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Abstract

A graphG = (V,E) is word-representable if there exists a word w over the
alphabet V such that letters x and y alternate in w if and only if xy is an
edge in E. Word-representable graphs are the main focus in “Words and
Graphs” by Kitaev and Lozin. A word w = w1 · · ·wn avoids the pattern
132 if there are no 1 ≤ i1 < i2 < i3 ≤ n such that wi1 < wi3 < wi2.

A recently suggested research direction is in merging the theories of
word-representable graphs and patterns in words. Namely, given a class
of pattern-avoiding words, can we describe the class of graphs repre-
sented by the words? We say that a graph is 132-representable if it
can be represented by a 132-avoiding word. We show that each 132-
representable graph is necessarily a circle graph. Also, we show that
any tree and any cycle graph are 132-representable. Finally, we provide
explicit 132-avoiding representations for all graphs on at most five ver-
tices, and also describe all such representations, and enumerate them, for
complete graphs.
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1 Introduction

Suppose that w is a word over some alphabet and x and y are two distinct letters
in w. We say that x and y alternate in w if after deleting in w all letters but the
copies of x and y we either obtain a word xyxy · · · (of even or odd length) or a word
yxyx · · · (of even or odd length). For example, in the word 23125413241362, the
letters 2 and 3 alternate. So do the letters 5 and 6, while the letters 1 and 3 do not
alternate.

A graph G = (V,E) is word-representable if there exists a word w over the
alphabet V such that letters x and y alternate in w if and only if xy is an edge in E.
For example, the graph to the right in Figure 2.3 is word-representable and one of
words representing it is bcdad. Some graphs are word-representable, others are not,
and the minimum non-word-representable graph is the wheel W5 shown to the left
in Figure 2.2.

Word-representable graphs are the subject of a long line of research in the lit-
erature initiated in [7] by Kitaev and Pyatkin, and they are the main focus in the
recently published book [6] by Kitaev and Lozin. A general program of research
suggested in [6, p. 183] takes as the input a language defined, for example, through
pattern-avoiding words, and outputs a description of the class of graphs represented
by the language. For instance, as is discussed in [6, p. 183], the set of weakly in-
creasing words (those avoiding the pattern 21) defines graphs whose vertices can be
partitioned into a clique and an independent set, so that no edge connects the clique
and the independent set.

In this paper, we study graphs defined by 132-avoiding words. Our research
merges the theories of word-representable graphs [6] and patterns in words [2, 4], the
latter being a very fast growing area. A word w = w1w2 · · ·wn avoids the pattern
132 (resp., 123) if there are no indices 1 ≤ i1 < i2 < i3 ≤ n such that wi1 < wi3 < wi2

(resp., wi1 < wi2 < wi3). We say that a graph G is 132-representable (resp., 123-
representable) if there is a 132-avoiding (resp., 123-avoiding) word representing it.
Note that for the last definition to make sense, labels of graphs are supposed to be
taken from a totally ordered set. Also, when trying to 132-represent (123-represent)
a graph, we are allowed to label the graph in any suitable way1.

One of the main results in this paper is in showing that any 132-represent-able
graph is necessarily a circle graph. A result in [8] shows that 132-representable
graphs are a strict subset of circle graphs. Also, we show that trees, cycle graphs and
complete graphs are 132-representable. Thus, the place of 132-representable graphs
in a hierarchy of graph classes is as shown in Figure 1.1, where we also indicate
known facts that odd wheels are non-word-representable [7], while prisms are word-
representable but not circle graphs [5]. Interestingly, the studies in [8] show that the
class of 123-representable graphs, being different from the class of 132-representable

1There is no issue with labelling when considering word-representable graphs, since all labelings
are equally good or bad. However, in the contexts when there is an order on labels, labelling graphs
in a proper way may be essential for finding a representation.
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132-representable graphs

circle graphs

word-representable graphs

all graphs odd wheels W5, W7, . . . [7]

prisms [5]

disjoint union of 2 comp-
lete graphs of size 4 [8]

trees, cycle graphs,
complete graphs

Figure 1.1: The place of 132-representable graphs in a hierarchy of graph classes

graphs, is also a proper subclass of circle graphs, even though not all trees are 123-
representable; all cycle graphs and complete graphs are 123-representable.

