

�=0

C2�N/2�+1−�. (1)

By Proposition 2.4, for 0 ≤ � ≤ k, C2�N/2�+1−� ∼ D2�N/2�+1−�. Therefore, for each
value of k, the cycles in (1) can be replaced by independence equivalent graphs in 2k+1

ways. This, together with the graph Pn, gives 1+2+22+· · · 2�N/2� = 2�N/2�+1−1 = n
2

many distinct graphs in [Pn].

The surprising difference between the disconnected and connected graphs that
are independence equivalent to even paths begs the question of what happens with
odd paths. In the odd case, we completely characterize [P2n+1] for all n by showing,
in stark contrast to Proposition 2.5, that P2n+1 is independence unique for all n ≥ 0.

Theorem 2.6. P2n+1 is independence unique for all n ≥ 0.

Proof. Suppose that there exists a graph G such that G ∼ P2n+1. Note that
i(P2n+1, x) is monic for every n ≥ 0, since there is exactly one independent set
of maximum size, n+1, by taking a leaf and then every other vertex along the path.
So i(G, x) must be monic. Therefore, G must have exactly one independent set of
size n + 1; call this set S. If there is a vertex in V (G) − S that is not adjacent to
at least two vertices in S, then we can take this vertex and n vertices in S that are
not adjacent with it to make a second independent set of size n+1, a contradiction.
Therefore every vertex in V (G)−S is adjacent to at least 2 vertices in S, requiring at
least 2n edges between V (G)− S and S. From the second coefficient of i(P2n+1, x),
we know that G has exactly 2n edges and therefore G is a bipartite graph with
bipartition (V (G)− S, S). Therefore, G is triangle-free.
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Figure 2.2: G

If G �∼= P2n+1, then from Theorem 2.2 we know that G must be disconnected. Let
G1, G2, . . . , Gk be the connected components of G for some k ≥ 2. Let Si = S∩V (Gi)
and Si = V (Gi)−Si for i = 1, 2, . . . , k. Each Gi is bipartite with bipartition (Si, Si).
Suppose that for some i, |Si| ≤ |Si|. Now,

⋃
j �=i Sj ∪Si is an independent set with at

least n+ 1 vertices in it, which contradicts i(G, x) being monic and of degree n+ 1.
Therefore, |Si| ≥ |Si|+ 1 for i = 1, 2, . . . , k. Therefore,

2n+1 = |V (G)| =
k∑

i=1

|V (Gi)| =
k∑

i=1

(|Si|+ |Si|
) ≥

k∑
i=1

(
2|Si|+ 1

)
= 2n+k ≥ 2n+2,

a contradiction. Therefore, G must be connected, and by Theorem 2.2, G ∼= P2n+1.
Therefore P2n+1 is independence unique.

It is interesting to note the contrast between the independence equivalence classes
of even and odd paths respectively given by Proposition 2.5 and Theorem 2.6. It
seems that the key distinction between the independence equivalence class of odd
and even paths is the number of independent sets of maximum size. An even path
on n vertices has n

2
+1 maximum independent sets, while an odd path has only one.

As seen in the proof of Theorem 2.6, a graph having few maximum independent sets
determines some structure. We will use a similar approach in the next section for
even cycles.

3 Independence Equivalence Class of Cycles Cn

An early result in chromaticity is that cycles are chromatically unique [7]. Clearly
this is not the case for independence polynomials as Proposition 2.4 shows Cn ∼ Dn

for n ≥ 3. In this section, we will show that [Cn] = {Cn, Dn} for n even, or n a prime
at least 5 to any power. Along with these results, we have used the computational
tools of nauty [18] and Maple to show that [Cn] = {Cn, Dn} for 1 ≤ n ≤ 32 with the
exceptions of C6, C9, and C15. We will present the independence equivalence classes
of each of these three exceptional graphs as we proceed.

