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Abstract 

:Let. n ?: 1 be an integer and lei G = (V, E) be a graph. In this paper we study a non dis­
crete generalization of l'n(G), the maximum cardinality of a minimal n-dominating sei 
in G. A real-valued function f : V -t [0,1] is n-dominating if for each v E V, the sum 
of the values assigned to the vertices in the closed n-neighbourhood of v, Nn[v], is at 
least one, i.e., f(Nn [ll]) ?: 1. The weight of an n-dominating function f is J(1I), the 
sum of all values J( v) for v E if, and l' nj( G) is the maxinium weight over all minimal 
n-dominating functions. We show that the decision problems corresponding to the 
problems of computing l'n(G) and l'nj(G) are NP-complete, generalising the result of 
Cheston, Fricke, lIedetniemi and Jacobs for the case n = 1. 

1 Introduction 

Let 17 ;::: 1 be an integer a.nd G = (11, E) a. gra.ph. A set D S V is an n-dominating set if 

every vertex v E V - D is within dista.nce 11 from some vert.ex of D. An n-dominating set 
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is minimal if no proper subscl is n-dol11inatillg. The n-dominalion number oj G, denoted by 

In(G), is the minimum cardinality over all minimal n-dominating sets of G, while the upper 

n-dominalion number of G, denoted by I',,(G), is the maximum cardinality over all minimal 

n-dominating sets of G. In this paper we consider a generalisation of I' n(G). 

Let f: V --t [O,lJ. To simplify notation we will write J(D) for LtJEDf(v) and we 

define the weight oj f to be LvEV J(v) = J(l1). Given a vertex v its closed n-neighbourhood, 

denoted by Nn [v], is the set containing 11 as well as all vertices within distance 11 from v. 
\Ve say .r is all n-Jominating Junction if for each v E V we have that f(Nn[v]) :::: 1. Given 

an n-dominaling function J, we say it is minimal n-dominating if it is minimal among all 

lI-ciomiuatillg functions under thE' usual pZlrLial ordering for real-valued functions (i.e., f ::; 9 

iff f(v)::; g(v) for all v E V). The concepts introduced ill this paper generalises those of 

Cheston, Fricke, Hedeiniemi and Jacobs (see [1]). 

The followillg result gelleralises a result of Cheston, Fricke, Hedetniemi and Jacobs (see 

[1]). It will prove to be very useful. 

Lemma 1 Let I be an n-dominaiing function J01' a graph G = (II, E). Then I is 1ninimal n­

dominating iJ and only 1] whenever J(v) > a there exists some u E Nn[v] such thai. I(Nn[uJ) = 
1. 

Proof. Let v E V such that I(11) > 0. Then J(Nn [v1) :::: 1. LeL N,,[v] = {WI,' .. ' we}. If 

f(1Vn[wd) = 1 for some i, we are done. Assume, therefore, that I(Nn[WiJ) = 1 + 0i > 1 

for i = 1,2, ... ,C. Suppose v = WI. If J(v) = a, then I(Nn[v]) = a + I(Nn(v)) = 1 + 01. 

Let ° = Illin{b l , ... ,oc}. Note that ° > 0. Define 9 : 11 --t [0, I} by g(x) = I(x) if:c :f. v 

wit.h g(v) = max{O, a - oJ, so tha.t 9 < J. Note tha.t g(Nn[v]) = g(wd + ... + g(W() :::: 

a - 5 + g(W2) + ... + g(we) = 1 + 01 - 0:::: 1, while g(Nn[w;J) = f(Nn[w;J - {v}) + g(v) :::: 

I(Nn[Wi] - {v}) + a - b = J(Nn[Wi]) - 5 :::: J(Nn[wd) - bi = 1 so that 9 is an n-dominating 

function of G with 9 < J, which contra.dicts the minirnality of I. 

For the converse, suppose there exists a 9 such that 9 < f - let v E \I such that 

g(v) < I(v). ,Since J(v) > 0, there exists u E Nn[v] such that J(Nn[u]) = 1. But g(Nn[uJ) = 
g(Nn[u} - {tI}) + g(v) < f(Nn[u] - {v}) + f(v) = 1, which contradicts the fact that 9 is 

n-dominating. I 

For a graph G 'with vertex set V = {VI, ••• , V m } we can identify functions from V into R 

as n-tuples (:r1, ... ,:r m) E Rm. Such a function is n-dominating if and only if ° ::; Xi ::; 1 aud 
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LVJENn[v,] :rJ 2: 1 for i = 1, ... , m. If the aforementioned two conditions hold,. by Lemma 1, 

the notion of millimality is equivalent to Xi f1v
j

ENn[v,](I- LVkENn[v;] Xk) = 0 for i = 1, ... , m. 

