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Abstract

Letn > 1 be an integer and let G = (V, E) be a graph. In this paper we study a nondis-

~ crete generalization of I'4(G), the maximum cardinality of a minimal n-dominating set
in G. A real-valued function f:V — [0,1] is n-dominating if {for each v € V, the sum
of the values assigned to the vertices in the closed n-neighbourhiood of v, Ny[v], is at
least one, i.e., f{Nn[u]) > 1. The weight of an n-dominating function fis f(V), the
sum of all values f(v) for v € V, and I'ny(G) is the maximum weight over all minimal
n-dominating functions. We show: that the decision problems corresponding to the
problems of computing I'n(G) and T'yy(G) are N P-complete, generalising the result of
Cheston, Fricke, Hedetniemi and Jacobs for the case n = 1.

1 Introduction

Let n > 1 be an integer and G = (V, E) a graph. A set D C V' is an n-dominating set if

every vertex v € V — D is within distance n from some vertex of D. An n-dominating set
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is minimal if no proper subset is n-dominating. The n-domination number of G, denoted by
7n(G), is the minimum cardinality over all minimal n-dominaling sets of G, while the upper
n-domination number of G, denoted by I',(G), is the maximum cardinality over all minimal

n-dominating scts of G. In this paper we consider a generalisation of I'.(G).

Let f: V' — [0,1]. To simplily notation we will write f(D) for 2vep f(v) and we
define the weight of f to be Tyey f(v) = f(V). Given a vertex v its closed n-neighbourhood,
denoted by N, [v], is the sel containing v as well as all vertices within distance n from .
We say [ is an n-dominating function if for each v € V we have that J(Na[v]) > 1. Given
an n-dominating function f, we say il is minimal n-dominating if it is minimal among all
n-dominating functions under the usual partial ordering for real-valued functions (ie, f<g
il f(v) < g(v) for all v € V). The concepts introduced in this paper generalises those of

Cheston, I'ricke, ledetniemi and Jacobs (see {1]).

The following resull generalises a result of Cheston, Fricke, Hedetniemi and Jacobs (see

[1]). It will prove to be very useful.

Lemma 1 Let [ be an ﬁ»dominaiing function for a graph G = (V, E). Then f is minimal n-
dominating if and only if whenever [(v) > 0 there czists some u € Ny[v] such that f(Nafu]) =
1.

Proof. Let v € V such that f{v) > 0. Then f(N,[v]) > 1. Let N,[v] = {wi,..,we). I
J{Nafwi]) = 1 for some i, we are done. Assume, therefore, that f(Nafw]) =1+ 6 > 1
for ¢ = 1,2,...,£. Suppose v = wy. I f(v) = a, then f(N,[v]) = a + f(Na(v)) = 1+ 6.
Let § = min{é;,...,é,}. Note that § > 0. Define g: V — [0,1] by g(z) = f(z)ifa £ v
with g(b) = max{0,a — 6}, so that ¢ < f. Note that g(N,[v]) = g(w;) +... + g(we) >
a—=06+g(wy)+...+g(we) = 148 — 6> 1, while g(No[wi]) = f(Na[wi] - {v}) +g(v) >
S(Nulwi] = {v}) +a— 6= f(Nu[w]) = § > f(Nalw]) = 6 = 1 so that ¢ is an n-dominating
function of G with ¢ < f, which contradicts the minimality of f.

For the converse, suppose there exists a ¢ such that ¢ < f - let v € V such that
g(v) < f(v). Since f(v) > 0, there exists w € Ny[v] such that J(Nu[u]) = 1. But g(Na[u]) =
9(Nalu] = {v}) + g(v) < f(Nalu] = {v}) + f(v) = 1, which contradicts the fact that gis
n-dominating.