Like paths, all connected graphs which are independence equivalent to cycles have
been determined.
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Theorem 3.1 ([19]). For n ≥ 3, if G is a connected graph such that i(G, x) =
i(Cn, x), then G ∼= Cn or G ∼= Dn. �

Given Theorem 3.1, we need only consider disconnected graphs to determine [Cn].
We will use an argument on the degree sequence to show that there are no discon-
nected graphs in [C2n] for n ≥ 2, and one disconnected graph in [C6]. As is shown in
the next theorem, using the principle of inclusion-exclusion, some information about
the degree sequence of a graph is encoded in the coefficient of x3 in its indepen-
dence polynomial. We note that after personal correspondence with Hailiang Zhang,
it appears that the next theorem was first stated in [22]. However, the result was
presented without proof, so we prove the theorem here.

Theorem 3.2. For any graph G = (V,E) with n vertices and m edges

i3(G) =

(
n

3

)
−m(n− 2) +

∑
v∈V

(
deg(v)

2

)
− n(C3),

where i3(G) is the number of independent sets in G with cardinality three and n(C3)
is the number of 3-cycles in G.

Proof. It is sufficient to show the number of 3-subsets which are not independent is
m(n − 2) − ∑

v∈V
(
deg(v)

2

)
+ n(C3). Any 3-subset of V induces one of the following

subgraphs:

(a) (b) (c) (d)

We can construct each non-independent 3-subset by taking an edge uv and a
vertex w not incident to the edge. As G has m edges, we will construct m(n − 2)
subsets. If w is not adjacent to u nor v then we induce the subgraph (b) and construct
it once. If w is adjacent to u (or v) then we induce the subgraph (c). However this
3-subset will have been constructed in two ways: The edge uv and vertex w, and
the edge uw (or vw) and vertex v. Therefore we have counted each 3-subset which
induces a subgraph of type (c) twice and type (d) three times.

We can construct each 3-subset which induces a subgraph of type (c) by taking
a vertex and choosing any two of its neighbours. Hence there are

∑
v∈V

(
deg(v)

2

)
such

subsets. Note this counts the number of 3-subsets which induces subgraph (d) three
times as well. Clearly the number of 3-subsets which induces subgraph (d) is n(C3).
Thus the number of non-independent 3-subsets is m(n− 2)−∑

v∈V
(
deg(v)

2

)
+ n(C3).

Lemma 3.3. Let n ≥ 4 and G be a graph with n(C3) many 3-cycles and gi many
vertices of degree i. If G ∼ Cn then



I. BEATON ET AL. /AUSTRALAS. J. COMBIN. 75 (1) (2019), 127–145 133

(i)
n−1∑
i=0

gi = n,

(ii)
n−1∑
i=1

i · gi = 2n,

(iii)
n−1∑
i=2

(
i
2

)
gi = n+ n(C3), and

(iv) n(C3) ≥ g0 +
n−1∑
i=3

gi, that is there are at most n(C3) vertices not of degree one

or two.

Proof. Suppose G is a graph such that G ∼ Cn. Then G has n vertices and n edges
making (i) and (ii) trivial. To prove (iii), we note that by Theorem 3.2,

i3(G) =

(
n

3

)
− n(n− 2) +

n−1∑
i=2

(
i

2

)
gi − n(C3).

Furthermore i3(Cn) can easily be computed to be
(
n
3

)−n(n− 2)+n. As i3(G) =
i3(Cn) it follows that (iii) holds. Finally by adding (i) and (iii) and subtracting (ii)
we obtain:

n(C3) =
n−1∑
i=0

gi +
n−1∑
i=2

(
i

2

)
gi −

n−1∑
i=1

i · gi = g0 +
n−1∑
i=3

((
i

2

)
− i+ 1

)
gi ≥ g0 +

n−1∑
i=3

gi.

Hence (iv) holds as well.

We will require basic computational results on computing the independence poly-
nomial due to Gutman and Harary.