For allY graph G, the points (Xl,"" Xm) E Rm satisfying the aforementioned three 

conditions are precisely the seL of all minimal n-dolllinating functions. Since this seL is 

compact and the functioll (Xl, ... ,X m ) -t L Xi is continuous on Rm, there exists a minimal 71-

domiuatillg function of maximum weight. We denote the weight of such a function by f nj( G). 

Note that 1', in this setting, is merely the weight obtained when the Xi are additionally 

constrained Lo be 0 or 1. Clearly fn(G) ~ fnj(G). 

III Section 2 we give an example of a graph G for which fn(G) « r'nj(G). SectioIl 3 con­

siders the complexity of the decision problems corresponding to the problems of computing 

r',,(G) and 1'"j(G). The construction used in the latter, gives a new proof of the IV P­

completeness of upper fractional domination, originally settled by Cheston, Fricke, Hedel­

niemi and Jacobs in [IJ. 

2 An example of fn(G) < fnj(G) 

In this section we give an example of a graph such r n( G) < r' nj( G). V'le start by proying a 

useful lemma. 

Let nand £ be positive integers and consider P,,+! X ]((. L~t {v E V(P,,+l x f{c)!deg( v) = 
C} = AUB where < A >=< B >= ]{c. Let A = {al, ... ,aC}, B = {bh ... ,bc} and let 

P : bo - ao be a path of length 71, - 1. If bl+1 ~ V(Pn+1 X ]{c) U V(P), construct the graph 

1-J(n, C) = (V', E') as follows: 

(a) V' = V(P,,+l X ]{l) U V(P) U {bc+d 

(b) E' = E(P,,+l X Kc)UE(P)U{aoa;ji = 1, ... ,C}U{bl+1b;ji:= 1, ... ,f}. Thcgraph 11(n,f) 

is depided in Figure 1. 

Lemma 2 Lel G' == (V', E') == 11(71,,£) j01' some positive integers nand f 2: 2. Let G = 
(V, E) be a graph such thal G' ~ G and degcl(x) = degc(x) jar all x E V' - {ho}. Let j be 

a minimal n-dominaling jlmciion oj G. 

(aJ Sllppose j(13) > 1. Then j(l1') ~ f. Moreover, ij equality holds, then J(b;) = 1 j01' all 

i = 1, . .. ,f, while j(V'- B) = O. FUl'thennore, ij f is constrained to be a 0 -1 junction, 

then j(V' - B) O. 

135 



Figure 1: The graph H(n, C) 

(b) If f(B) ~ I, then f(ll') ~ 2. 

Proof. Let Pi = f(6i) for i = 1, ... , e + 1, 1= Nn[!J£+d and J = V' - 1. Not.e that f(1) ;:::: 1 

since f must n-dominaLe b('f-!' 

(a) Suppose f(B) > 1. Note that this implies that PC+I = 0, Ly the minimality of f. Assume 

tha.t. Pi > O. Then, Ly Lemma. 1, there exists u E Nn[b;J such that f(Nn(uJ) = 1. Since 

I:}=1 Pj > 1, it follows that u ~ i, so that u = aj. This implies that f(V' - (B - {b;}) = 1. 

\Vc now have that f(V') = f(lI' - (B - {6;}» + LjE{l .... ,c}-{i} f3j ::; f with equality occurring 

only if Pj = 1 for j E {I,; .. , e} - {i}. If Pj = 1 for some j E {I, ... , f} - {i}, then, by 

symmetry, we have that f(V' - (B - {OJ})) = 1. Hence 1 = f(V' - B) + f3i = f(V' - B) + Pj, 
so that Pi = Pj. Also /(11' - B) = O. 

Now let D be a rninimal n-dominating set of G' such that D n B = {OJ, bj }. Since 

D is a minim.al n-domillat.illg set, it follows thai bC+l ~ D. Sillce i ~ Nn[bi] n Nn[b j ], it 

follows that (Ii E jYn[b,]- 1V,,[D - {bdJ alld aj E Nn[b j ] - Nn[D - {bJ]. This implies that 

(V' - B) n D = 0. Hence, if f is a minimal n-dominating function such thai /(B) > 1, we 
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see that f( V' - B) = o. 

(b) Suppose that feB) ::; 1. \Ve distinguish between two cases: 

Case 1 f(1) > 1. 

Sillce J(I) > 1, the minirnality of f implies that P£+1 = o. 

Subcase 1.1 (3,. > 0 for some i E {I, ... ,f}. 