One should compare our results with the results on 12-representable graphs ob-
tained in [3]. These graphs are an instance of u-representable graphs, a far reaching
generalization of word-representable graphs, also introduced in [3], where u is a word
over {1, 2} different from 22 · · ·2. Similarly to the case of 132-representable graphs,
labelling of graphs is important for 12-representation. A word w 12-represents a
graph G, if for any labels x and y, x < y, xy is an edge in G if and only if after re-
moving all letters in w but x and y, we will obtain a word of the form yy · · · yxx · · ·x.
Note that the notions of 132-representable graphs and 12-representable graphs are
not directly related (in the former case the pattern is used to give a condition on
words representing graphs, while in the latter case the pattern is used to define the
representation itself). It was shown in [3] that any 12-representable graph is necessar-
ily a comparability graph, while very few trees (called double caterpillars) and almost
no cycle graphs (only cycle graphs on at most four vertices) are 12-representable.

This paper is organized as follows. In Section 2 we give necessary definitions,
notation and results to be used in the paper. In Section 3 we derive a key property
of words 132-representing graphs (see Theorem 3.4) and state its corollary, the main
result in this paper, that any 132-representable graph is necessarily a circle graph
(see Corollary 3.5). In Section 4 we not only establish 132-representability of trees
and cycle graphs, but also describe and enumerate all 132-representants for complete
graphs. Moreover, in Section 4 we discuss non-132-representable graphs and give
explicit 132-representation of graphs on four and five vertices. Finally, in Section 5
we state a number of suggestions for further research.

2 Preliminaries

Graphs. We will now review a number of basic notions/notations in graph theory.
In this paper, we deal with simple graphs, that is, graphs with no loops and no
multiple edges.

The degree d(v) of a vertex v in a graph G is the number of edges of G incident
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with v. The complete graph on n vertices is denoted by Kn. A cycle graph Cn is the
graph on n vertices that consists of a single cycle. A wheel graph Wn is the graph on
n+ 1 vertices obtained from Cn by adding an all-adjacent vertex (apex). The wheel
graph W5 is shown to the left in Figure 2.2.

A prism Prn is a graph consisting of two cycles 12 · · ·n and 1′2′ · · ·n′, where
n ≥ 3, connected by the edges ii′ for i = 1, . . . , n. For example, Pr4, also known as
the three-dimensional cube, is shown to the right in Figure 2.2.

1′

1

2′

2

3′

3

4′

4

Figure 2.2: The wheel graph W5 and the prism Pr4

Finally, a circle graph is a graph whose vertices can be associated with chords of
a circle such that two vertices are adjacent if and only if the corresponding chords
intersect. See Figure 2.3 for an example of a circle graph.

a b
c

d

⇔
c a d

b

Figure 2.3: A circle with four chords and the corresponding circle graph

Words and permutations. For a finite word w, let A(w) denote the set of letters
occurring in w, and red(w) denote the word over {1, 2, . . . , |A(w)|} obtained by
replacing the i-th smallest letter(s) by i. We call red(w) the reduced form of w. Also,
for any x ∈ A(w), let nw(x) denote the number of copies of x in w, and xi denote
the i-th occurrence of x in w from left to right. For example, if w = 14661476212,
then A(w) = {1, 2, 4, 6, 7}, red(w) = 13441354212, and say for x = 6, nw(6) = 3. A
word w is k-uniform if each letter in w occurs exactly k times.

Suppose that x and y are two distinct letters in A(w). As is defined above, we
say that x and y alternate in w if after deleting in w all letters but the copies of x
and y we either obtain a word xyxy · · · (of even or odd length) or a word yxyx · · ·
(of even or odd length). In particular, if w has a single occurrence of x and a single
occurrence of y, then x and y alternate in w.