For a graph G with vertex set V = {v,...,v,,} we can identify functions from V into R

as n-tuples (z1,...,2,,) € R™. Such a function is n-dominating if and only if 0 < z; < 1 and
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To,eNafu] %5 2 1 for i = 1,...,m. 1f the aforementioned two conditions hold, by Lemma 1,

the notion of minimality is equivalent to z; HUJEN,.[v.)(l = T eNaly;) zi)=0fori=1,...,m

For any graph G, the points (21,...,%m) € R™ satisfying the aforementioned three
conditions are precisely the set of all minimal n-dominating functions. Since this set is
compact and the function (21, ..., Tp,) — ¥ x;is continuous on R™, there exists a minimal n-
dominating function of maximum weight. We denole the weight of such a function by I'ny(G).
Note that I, in this setting, is merely the weight obtained when the z; are additionally
constrained to be 0 or 1. Clearly Tn(G) < T'uy(G).

In Section 2 we give an example of a graph G for which I'2(G) < T'uy(G). Section 3 con-
siders the complexity of the decision problems corresponding to the problems of computing
.(G) and T,y(G). The construction used in the latler, gives a new proof of the NP-
completeness of upper [ractional domination, originally settled by Cheston, Fricke, Hedel-

niemi and Jacobs in [1].

2 An example of I',(G) < I'ws(G)

In this section we give an example of a graph such I'y(G) < I'h/(G). We start by proving a

useful lemma.

Let n and £ be positive integers and consider Ppyq x K. Let {v € V(Ppy1 x K¢)ldeg(v) =
£} = AU B where < A >2< B >= K¢ Let A = {ay,...,a¢}, B = {by,...,b} and let
P : by — ao be a path of length n — 1. If bryy € V(Prya % K¢) UV (P}, construct the graph
H(n,{) = (V' E') as lollows:

(a) V' = V(Ppy1 x KU V(P)U {bes1}
(b) B' = E(Pup1 x K)UE(P)U {aoaili = 1,...,(}U{beabili = 1,. .. ,£}. The graph H(n, ()
is depicted in TFigure 1.

Lemma 2 Let G' = (V!,E") = H(n,{) for some positive inlegers n and £ > 2. Let G =
(V,E) be a graph such that G' C G and deggi(z) = degg(x) for all z € V' — {bo}. Let [ be
a minimal n-dominating function of G..

(a) Suppose f(B) > 1. Then [(V') < L. Morcover, if equality holds, then f{b;) =1 for all
i=1,...,0, while f(V' = B) = 0. Furthermore, if f is constrained to be a 0 — 1 function,
then f(V' = B) = 0. '
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Figure 1: The graph H(n, ()

() If J(B) <1, then f(V') < 2.

Proof. Let 8 = f(b;)fori=1,...,6+1, [ = Nalbryi]) and J = V' — 1. Nole that fnH=1

since f must n-dominate bg,,.

(a) Suppose f{B) > 1. Note that this implics that 8,4 = 0, by the minimality of f. Assume
that #; > 0. Then, by Lemma 1, there exists u € Np[bi] such that f(N,[u]) = 1. Since
Tie1 85 > 1, it follows that u ¢ 1, so that u = a,. This implies that f(V’— (B-{b;})) =1
We now have that f(V') = f(V' - (B—{b}))+ Ziett =iy Bi < £ will equality occurring
only if f; =11forje€{1,...,0) = {i}. If B; =1 1or some j € {1,‘.‘.,l’} — {1}, then, by
symmetry, we have that f(V'— (B~ {};})) = 1. Hencel = J(V'=DB)+ i = [(V'= B)+5;,
so that f; = f;. Also f(V'— B)=19.

Now Jet D be a minimal n-dominating set of G’ such that DN B = {0i,0;}. Since
D is a minimal n-dominating set, it follows that beyr ¢ D. Since I C No[bi] NN (bs), it
follows that a; € No[b] — Nu[D — {b:}} and ¢; € Nalbj] = No[D — {b;}]. This implies that
(V' = B)n D = 0. Hence, if [ is a minimal n-dominating function such that f(B) > 1, we
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see that f(V'— B) = 0.

(b) Suppose that f(B) < 1. We distinguish between two cases:

Case 1 f(J) > 1.
Since f(I) > 1, the minimality of f implies that Sy = 0.

Subcase 1.1 f3; > 0 for some i € {1,...,£}.