Proposition 3.4 ([12]). Let G and H be graphs and v ∈ V (G). Then:

i) i(G, x) = i(G− v, x) + x · i(G−N [v], x).

ii) i(G ∪H, x) = i(G, x) · i(H, x). �

3.1 Even Cycles

Theorem 3.5. Let K4 − e denote the graph which consists of a K4 with one edge
removed. Then

• [C6] = {C2n, D2n, (K4 − e) ∪K2}, and
• [C2n] = {C2n, D2n} for n ≥ 2, n �= 3.
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Proof. Suppose G ∼ C2n and G �∼= C2n. Then G has 2n vertices and 2n edges. For
n = 2 there is only one graph, D4, with 4 edges and 4 vertices which is not isomorphic
to C4. As C4 ∼ D4 by Proposition 2.4 then [C4] = {C2n, D2n}. We now consider
when n ≥ 3. By Theorem 2.1 and Proposition 3.4 it can be shown that i(G, x) is
degree n with leading coefficient equal to 2. That is, there are exactly two maximum
independent sets in G of size n.

We begin by showing G contains a triangle. Suppose not, and let gi be the number
of vertices of degree i in G. By Lemma 3.3 (iii) and (iv), as G is triangle-free (i.e.
n(C3) = 0) and G ∼ C2n,

2n−1∑
i=2

(
i

2

)
gi = 2n and 0 ≥ g0 +

2n−1∑
i=3

gi.

Hence gi = 0 for i ≥ 3 and thus
∑2n−1

i=2

(
i
2

)
gi = 2n implies G is 2-regular. However

as G �∼= C2n then G is a disjoint union of cycles. It is easy to see each cycle has
at least two maximum independent sets, meaning G must have at least 4 maximum
independent sets which is a contradiction. Thus G contains a triangle.

As G contains a triangle, it is not bipartite, and hence the two maximum in-
dependent sets (of cardinality n) in G are not disjoint. Thus we can partition the
vertices into non-empty sets A,A′, B, B′ such that A ∪ A′ and A ∪ B are the two
independent sets of size n. Note |A ∪ A′| = |A ∪ B| = |B ∪ B′| = n and |A′| = |B|.
It follows that |A| = |B′| and so |A′|+ |B′| = n.

Each vertex in B′ is adjacent to at least two vertices in A∪A′. Otherwise we can
form another independent set of size at least n which is not A∪A′ nor A∪B. Thus
our partially constructed G looks like Figure 3.1.

A′ A

B B′ . . .

Figure 3.1: Partially constructed G.

We now consider two cases: |B| ≥ 2 and |B| = 1. If |B| ≥ 2, then by the same
argument used for B′ and A∪A′, each vertex in A′ is adjacent to at least two vertices
in B. Thus G has at least 2(|A′|+ |B′|) = 2n edges. However, as G is not bipartite
and has exactly 2n edges, there must be an edge between two vertices of B ∪ B′, a
contradiction.

Now suppose |B| = 1. As |B| = |A′|, we now have that |A′| = 1. We will label
the vertex in A′ and the vertex in B to be a′ and b, respectively. Note a′ and b are
adjacent, as otherwise A ∪ A′ ∪ B forms a independent set of size n + 1. Thus our
partially constructed G (omitting one edge in B ∪B′) looks like this Figure 3.2.
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A

B′

a′

b
. . .

Figure 3.2: Partially constructed G with |A′| = |B| = 1.

A

B′

a′

b v
. . .

Figure 3.3: G with edge bv.

We will consider the placement of the edge in B ∪B′ in two cases.

Case 1: The edge is from b to some vertex v ∈ B′.

Then as G contains a triangle, v must be adjacent to a′ (note this is only triangle
in G). All vertices in B ∪ B′ are now degree two with the exception of v which has
degree three. Thus G now looks like Figure 3.3.

We now know that G has exactly one triangle (i.e. n(C3) = 1) and G ∼ C2n so,
by Lemma 3.3 (iv), G has at most one vertex which is not degree one or two. As v
has degree three, every other vertex must either have degree one or two. Again let
gi be the number of vertices of degree i in G. Note gi = 0 for i �= 1, 2, 3, g3 = 1, and
g1 + g2 + g3 = 2n. Furthermore by Lemma 3.3 (iii),

2n+ 1 =

2n−1∑
i=2

(
i

2

)
gi = g2 + 3.