A word or permutation w = w1w2 · · ·wn avoids the pattern 132 if there are no
indices 1 ≤ i1 < i2 < i3 ≤ n such that wi1 < wi3 < wi2. For example, the word
31458 avoids the pattern 132, while 3474 is not 132-avoiding (the subsequence 374
in this word forms the pattern 132). It is a well-known fact (e.g. see [4, p. 32]) that
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the number of 132-avoiding permutations of length n is given by the n-th Catalan
number cn = 1

n+1

(
2n
n

)
.

A subword of w formed by consecutive letters is called a factor of w. For example,
6651 and 41 are factors of 26651141. Finally, we let [n] = {1, 2, . . . , n}.

Word-representable graphs. A graph G = (V,E) is word-representable if there
exists a word w over the alphabet A(w) = V such that x and y alternate in w if and
only if xy ∈ E for each x �= y (that is, x and y are connected by an edge). In this
context, we say that w represents G and w is a word-representant for G.

In this paper we assume that elements in V come from a totally ordered alphabet,
which is important for the following definition. A word-representable graph G is 132-
representable if, possibly after relabelling the graph, there exists a 132-avoiding word
w that represents G. In this context, w is called a 132-representant for G.

For example, if w = 43451251, then the subword induced by the letters 1 and 2
is 121, and hence the letters 1 and 2 alternate in w, so that the respective vertices
are connected in G. On the other hand, the letters 1 and 3 do not alternate in w,
because removing all other letters we obtain 311; thus, 1 and 3 are not connected in
G. Figure 2.4 shows the graph represented by w. Moreover, since w is 132-avoiding,
G is 132-representable and w is a 132-representant of G.

5 3

1 2

4

Figure 2.4: A 132-representable graph G

We note that unlike the case of word-representability without extra restrictions,
labeling of graphs does matter in the case of pattern avoiding representations. For
example, the 132-avoiding word 4321234 represents the graph to the left in Figure 2.5,
while no 132-avoiding word represents the other graph in that figure. Indeed, no two
letters out of 1, 2 and 3 can occur once in a word-representant or else the respective
vertices would not form an independent set. Say, without loss of generality, that 1
and 2 occur at least twice. But then we can find 1 and 2 on both sides of an occurrence
of the letter 4, and the patten 132 is inevitable.

The following result is of special importance to us.

Theorem 2.1 ([1]). A graph G is word-representable and its representation requires
at most two copies of each letter if and only if G is a circle graph.

Another relevant result is as follows.

Theorem 2.2 ([5]). Prisms cannot be represented using at most two copies of each
letter, but can be represented using at most three copies of each letter.
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Figure 2.5: 132-representable (left) and non-132-representable (right) labelings of
the same graph

3 132-representants

In this section, we discuss some properties of 132-representants.

We first present a simple, but useful theorem.

Theorem 3.1. Let G be a 132-representable graph, and x be a vertex in G such that
d(x) ≥ 2. Then for any 132-representant w of G, we have nw(x) ≤ 2.

Proof. Since d(x) ≥ 2, there exist vertices a and b, a > b, in G that are adjacent
with x.

Suppose that there are at least three copies of x in w. Then by the definition of
a 132-representant, there exists a subsequence xw1xw2x in w, where for i = 1, 2, wi

is a factor of w containing exactly one a, one b, and no x. There are three cases to
consider, all of which contradict the requirement that w is 132-avoiding:

• x > a > b: bxa is a 132 pattern in w where b ∈ w1 and a ∈ w2;

• a > b > x: xab is a 132 pattern in w where a ∈ w1 and b ∈ w2;

• a > x > b: bax is a 132 pattern in w where b ∈ w1 and a ∈ w2.

Hence, at most two copies of x can appear in w.

As consequences of Theorem 3.1, we obtain the following results.

Corollary 3.2. If each vertex in a graph G is of degree at least 2, then any 132-
representant for G is of length at most 2n.

Corollary 3.3. Let w be a 132-representant for a graph G. If d(x) = 1 and the
vertex a connected to x has degree at least 2, then x occurs at most three times in w.