By the minimality of f, there exists u € N,[b] such that f(N,[u]) = 1. Since f(J) > 1, it
follows that u ¢ I, so that u = a;. This implies that 1 = [(V'— (B — {§;})) = f(V' = B)+§;
and so f(V) = f(V' = B)+ f(B) < J(V' = B)+ i+ f(B) S 1+1=2.

Subcase 1.2 f(B) = 0. ; )

Let @ € V' — I3 such that f(z) > 0 and d(x, B) is a minimum. By the minimality ol f, there
exists u € N, [z] such that f(N,[u]) = 1. Since f(J) > 1, it follows that « € J. In this case
JV) < f(Nalu)) = 1.

Case 2 f(I) < 1.

Since beys must be n-dominated by f, we have that f(I) > 1, so that f(J) = 1. We show
that f(J) < 1: Suppose that f(J) > 1. If f(a;) > 0 for some 1, there exists u € Ny[a;] such
that f(Na[u]) = 1. Since f(J) > 1, it follows that u € I, so that f(Nu[u]) > f(I) + f(a;) =
1+ f(ei) > 1, which is a contradiction. Hence f(A) = 0. Now let 2 € J — A such that
f(z) > 0 and d(z, a0) is 2 minimum. Then there exists u € N,[z] such that f(N,[u]) = 1.
Since f(J) > 1, it-follows that w ¢ J. If w € 1, then f(Na[u]) > f(I) + f(z) > 1. which is
a contradiction, whence u ¢ V'. If S is th~ vertex set of the by — = subpath of < J >, then,
since, § C Nn[u], we have that f(S) < 1. Note that f(J — S) = 0, so that f(J) < 1, which
is a contradiction. We conclude thatlf(.f) <lsothat f(V)=f(I)+ f(J)<2 Kk

We now show that we can construct a graph G for which I'y(G) < Ty (G).

Let n 2 1 be an integer. Take four copies 1'(n,5), H*(n,5); H*(n,5), H*(n,5) of H(n,5)
and superscript each vertex according to the copy it appears in. Add the edges bHb2, b202, 6208
and by to obtain the graph G. The graph G is depicted in Figure 2.

Lemma 3 If G is the aforementioned graph, then I',(G) = 14.

Proof. Let B' = {bilj=1,...,5} fori=1,...,4 and let D be a minirmal n-dominaling set
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Figure 2: A graph for which I',(G) < I' f(G)

of G. Suppose |B'ND| > 1 fori=1,2,3. By Lemma 2(a), it follows that (V(Hi(n,5)— BN
D=0fori=1,2,3,so0that vertex a} is not n-dominated by D. This shows that [BiND| <1
for at least two of the graphs H'(n,5). Lemma 2 now implies that |D] < 2.2 4+ 2.5 = 14.
Figure 3 shows that I',(G) = 14 with the square vertices forming a minimal n-dominating
éct of cardinality 14. |

Figure 4 shows that I',;(G) > 142. (Vertices not labelled are assumed to be labelled by
0.) '

3 Complexity issues

In this section we show that the decision problems corresponding to the problems of com-
puting I'.(G) and I z(G) are N P-complete. More specifically, these problems are:
UPPER DISTANCE DOMINATION (UDD)

Instance: A graph G and integers k and n.

Question: Is I',(G) > k7
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Figure 4: I'ny(G)> 142
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UPPER DISTANCE FRACTIONAL DOMINATION (UDFD)
Instance: A graph G, integer n and rational number q.
Questxon Is T,,/(G) >q7

We now show that I', (G) is compuLaH and is always a rational number. If [ is a
minimal n-dominating function, let Sy ={v e V|J(NJo]) = 1}. By Lemma 1, if f(v) >0
then v € N,[S;],; where N,[S] = UzesNnlz]. Since f is n-dominatling, for every vertex
v, there is some u € N,[v] with f(u) # 0. The previous two comments imply that we
must have N[N, [S/]] = V. Let S = {S|S C V A N [N,[S]] = V). Tor each S € 8,
we consider the problem of finding a minimal n-dominating function [ of maximum weight
with the additional constraint that S; D S. This subproblem can be solved using linear

programming:
maximize Povey T

subject to
0<a; <1 Yv; € N,[5]
;=0 Yo, € V — N, [5)
2, €Nl ]xj >1 Vo, e V-8
Co eNafu) T = =1 Yu; € S.