Thus g2 = 2n − 2, g3 = 1 and g1 = 1. Note a′ must have degree two. We now
construct G. Begin with the one triangle in G which is formed by the vertices a′, b,
and v. As v is a degree three vertex it must have a neighbour in A. Now label the
only vertex of degree one as �. As the other vertices in G are all degree two, there
must be an induced path of vertices connecting v and �. This forms a Dr component
in G for some r ≤ n. If r = n then G ∼= Dn, otherwise G is the disjoint union of
cycles and a Dr for r < n. However as Dn has two maximum independent sets, if
G has any cycle components it would have at least four maximum independent sets
which is a contradiction.
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Case 2:

If the edge in B ∪ B′ is between two vertices u, v ∈ B′, then as G contains a
triangle, u and v must have at least one common neighbour in A∪A′. Note that we
now know the number of vertices of each degree in B ∪ B′; b is degree one, u and v
are degree three and every other vertex in B ∪ B′ is degree two. Thus we consider
two subcases: u and v have one or two common neighbours.

Case 2a: u and v have exactly one common neighbour

Then G has exactly one triangle and now looks like Figure 3.4.

A

B′

a′

b u v

Figure 3.4: G with exactly one triangle.

As G has exactly one triangle (i.e. n(C3) = 1) and G ∼ C2n, Lemma 3.3 (iv)
gives that g3 ≤ 1. However u and v both have degree three which is a contradiction.

Case 2b: u and v have exactly two common neighbours.

Then G has exactly two triangles and looks like Figure 3.5.

A

B′

a′

b u v

Figure 3.5: G with exactly two triangles.

Since G has exactly two triangles (i.e. n(C3) = 2) and G ∼ C2n, Lemma 3.3 (iv)

implies that
∑
i �=1,2

gi ≤ 2. Both u and v have degree three so every other vertex must

either have degree one or two. Note gi = 0 for i �= 1, 2, 3, g3 = 2, and g1+g2+g3 = 2n.
Furthermore by Lemma 3.3 (iii),

2n+ 2 =
2n−1∑
i=2

(
i

2

)
gi = g2 + 6.

Thus g2 = 2n− 4, g3 = 2 and g1 = 2. Note that every in A ∪ A′ has degree at most
two, thus u, v and their two common neighbours form a K4 less an edge component
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of G. Furthermore G has two vertices of degree one. As b is degree one and every
vertex in B′ is degree two or three, the second vertex of degree one is a′ or some
vertex in A.

First suppose some vertex � ∈ A is degree one. At this point our graph looks like
Figure 3.6.

A−N(u)−N(v)

B′ − {u, v}

a′

b
uv

. . .

Figure 3.6: G with a K4 − e component.

Note that every vertex in B′ − {u, v} and A −N(u)− N(v) is degree two other
than �. Therefore one component in G is an even order path from b to �. However,
every even path with more than two vertices has at least three maximum independent
sets, which is a contradiction as G only has two maximum independent sets.

Now suppose a′ is degree one. Then a′ and b form a K2 component in G and
the remaining vertices in (B′ − {u, v})∪ (A−N(u)) must induce a disjoint union of
cycles. In the case where n = 3, that is G ∼ C6, G has no cycle components and
G ∼= (K4− e)∪K2. For n ≥ 4, (B′−{u, v})∪ (A−N(u)) contains at least one cycle.
However, as K2 and cycles each have at least two maximum independent sets, G has
at least four maximum independent sets, which is again a contradiction.

The only two cases which did not result in a contradiction yielded G ∼= D2n and
G ∼= (K4 − e) ∪K2. As D2n ∼ C2n for all n ≥ 3 and (K4 − e) ∪K2 ∼ C6 we have
shown that [C6] = {C6, D6, (K4 − e) ∪K2} and [C2n] = {C2n, D2n} for n ≥ 4.