Proof. Let w denote a 132-representant for G. Since d(a) ≥ 2, by Theorem 3.1 a
occurs at most twice in w. Combining with the fact that a and x alternate in w, we
have that x occurs at most three times in w.

The following theorem generalizes Theorem 3.1.

Theorem 3.4. If a graph G is 132-representable, then there exists a 132-avoiding
word w representing G such that for any letter x in w, nw(x) ≤ 2.
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Proof. Let w be a 132-representant for G. If all the vertices in G have degree at least
2, then by Theorem 3.1 every letter appears in w at most twice. Hence it suffices to
consider the case where there exists a vertex x in G such that d(x) = 1. Let a be
the vertex connected to x. We consider two cases.

• d(a) ≥ 2. By Corollary 3.3, the letter x occurs at most three times in w. To
prove the theorem, we assume that there are three copies of x in w and then we
will construct a new 132-avoiding word w′ which also represents G but contains
only two copies of x. By Theorem 3.1, there are exactly two copies of a in w.
In what follows, according to our notation, xi denotes the i-th x and aj the
j-th a in w from left to right, where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.

Suppose that a > x. If there are no letters between the a’s except for x then a
is connected only to x in G; contradiction with d(a) ≥ 2. Thus there is a letter
b �= x between a1 and a2 in w. If b > a > x, then x1ba2 will be the pattern 132;
if a > b > x, then x1a1b will form the pattern 132; if a > x > b, then ba2x3 will
form the pattern 132; in either case, there is a contradiction with the definition
of w. Thus we must have a < x.

We next construct a new 132-avoiding word w′ from w. Since there is no
element t smaller than a to the left of a1 in w (or else, tx2a2 would be the
132-pattern), we obtain that a is a left-to-right minimum in w (that is, no
letter to the left of a is less than a). We delete all three x’s and replace a1
by the factor a+a1a

+ to obtain the new word w′, where a < a+ < a + 1.
By construction of w′, if it contains an occurrence of the pattern 132 then
this occurrence cannot involve a+ and thus it would give an occurrence of the
pattern in w; contradiction. Moreover, a is the only letter in w′ alternating
with a+, and thus w′ 132-represents G′ obtained from G by replacing the label
x by a+.

• d(a) = 1, which means that the edge xa is disconnected from the rest of the
graph. Let w′ denote the word obtained from w by deleting a and x. Clearly,
w′ is 132-avoiding. But then the 132-avoiding word n(n− 1)n(n− 1)w′, where
n and n− 1 are larger than any other letter in A(w′), represents the graph G′

obtained from G by replacing the labels a and x by n and n−1 (in any order).

We can repeat the procedure described above for any other vertices of degree 1 in G
to obtain the desired result.

One of the main results in this paper is the following statement.

Corollary 3.5. Any 132-representable graph is a circle graph.

Proof. Let G be a 132-representable graph. By Theorem 3.4, there exists a 132-
representant w of G that contains at most two copies of each letter. By Theorem 2.1
G is a circle graph.

Note that we do not know whether each circle graph is 132-representable or not.
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4 132-representable graphs

In this section, we will show that trees, cycles, and complete graphs are 132-repres-
entable.

4.1 Trees and cycle graphs

Theorem 4.1. Trees are 132-representable.

Proof. We proceed by induction on the number of vertices with an additional con-
dition. The tree with only one vertex can be represented by 1. Suppose that we can
represent a tree with less than n vertices by a 132-avoiding word and the label of the
root has only one occurrence and the label of the non-root vertex has exactly two
occurrences in the corresponding word.