By the minimality of f, there exists u E Nn[b,.] such that J(N71 [u]) = 1. Sillce f(I) > 1, it 

follows that u ti 1, so that u = ai. This implies that 1 = f(V' - (B - {b;})) = J(\I' - B) + Pi 

and so J(V') = J(\I' - B) + feB) :::; 1(\"' - B) + Pi + J(j3) :::; 1 + 1 = 2. 

Subcase 1.2 f(B) = O. 

Let. ;r. E \1' - Ii such that f(x) > 0 and d(x, B) is a minimum. By'the minimalit.y of f, there 

exists H E N,,[x} such that f(Nn[uJ) = 1. Since f(1) > 1, it fo110"'1"8 that 11 E J. In this case 

f(\1') ::; f(N,,[u]) = 1. 

Case 2 f(1) ::; 1. 

Sillce bC+l must be n-dominated by f, we have that J(1) 2: 1, so that f(1) = 1. We show 

that f(J) ::; 1: Suppose that J(J) > 1. If f(a,) > 0 for some i, there exists u E N,,[ad slIch 

that. f(N,,[u}) = 1. Since f(J) > 1, it follows that u E I, so that f(N,,[uJ) 2: f(1) +f(ai) = 
1 + f(ai) > 1, which is a contradiction. Hence f(A) = O. Now let x E J - A slIch that 

f(x) > 0 and d(x,ao) is a minimum. Then there exists u E N,,[x] slIch that f(Nn[u)) = 1. 

Since f(J) > 1,itfollows that 11 ti J. If u E 1, then f(Nn [ll]) ~ f(1) + f(x) > 1. which ]'S 

a contradictioll, whence u ~ V'. If 5 is tll-' vertex set of the bo - x subpath of <: J >, then, 

since, 5 ~. Nn[uJ, we have that. f(5) :::; 1. Note that f(J - 5) = 0, so that f(J) ::; 1, which 

is a contradiction. VJe cOlldudc that·f(J) :::; 1 so that f(F') = f(I) + f(J) :::; 2. I 

'We now show that we can construct a graph G for which I'n (G) < f,,! (G). 

Let 17. 2: 1 be an integer. Take four copies HI (n, 5), IJ2(n, 5 ),IJ3( 17.,5), H4( n, 5) of H( n, 5) 

and superscript each vert.ex according to the copy it appears ill. Add the edges bbbZ, u6{;~, u~u~ 
and b3bb to obt.ain the graph G. The graph G is depicted in Figure 2. 

Lemma 3 If G is the aforementioned graph, then I'll (C,) = 14. 

PI'oof, Let Bi = {b~ Ij = 1, ... ,5} for i = 1, ... ,4 and let. D be a miniriliil lHlominatillg sei 
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Figure 2: A graph for which I'n(G) < I'nJ( G) 

of G. Suppose IBinDI > 1 for i = 1,2,3. By Lemma 2(a), ii follows thai (V(Jfi(n,5)-Bi )n 
D= 0 for i = 1,2,3, so that vertex a~ is not n-dominated by D. This shows that IBi nDI ::; 1 

for at least two of the graphs lli(n,5). Lemma 2 now implies that IDI ::; 2.2 + 2.5 = 14. 

Figure 3 shows that r n(G) = 14 with the square vertices forming a minimal n-dominating 

s~t of cardinality 14. I 

Figure 45hows that I'nJ( G) ;::: 14r (Vertices not labelled are assumed to be labelled by 

0.) 

3 Complexity issues 

h! this section we show that the decision problems corresponding to the problems of com­

puting r n( G) and I',,!( G) are NP-complete. More specifically, these problems are: 

UPPER DISTANCE DOIVUNATION (UDD) 

Instance: A graph G and integers k and n. 

Question: Is. I'n( G) ;::: k? 
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UPPER DISTANCE FRACTIONAL DOMINATION (UDFD) 

Instance: A gravh G, integ<;.r n and rational number q. 

Question: Is 1'''f(G) ~ q? 

\hle now show that rnf ( G) is computable and is always a rational number. If J is a 

minimal 71-clomin~.ting function, let Sf = {v E VIJ(Nnlv)) = 1}. By Lemma 1, if J(v) > 0, 

then v E N"lSf]' where N"lS] = UxEsNtl[x]. Since J is n-clominaLing, for every vcr lex 

v, there is some u E .'Vnlv] with J(u) ::j:. o. The previous two comlllents imply that we 

must have N,,[Nn[Sfll = V. Let S = {SIS ~ V 1\ iV,,[N,,[S]] = F}. For each S E S, 

we consider the problem of finding a minimal n-dominating function J of maximum weight 

with the additional constraint that Sf ;2 S. This subproblem can be solved using lillear 

programnullg: 

maxnruze 

subject to 

o ~ Xi ~ 1 VVi E Nn[S] 

Xi = 0 VVi E V - Nn[S] 

LlI)ENn[v,j Xj 2:: 1 

LIJ)ENn[lJil:rj = 1 

VVi E F - S 

VVi E S. 