3.2 Prime Power Cycles

In Theorem 3.5, we used an involved construction to show that there is only one
disconnected graph that is independence equivalent to C2n an this occurs exactly
when n = 3. This construction relies on the fact that the leading coefficient of
i(C2n, x) is 2. This argument will not hold for odd cycles as the leading coefficient
of i(C2n+1, x) is 2n+ 1. However there are other ways to show connectivity, and we
shall do so via irreducibility of polynomials over the rationals. We will Eisenstein’s
famous criterion for irreducibility that we state here

Theorem 3.6 (c.f. [11] pp. 215). Let p ∈ Z be a prime and f(x) = a0 + a1x +
. . . + anx

n be a polynomial of degree n with integer coefficients. If p divides each
of a0, a1, . . . , an−1 but p does not divide an, and p2 does not divide a0, then f is
irreducible over the rationals. �
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Proposition 3.7. If p is an odd prime, then [Cp] = {Cp, Dp} (note Cp = Dp when
p = 3).

Proof. We show that i(Cp, x) is irreducible over the rationals and therefore Cp has
no disconnected graphs in its equivalence class. The result will then follow by Propo-
sition 3.1. Let p be an odd prime. By Theorem 2.1 and Proposition 3.4 we know
that

i(Cp, x) = i(Pp−1, x) + xi(Pp−3, x)

=

� p
2
�∑

j=0

(
p− j

j

)
xj +

� p−2
2

�∑
j=0

(
p− 2− j

j

)
xj+1

=

� p
2
�∑

j=0

(
p− j

j

)
xj +

� p
2
�∑

j=1

(
p− j − 1

j − 1

)
xj

= 1 +

� p
2
�∑

j=1

((
p− j

j

)
+

(
p− j − 1

j − 1

))
xj

= 1 +

� p
2
�∑

j=1

(
p− j

j

)(
p

p− j

)
xj .

The coefficients above must be integers and since p is a prime, it follows that p−j
does not divide p for any j = 1, 2, . . . , 
p

2
�, so p − j must divide the integer

(
p−j
j

)
.

Therefore,
(
p−j
j

) (
p

p−j

)
is a multiple of p for j = 1, 2, . . . , 
p

2
�. We now consider the

coefficient of x� p
2
�,
(
p− 
p

2
�


p
2
�

)(
p

p− 
p
2
�
)

=

(
(p− 
p

2
� − 1)!


p
2
�!(p− 2
p

2
�)!

)
p

=

(
(p− �p

2
	)!


p
2
�!(�p

2
	)− 
p

2
�)!

)
p

=

(
p
2
�!


p
2
�!
)
p

= p.

Therefore, applying Eisenstein’s famous criterion to the polynomial xα(Cp)i(Cp,
1
x
)

with the prime p, it follows that i(Cp, x) is irreducible over the rationals. Since
i(Cp, x) is irreducible, Cp cannot be independence equivalent to any disconnected
graph. It follows that [Cp] = {Cp, Dp} by Theorem 3.1.

The irreducibility of cycles of prime length given in Proposition 3.7 can be par-
tially extended to cycles with length pn for all n and all primes p ≥ 5. These
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polynomials are reducible but considering each irreducible factor will lead us to the
same conclusion as the case for n = 1.

Definition 3.8. We say that a polynomial p(x) =
∑n

i=0 pix
i with integer coefficients

is unicyclic if p0 = 1, p1 = k and p2 =
(
k
2

)− k for some integer k.

Note that a unicyclic polynomial is one that shares the same first three coefficients
with the independence polynomial of some unicyclic graph. If a connected graph has
a unicyclic independence polynomial, then that graph must be unicyclic. This is
because the graph has n vertices, n edges, and is connected.

Lemma 3.9. If h(x) = g(x)f(x) and h(x), g(x) are unicyclic, then f(x) is unicyclic.