Given a tree T with n vertices, label it in pre-order, that is, starting from the
root traverse the subtrees from left to right recursively. See the graph to the left in
Figure 4.6 for an example. Suppose that the root has r children, which means that
T has r subtrees, whose roots are children of the root of T . Denote the r trees by
Ti for 1 ≤ i ≤ r from left to right and suppose that the root of Ti is labeled by ni.
Note that 2 ≤ n1 < n2 < · · · < nr ≤ n, so that for 1 ≤ i ≤ r, Ti has ni+1 − ni

vertices, where nr+1 = n + 1. Hence Ti is a tree having less than n vertices. By
induction hypothesis, Ti is 132-representable and it can be represented by a 132-
avoiding word w(Ti) with only one copy of ni and two copies of any other letter. Let
w = w(Tr)w(Tr−1) · · ·w(T1)1n1n2 · · ·nr. It is easy to see that w represents T , and
in particular, the root labeled by 1 is only connected to its children. Moreover, since
for 1 ≤ i < j ≤ r the labels of Ti are smaller that the labels of w(Tj), we get that w
is 132-avoiding. We are done.

Example 4.2. Let T be a tree as follows. It is clearly that T has three subtrees T1,
T2 and T3. By Theorem 4.1, there is w(T2) = 5. Moreover, we have w(T1) = 43234
and w(T3) = 87678, which can be obtained by applying the inductive argument
again. Hence w(T ) = 87678.5.43234.1256, where the dots showing parts of w(T )
should be ignored. It is obvious that w(T ) is 132-avoiding and it represents T .

1

2 5 6

3 4 7 8
T

⇒ 2

3 4
T1

5

T2

6

7 8
T3

Figure 4.6: A tree T of size 8 and its subtrees

Theorem 4.3. Cycle graphs Cn are 132-representable.



A.L.L. GAO ET AL. /AUSTRALAS. J. COMBIN. 69 (1) (2017), 105–118 113

Proof. Let n ≥ 3. A path graph Pn (see Figure 4.7) is a tree, and, by the proof of
Theorem 4.1, it can be represented by the 132-avoiding word

w = n(n− 1)n(n− 2)(n− 1)(n− 3)(n− 2) · · ·45342312.

Let w′ be the word obtained from w by deleting the first n in w. Then it is easy to
see that w′ represents Cn.

· · ·
1 2 3 n− 1 n

Figure 4.7: A path graph Pn

Example 4.4. 132-representants for C4 and C5, based on Corollary 4.3, are given
in Figure 4.8.

1 2

34

342312

1
2

3

4
5

45342312

Figure 4.8: 132-representants for C4 and C5

4.2 Complete graphs

In the following theorem we shall describe and enumerate all 132-representants for
Kn.

Theorem 4.5. For n ≥ 1, a complete graph Kn is 132-representable. Moreover, for
n ≥ 3, there are

2 + cn−2 +
n∑

i=0

ci

different 132-representants for Kn, where cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.

Finally, K1 can be represented by a word of the form 11 · · ·1 and K2 by a word of
the form 1212 · · · (of even or odd length) or 2121 · · · (of even or odd length).

Proof. Clearly, K1 can only be represented by a word of the form 11 · · ·1, and K2

can only be represented by a word of the form 1212 · · · (of even or odd length) or
2121 · · · (of even or odd length). Each of these words is 132-avoiding.

Let n ≥ 3. Suppose that w is a 132-representant for Kn. According to the
definition of a complete graph, for any 1 ≤ i < j ≤ n, we have that i and j alternate
in w. Since d(n) ≥ 2, by Theorem 3.1, there are two cases to consider.
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Case 1. There are exactly two copies of n in w, and w = w1nw2nw3, where wk is
a word over [n − 1] for k = 1, 2, 3. Since for 1 ≤ i ≤ n − 1, i and n alternate in w,
there is exactly 1 copy of i in w2, which means that w2 is in fact a permutation of
length n− 1. Moreover, for 1 ≤ i ≤ n− 2, i must not appear in w1, or i, n, n− 1 will
form the pattern 132. Thus, w1 = n − 1 or w1 = ε, the empty word. Similarly, we
have that w3 = 1 or w3 = ε. Thus, there are four subcases to consider and in each
subcase, we just need to consider the form of w2.

Subcase 1.1. w1 = n − 1 and w3 = 1. Thus 1 is to the left of n − 1 in w2, since
1 and n − 1 alternate in w. For 2 ≤ i ≤ n − 2, i must be between 1 and n − 1
in w2 since i alternates with 1 and n − 1. Moreover, for 2 ≤ i < j ≤ n − 2, they
are in increasing order in w2, or 1, j, i will form a 132 pattern. Hence, we obtain
that w = (n− 1)nw′1 where w′ is the increasing permutation 12 · · ·n, and this case
contributes one representation.