Note that the conditiuns guar<;intee that a solution to this problem is n-donlinating. 

Given that a solutioll is n-domillating, the second and fourth conditions guarantee minimal 

n-c!omination. Hence e,,;ery solution to this problem is a minimal n-dominating function. 

C~mversely, any n'in;P1al i-!-domi!!:1~inb function f having weight r nf is the solution to this 

linear programming problem for some set Sf E S. 

Also, since each member of S d~fines a linear programming problem and 1"'nf(G) is the 

largest among these subproblcms, 1'1If(G) is a computablf~ funcliou. This numbcr is rationa.l 

since each problem involves ouly rational numbers. Since linear programming can be solved 

in polynomial time, it follows that UDFD E N P. 

It is obvious that UDD E NF, since we can, ill polynomia.l time, guess at a. subsct 

of vertices, vcrify that it ha.s cardinality at least k a.nd thcll verify that it is a millimal 

n-dominating sct. Thus we have: 

Theorem 1 UDD and UDFD are in N P. I 
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Figure 5: The graph jJ"(n, f) 

Before proceeding further, we prove a lemma. Let nand f be postive integers and consider 

f{'(n,f) = P,,+t x J(t. Let {v E V(Ji'(n,f))ldeg(v) = f} = AUB where < A >~< B >~ K(. 

Let A = {at, ... , ae} and B = {b1 , ••• , be}. The graph H'(n,f) is depicted in Figure 5. 

LLdl:'dc., ':i Ltl G' = (V', E') = H'(n, f) for some positive intege7's 11 and C 2: 3. Let G = 

(V, E) be a gmph such that G' ~ G and degG'(x) = degG(x) for all x E v' - {aI, btl. Let 

f be a minimal n-domillaling funclion of G. Then f('/') ::; f. Al01'eove7', if equality holds, 

then f(aj) = 1 for all i = 1, ... ,C and f(V' - A) = 0 or f(b j ) = 1 for all i = 1, ... ,f and 

f(V' - JJ) = O. 

Proof. Let OJ = f(ai) and f3i = f(bi)for i = 1, ... ,£. For £ = 1, ... ,£, let Xi = {v E 

V - \f'ld(v,a;) ::; n} and )i = {v E V - V'ld(v,b j ) :::; n}. Note that Xi = Xj and }'i= Yj 

for i,j E {2, ... ,C}, while Xi ~ Xl and }i ~ Y1 for i = 1, ... ,C. 

Case 1 f(A) > 1. 

In this case 0i > 0 for some i E {2 ... ,f}, sillce oLherwise 0t > 1, whicb is a cOlltradictioll. 

Then, by Lemma. 1, there exists u E Nn[ad = jI' - (13 - {bd) U Xi such that f(Nn[u]) = l. 
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Since L~= 1 0: j > 
(A-{ad)UYi) 

{a;}) U Y;) + 

1, it follows that u ~ (V' - IJ) U Xi' Hence 1l = Uj, so that J( V' -

1. Hence J(V') = J(V' - (A - {a;}) + LjE{I, ... ,l}-{i} O:j S; J(V' - (A-

{i} O:j S; 1 + (f - 1) = C, with cquidit.y occurring ollly if O:j = 1 for 

j E {I, ... ,q {i}. 

Now let. O:j 1 [or some j E {2, ... ,f} - {i}. By syrruneLry, J(\I' - (A- {aj}) Ulj) = 1. 

lIence 1 = J(V' AU}i)+O:j = J(V'-AU}'i)+O:j, so that. 0:; = CYj. Also J(V'-AU)i) = 0, 

so that J( ii' - A) O. 

Case 2 /(B) > 1. This case is similar to case 1. 