Proof. Assuming the hypothesis, let the first three terms of g(x) be 1, nx,
((

n
2

)−n
)
x2,

the first three terms of f(x) be 1, kx,
((

k
2

)− k + �
)
x2 where � is some integer, so

that the first three terms of h(x) are 1, (n+ k)x,
((

n+k
2

)− (n+ k)
)
x2. Since h(x) =

f(x)g(x), they must be equal coefficient-wise so we must have,

(
n+ k

2

)
− (n+ k) =

(
n

2

)
− n +

(
k

2

)
− k + � + nk

=
n(n− 1) + k(k − 1) + 2nk

2
− (n + k) + �

=
(n+ k)((n+ k)− 1)

2
− (n + k) + �

=
(n+ k)2 − (n+ k)

2
− (n + k) + �

=

(
n+ k

2

)
− (n+ k) + �.

Therefore, � = 0, and f(x) is unicyclic.

The roots of i(Cn, x) have been completely determined by Alikahni and Peng [2]
and we will make use of a corollary that can be derived from their results.

Theorem 3.10 ([2]). For n ≥ 3, the roots of i(Cn, x) are given by

ri = − 1

2
(
1 + cos

(
(2i−1)π

n

))

for i = 1, 2, . . . , 
n
2
�, and these roots are all distinct. �

Corollary 3.11. For odd n and k �= 1, k|n if and only if i(Ck, x)|i(Cn, x).
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Proof. Let n be odd. First suppose k|n. Then let n = qk for some positive integer
q. By Theorem 3.10, we only have to show that for all j = 1, 2, . . . , 
k

2
� there exists

an i from 1 ≤ i ≤ 
n
2
� such that (2i−1)π

n
= (2j−1)π

k
. This happens if and only if

i =
(2j − 1)q + 1

2
.

Since n is odd, it follows that q is also odd and therefore i is indeed an integer
and since j ≤ 
k

2
�, 1 ≤ i ≤ 
n

2
�. Thus every root of i(Ck, x) is also a root of i(Cn, x).

Let i(Ck, x) = (x− r1)(x− r2) . . . (x− r�k
2
�) where the ri’s are the roots of i(Ck, x).

Since all roots of i(Ck, x) are also roots of i(Cn, x), it follows that i(Cn, x) = (x −
r1)(x−r2) . . . (x−r�k

2
�)g(x) for some polynomial g(x) and therefore i(Ck, x)|i(Cn, x).

Conversely suppose i(Ck, x)|i(Cn, x). Then the leading coefficient of i(Ck, x) must
divide the leading coefficient of i(Cn, x). From Theorem 2.1 and Proposition 3.4, as n
is odd then the leading coefficient of i(Cn, x) is n. Furthermore the leading coefficient
of i(Ck, x) is either 2 if k is even or k if k is odd. As n is odd then 2 � |n and hence
k|n.
Lemma 3.12. Let p be an odd prime and n ≥ 1. Then every irreducible factor of
i(Cpn , x) is unicyclic.

Proof. The proof is by induction on n. For n = 1, that case was handled in Proposi-
tion 3.7. Suppose the result holds for n ≤ k for some k ≥ 1. Now from Corollary 3.11,
we know that i(Cpk , x)|i(Cpk+1, x). Let i(Cpk+1, x) = i(Cpk , x)r(x). We claim that
r(x) is irreducible and unicyclic. The fact that r(x) is unicyclic follows from the
inductive hypothesis and Lemma 3.9, once we show that r(x) is irreducible.

Similar to the proof of Proposition 3.7, we derive an expression for the coefficients
of i(Cpk , x),

i(Cpk , x) = 1 +

� pk

2
�∑

j=1

(
pk − j

j

)(
pk

pk − j

)
xj .

Note that p divides each coefficient above except the constant term as pk

pk−j
must

be an integer and pk − j has at most k − 1 factors of p for all 1 ≤ j ≤ pk − 1.

Let r(x) = r0 + r1x + r2x
2 + · · · + rmx

m. Since i(Cpk+1, x) = i(Cpk , x)r(x), we
must have

(
pk+1 − j

j

)(
pk+1

pk+1 − j

)
=

j∑
i=0

(
ri

(
pk − (j − i)

j − i

)(
pk

pk − (j − i)

))
(2)

for j = 0, 1, . . . , 
pk+1

2
�.