Note that the condxtzuns guarantee that a solution to this problem is n- dominating.
Given that a solution is n- domma.tmg, the second and fourth conditions guaraniee minimal
n-domination. Hence every solution to this problem is a minimal n- dommatmg function.
Conversely, any minimal n-dominating function f-having weight T',; is the solution to this

linear programming ploblem for some set Sy € S.

Also, since each member of S rl"ﬁnes a linear programming problem and I',, (G) is the
largest among these subpxo )lcms, I'44(G) is a compulable function. This number is rational
since each problem involves only rational numbers. Since linear programming can be solved
in polynomial time, it follows that UDFD € NP,

It is obvious that UDD € NP, since we can, in polynomial time, guess at a subset
of vertices, verily that il has Cdldllldlty at ]cast k and then vcufy that it is a mnmmal

n-dominating set. Thus we have:

Theorem 1 UDD and UDFD are in NP. I
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Before proceeding further, we prove a lemma. Let n and £ be postive integers and consider
H'(n,0) = Poyy x K¢. Let {v € V(H'(n,£))|deg(v) = £} = AUB where < A >=< B> K.
Let A = {a;,...,a;} and B = {b,...,b}. The graph H'(n,{) is depicted in Figure 5.

Loania 4 Let G" = (V', £') = H'(n,{) for some positive inlegers n and £ > 3. Let G =
(V, E) be a graph such that G' € G and degg/(z) = degg(x) for all x € V' — {ay,b}. Let
f be a minimal n-dominating function of G. Then f(V') < L. Moreover, if equality{ holds,
then f(a;) =1 forali=1,....L and f(V' —A) =0 o0r f(b;)) =1 for all v = 1,...,{ and
F(V' = 1B) =0.

Proof. Let o; = f(a;) and §; = f(b;)fori=1,...,8 Fori = 1,...,0, let X; = {v €
V —Vid(v,a;) € n} and Y; = {v € V = V'|d(v,l;) < n}. Note that X; = Xj and Y; =Y
fori,j € {2,...,0}, while X; C Xy and Y C Vi fori=1,...,L

Case 1 f(4) > 1. »
In this case a; > 0 for some 1 € {2...,£}, since oltherwise a; > 1, which is a contradiction.
Then, by Lemma. 1, there exists u € Npfa;] = V' — (B = {b;}) U X; such that f(N,[u]}) =1.
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Since 2§=,aj > 1, it follows that w ¢ (V' — B)U X;. Hence u = b, so that f(V' —
(A—{a;})UY;) = 1 Hence f(V') = [(V' = (A= {a}) + Ejeprer-13 @5 < v —(A-
{aDUY) + Tiepng-ma; ST+ - 1) = £, with equality occurring only il @; = 1 for
jed{l,.... 0 = {i}.

Now let a; = 1 for some j € {2,...,{) = {i}. By symmetry, f(V'—(A—{q;})UYj)
Hence 1 = f(V'= AUY})+aj = f(V'=AUY})+a;, s0 that a; = a;. Also f(V'—AUY;) =
so that f(V' = A)=0.

lI

Case 2 f(B) > 1. This case is similar to case 1.

By cases 1 and 2, we may assume that f(A) < land f[(B) <1, Letz el = Vi—A-DB
such that f(z) > 0. Then there exists u € Ny[2] € V/UX,UY; with f(NJu])=1 Huel,
then, since N, fu] 2 V', it follows that f(V') <1. Hfueg AU B, say u = a;, then N,[u] 2
(V' - B)U {b} whence [(V) = f(V'=B)+ f(B) = J(V' = B)U{bi}) + Zieqr,.0p-(iy i <
S(Nalu)) + [(B) € 141 = 2. llence we may assume that if ¢ € I such that f(z) > 0, there
exists u € )XQU) 5 such that f(N,[u]) = 1. For z € I such that f(z) > 0, let P be a shortest
path from = Lo {u € Xy UY,|f(Nalu]) = 1}; denote the other endpoint of Py by e(x). Let

={zelif(z)>0Aa € P} and T = {z € I|f(z) > 0A D € Pz}. Let 2’ € § such that

d(x Jay) = max{d(z,a;)z € S} and let 2” € T such that d(z”,b;) = max{d(z, b))}z € T}.