13y cases 1 (inc! 2, we may assume that J(A) S; 1 and J(B) S; 1. Let x E 1 = V' - A - B 

such that. J(:r) > O. Then there exists tl E Nn[:rJ ~ V' U X 2 U Y2 with f(N,,[lI]) = 1. If tl E 1, 

then, sillce Nn[u} 2 V', it follows tllat J(V') S; 1. If u E AU B, sa,Y U = (ji, then N 71 [u) 2 
(V' - B) U {b;}, whence J(V') = f(V" - IJ) + J(IJ) = J((II' - IJ) U {b;}) + L.iE{l, ... ,C}-{i} f3j S; 

J(N71 [u]) + J(IJ) S; 1 + I = 2. lIence we may assume that if x E I such that J(x) > 0, there 

exists U E X 2 U 1"; such that f (N" [u J) = 1. For x E 1 such that J (x) > 0, let Px be a shortest 

path from x La {u E X 2 U l''2IJ(Nn[u]) = I}; denote the other endpoint of Px by e(x). Let 

S = {x E Ilf(x) > 01\ a1 E Px} and T = {x E Jlf(x) > 01\ Ul E Px }. Let J.;' E S such that 

d(x',al) = max{d(x,adlx E S} and let x" E T such that d(X",Ul) max{d(x,uI)lx E T}. 

Case l' S :j:. 0 and T = O. 
In this case, if x E I such that d(x, al) > d(x', ad, it follows that f(x) 

J(V') S; J(Nn[e(x')]) + J(B) S; 1 + I = 2. 

Case 2' S 0 and T:j:. 0. This case is similar to Case I'. 

Case 3' 5 :j:. 0 and T :j:. 0. 

O. Hence 

In this case, if x E I such that d(x,al) > d(x',al) and d(X,Ul) > d(x",ud, it follows that 

J(x) = O. Hence J(V') S; J(Nn[c(x')]) + f(Nn[e(x")]) S; 1 + 1 2. I 

\Ve now establish a polynollual transformation from the well-known 3-satisfiability prob­

lem (3-SAT) t.o UDD, thus proving it N P-hard. Let 1 be an instance of 3-SAT consistillg 

of the sci {C1 , C2 , • •• ,Cd of 3-1iteral clauses involving the literals Xl, Xl, .T2, X2, • •• ,xm , xm . 

Associate with each literal pair Xi, Xj the graph IJ'(n,3) depicted in Figure 5 - where the 

vertices al and hi are renamed by 'UXi, 'UXi respectively. \Vith each clause Cs associate the 

graph H(71, 3) of Figure 1 - where the vertex bo is rcmuned IJY cS • V,,'c illSert all eJge between 

literal vertex v:ri (or 'Ux;) and clause vertex Cs if and only if Xi (0;" Xi) is a literal in clause 
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Cs - name the resulting graph G. The graph associated with (Xl V X2 V x3.1 /\ (Xl V X2 V X3) 

is depicted in Figure 6. Clearly, this construction can be accomplished in polynomial time. 

Theorem 2 UDD is NP-complete. 

Proof. Given an instance I of 3-SAT, we construct the graph G as above and set k = 3t+3m. 

To show that this problem is N P-hard, it suffices to show that I is satisfiable if and only if 

G has a n-dominating set of cardinality at least k. 

First, Sllppose 9 is a satifying truth assignment. We construct a minimal n-dominating 

set D of cardinality 3(t+m). For each i = 1, ... , m, do the following. If g(Xi) = T (g(Xi) = T 

respectively) place in D the vertex VXi ( VXj respectively) along with the other two vertices 

of the 3-clique containing VXj (VXi respectively). Next, for every clause associated subgraph, 

place the vertices b1 , b2 ,b3 in D. It is straightforward to verify that this is a minimal n­

dominating set of cardinality 3(t + 171). 

Conversely, assume that D is a minimal n-domina ting set of cardinality at least 3(1 + 171). 

\Ve may think of D as a minimal n-dominating function. By Lemma 2 and Lemma 4, this 
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function can be no more than 3 on each Jf(n,3) and H'(n,3) graph. Therefore, iL must be 

exactly 3 on each such graph, sillce Lhere are t + m such subgraphs. By Lcmma 4, for each 

1, ... ,7n, exactly one of v:rj or VXi is in D. We may define g(Xj) :::: Tiff VXj E D. By 

Lemma 2, each \"erLex C3 is noL n-dorninaLed by any vertex withill a l1(n, 3) graph. lIenee 

it must be n-dominated by a vertex corresponding to one of its variables, so it follows that 

9 is a satisfying truth assignment. I 

Theorem 3 UnFn is N P-coTnplete. 

Proof. GiYen an instance 1 of 3-SAT, wc map 1 La (G, H, q) with G the graph described 

before the statement of Theorem 2 and q is the rational number 3( t + m). We may then argue 

that 1 is sa.tisfiable iff G has a minimal n-dominating function of weight at least ~)(t + m). 

The argument is almust identical to the 011C given [or Theorem 2. I 

.In closing, we note that our construction gives a new proof o[ the N P-completeness of 

UDFD for the case n 1 established by Chest.on, Fricke, lIedetniemi and Jacobs (see [1]). 
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