As noted earlier, since p| pk+1

pk+1−j
for 1 ≤ j ≤ pk+1−1, p must divide the sum on the

right hand side of (2). Since we know p divides each coefficient of i(Cpk , x) except the
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constant term, it follows that p|rj for all j = 1, 2, . . . , m. Also, since pkrm = pk+1, it
follows that rm = p. So by Eisenstein’s Criterion applied to xmr( 1

x
), it follows that

r(x) is irreducible.

Theorem 3.13. For k, p ∈ N where p ≥ 5 is prime, [Cpk ] = {Cpk , Dpk}.

Proof. Suppose G ∼ Cn and G �∼= Cn where n = pk. Then G has n vertices and n
edges. Then by Lemma 3.3 we obtain the following three equations:

n−1∑
i=0

gi = n,
n−1∑
i=1

i · gi = 2n,
n−1∑
i=2

(
i

2

)
gi = n+ n(C3).

Thus,

n(C3) =
n−1∑
i=0

gi +
n−1∑
i=2

(
i

2

)
gi −

n−1∑
i=1

i · gi = g0 +
n−1∑
i=3

((
i

2

)
− i+ 1

)
gi. (3)

Furthermore, G has no C3 components, otherwise i(C3, x)|i(Cn, x) and hence by
Corollary 3.11, 3|n which is a contradiction as n = pk for prime p ≥ 5. Hence every
induced C3 has a vertex with degree 3 or greater. By Lemma 3.12, every irreducible
factor of i(Cn, x) is unicyclic and hence every connected component of G has the
same number of vertices and edges and is therefore unicyclic. Therefore every vertex
is part of at most one induced C3. As every induced C3 has a vertex with degree 3
or greater then

n(C3) ≤
n−1∑
i=3

gi.

Therefore by subtracting this inequality from equation (3) we obtain

0 ≥ g0 +

n−1∑
i=3

((
i

2

)
− i

)
gi.

As
(
i
2

) − i ≥ 2 for i ≥ 4 then gi = 0 for i �= 1, 2 or 3. Therefore, by equation (3)
we have g3 = n(C3). We can also now simplify the sums given in Lemma 3.3 to get
g1 + g2 + g3 = n and g1 + 2g2 + 3g3 = 2n and subtracting 2 times the former from
the latter we obtain g1 = g3.

Consider the structure of G. Note that no two induced C3 graphs intersect, as
each vertex is in at most one. As G has no C3 components then each of the induced
C3 must contain at least one degree three vertex. As g3 = n(C3), each induced C3

contains exactly one degree three vertex and there are no other degree three vertices
in the graph. Now all that remains are degree one and two vertices. Hence the
other neighbour of each degree three vertex is either a leaf or a degree two vertex.
It is easy to see that if it is a degree two vertex, this must be the beginning of a
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path of degree two vertices ending in a leaf, otherwise we would contradict either the
component being unicyclic or the number of degree three or greater vertices. This
shows that each component is either a cycle or Dk for some k. As Dli ∼ Cli , G must
be independence equivalent to a disjoint union of cycles.

Now let G ∼ Cn1 ∪ Cn2 ∪ · · · ∪ Cnr for some r ∈ N. Note each nj ≥ 3
as each component must have an equal number of vertices and edges. As the
independence polynomial is multiplicative across components we have i(G, x) =
i(Cn1 , x) · i(Cn2 , x) · · · i(Cnr , x). It is easy to see from Theorem 2.1 and Proposi-
tion 3.4 that the leading coefficient and the coefficient of x of i(Cnj

) are both nj.
Thus the leading coefficient of i(G, x) is n1 · n2 · · ·nr and the coefficient of x is
n1+n2+ · · ·+nr. However as i(G, x) ∼ i(Cn, x) then the leading coefficient and the
coefficient of x of i(G, x) are both n. Thus n1n2 · · ·nr = n1 +n2+ · · ·+nr. However
a simple induction can show n1 · n2 · · ·nr > n1 + n2 + · · ·+ nr for r ≥ 2 and nj ≥ 3.
As each nj ≥ 3 then r = 1 and G is connected. By Theorem 3.1, we conclude that
[Cn] = {Cn, Dn}.