Case 1’ S# ¢ and T = 0.
In this case, if @ € I such that d(z,q;) > d(a',a1), it follows that f(z) = 0. Hence
JOV) S J(Nele(@)) + /(B) s 1+1=2.

Case 2’ S = { and T # 0. This case is similar to Case 1.

Case 3’ S# P and T" # 0.
In this case, if € I such that d{z,q;) > d(z’,a;) and d(z,b;) > d(z",b;), it follows that
f(&) = 0. Hence [(V') £ [(Nole(z")]) + [(Nafe(@")) < 1+1 =2 K

We now cstablish a polynomial transformation {from the well—known 3-satisfiability prob-
lem (3-SAT) to UDD, thus proving it NP-hard. Let I be an instance of 3-SAT consisting
of the set {Cy,Cy, ..., Cy} of 3-literal clauses involving the literals z1, %1, 72, T2, ..+, Tm, Tm-
Associate with cach literal pair z;,%; the graph I'(n,3) depicted in Figure 5 — where the
vertices a; andkb, are renamed by va;, vE; respectively. With each clause C, associale the
graph H(n,3) of Figure 1 - where the vertex by is renamed by ¢,. We insert an edge between

literal vertex va; {or vT;) and clause vertex ¢, il and ouly if ; (or T;) is a literal in clause
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Figure 6: Graph for (21 VT2 Va3) A (1 V 22 V T3)

C, - name the resulting graph G. The graph associated with (z; V&, V 23} A (T; V 2, V T3)

is depicted in Figure 6. Clearly, this construction can be accomplished in polynomial time.

Theorem 2 UDD is NP-complete.

Proof. Given an instance J of 3-SAT, we construct the graph G as above and set k = 3t+3m.
To show that this problem is N P-hard, it suffices to show that I is satisfiable if and only if
G has a n-dominating set of cardinality at least .

First, suppose g is a satifying truth assignment. We construct a minimal n-dominating
set D of cardinality 3(1+m). For eachi = 1,...,m, do the following. I g(z;) =T (g(Z:) =T
respectively) place in D the verlex vz; ( vZ; respectively) along with the other two vertices
of the 3-clique containing vz; (vZ; respectively). Next, for every clause associated subgraph,
place the vertices by, by, b3 in D. It is straightforward to verily that this is a minimal n-
dominating set of cardinality 3(t + m).

Conversely, assume that D is a minimal n-dominating set of cardinality at least 3(1+m).

We may think of D as a minimal n-dominating function. By Lemma 2 and Lemma 4, this
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function can be no more than 3 on each I{(n,3) and H'(n,3) graph. Therclore, it must be
exactly 3 on each such graph, since there are ¢t + m such subgraphs. By Lemma 4; for each
t=1,...,m, cxactly one of va; or vT; is in D. We may define g(z;) = T ill va; € D. By
Lemma 2, cach vertex ¢, is not n-dominated by any vertex within a H(n,3) graph. Hence
it must be n-dominated by a verlex corresponding to one of its variables, so it follows that

g 1s a satislying truth assignment. i

Theorem 3 UDFD is NP-complele.

Proof. Given an instance I of 3-SAT, we map I to {G,n,q) with G the graph described
before the statement of Theorem 2 and ¢ is the rational number 3(¢+m). We may then argue
that 7 is satisfiable iff G’ has a minimal n-dominating function ol weight at least 3(i + m).

The argument is almost identical to the one given for Theorem 2. |

An closing, we note that our construction gives a new proof of the N P-completeness of

UDFD for the case n = 1 established by Cheston, Iricke, Hedetniemi and Jacobs (see [1]).
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