One notable exception to these results is [C3n ] when n > 1. These cases are
more difficult to deal with, as a graph in [C3n ] can have C3 components which does
not allow us the certainty of where the degree 3 vertices are located among the
components. We suspect that if [Cn] grows large for certain n, then n will be an odd
multiple of 3. For example, the only cycles that we know of with graphs other than
Dn and Cn in their independence equivalence classes are C6, C9 and C15. Oboudi
showed in [19] that

[C9] = {C9, D9, G1 ∪ C3, G2 ∪ C3, G3 ∪ C3}
where G1, G2, and G3 are shown in Figure 3.7.

(a) G1 (b) G2 (c) G3

Figure 3.7: Components of the disconnected graphs in [C9]

Computationally, we were able to show that

[C15] = {C15, D15, G
′
1 ∪ C3 ∪ C5, G

′
2 ∪ C3 ∪ C5, G

′
3 ∪ C3 ∪ C5}

where G′
1, G

′
2, and G′

3 are shown in Figure 3.8.

(a) G′
1 (b) G′

2 (c) G′
3

Figure 3.8: Components of the disconnected graphs in [C15]

Despite the similarities between [C9] and [C15], we were able to computationally
verify that [C21] = {C21, D21} and [C27] = {C27, D27}.
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4 Concluding Remarks

Building on previous work in the literature, we explored the independence equivalence
classes of paths and cycles. These were completely determined for connected graphs
in [15] and [19] respectively and our work extended this by considering disconnected
graphs that belong to the independence equivalence classes. We showed that paths of
odd length are independence unique, while paths of even length can have arbitrarily
many graphs in their independence equivalence classes. For cycles, we showed that
[Cn] = {Cn, Dn} when n is even and not equal to 6, or any power of a prime (the
prime being at least 5). We are left with some open problems.

Problem 1. What graphs can be in [P2n]?

We showed that |[P2n]| is unbounded, but this involved showing that [P2n] con-
sisted of disjoint unions of cycles, graphs independence equivalent to cycles, and a
path. However using the nauty [18], we were able to computationally determine that
|[P10]| = 10. In addition to the 7 graphs that we expect by employing methods from
the proof of Proposition 2.5, we found the 3 surprising graphs in Figure 4.1. What
other graphs can belong to [P2n]?

(a) H1 (b) H2 (c) H3

Figure 4.1: Surprising graphs in [P10].

Problem 2. What graphs can be in [C3n]?

Multiples of 3 make things more difficult when trying to characterize the equiv-
alence classes of cycles as graphs in these classes can have triangle components. In
fact, the only cycles we know of where [Cn] �= {Cn, Dn} are cycles with n = 3k for k
odd. Not every multiple of three has this property however, as C21 is only equivalent
to itself and D21. Does [C3n] eventually stabilize to the two graphs we expect, or can
it grow like the independence equivalence classes of even paths?

Problem 3. Are there families of graphs such that the independence equivalence
class is unbounded and each independence polynomial is irreducible?

We saw that i(Cp, x) was irreducible and |[Cp]| = 2 for all primes p ≥ 3. An
irreducible independence polynomial implies that all graphs in the independence
equivalence class are connected. The restriction to connected graphs with irreducible
independence polynomials seems that it would make it less likely to have large in-
dependence equivalence classes, but the question remains open. We also think that
studying the irreducibility of independence polynomials can be useful when studying
independence equivalence classes of other graphs.

Finally, we leave the reader with a conjecture that all of our results and compu-
tational work has lead us to believe is true.
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Conjecture 4.1. If 3� |n and n ≥ 4, then [Cn] = {Cn, Dn}.
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