Subcase 1.2. w1 = n − 1 and w3 = ε. For 1 ≤ i ≤ n − 2, i is to the left of
n− 1 in w2, since i and n− 1 alternate in w. Hence w = (n− 1)nw′(n− 1)n where
w′ is any 132-avoiding permutation over [n − 2]. Thus, this case contributes cn−2

representations.

Subcase 1.3. w1 = ε and w3 = 1. Similarly to the Subcases 1.1 and 1.2, we
obtain that w = nw′1 where w′ is the increasing permutation 12 · · ·n, and this case
contributes one representation.

Subcase 1.4. w1 = ε and w3 = ε. Here, w = nw2n where w2 is a 132-avoiding
permutation over [n− 1]. Thus, this case contributes cn−1 representations.

Case 2. There is only one copy of n in w. For 1 ≤ i < j ≤ n − 1, suppose that
there are exactly two copies of i and j in w (by Theorem 3.1 there can be at most
two copies of each letter). Since Kn is a complete graph, we have that n lies between
i1 and i2 in w, and n also lies between j1 and j2 in w, where recall that, e.g. i1 and
i2 denote the first and the second occurrences of i, respectively, in the word. Then
i1, n, j2 will form the pattern 132; contradiction. Using Theorem 3.1, there are two
subcases to consider.

Subcase 2.1. Every element in A(w) has only one occurrence in w. Thus, w is a
132-avoiding permutation over {1, 2, . . . , n}. Thus, this case contributes cn represen-
tations.

Subcase 2.2. There is only one letter i, 1 ≤ i ≤ n − 1, in A(w) that occurs twice
in w. Any letter in A(w) distinct from i must lie between i1 and i2 in w. Since w
is 132-avoiding, we obtain that w = i(i + 1) · · ·nw′i where w′ is any 132-avoiding
permutation over {1, 2, . . . , i− 1}. Thus, this case contributes

∑n−1
i=1 ci−1 =

∑n−2
i=0 ci

representations.

By Theorem 4.5, the initial values for the number of 132-representants for Kn,
starting from n = 3, are

12, 27, 72, 213, 670, 2190, 7349, 25146, 87364, 307310, 1092200, 3915866, . . . .
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Example 4.6. For n = 3, we can see that all 12 132-representants for K3, ordered
as in the proof of Theorem 4.5, are 231231; 23123; 31231; 3123, 3213; 123, 231, 213,
312, 321; 1231, 2312.

A direct corollary of Theorem 4.5 is the following statement.

Corollary 4.7. For n ≥ 3 and a 132-representant w for Kn, the length of w is either
n, or n + 1, or n+ 2, or n+ 3.

4.3 Non-132-representable graphs and 132-representation of small graphs

Each non-word-representable graph is clearly non-132-representable. In this sub-
section we will show that the minimum (with respect to the number of vertices)
non-word-representable graph, the wheel graph W5 given in Figure 2.2, is actually a
minimum non-132-representable graph. We do not know whether there exist other
non-132-representable graphs on six vertices (no other non-word-representable graphs
on six vertices exist). As for non-132-representable but word-representable graphs, an
example of those is prisms Prn, where n ≥ 3. The latter follows from Theorems 2.2
and 3.4.

We note that the complement of a 132-representable graph is not necessarily a
132-representable graph. Indeed, for example, the 132-avoiding word 6645342312
defines a 132-representable graph, which is disjoint union of a cycle and the isolated
vertex 6. However, the complement of this graph is the wheel graph W5, which is
not word-representable.

The following lemma allows us to restrict ourselves to considering graphs without
isolated vertices when studying 132-representation.

Lemma 4.8. Let G be a graph and G′ be a graph obtained from G by adding an
isolated vertex. Then G is 132-representable if and only if G′ is 132-representable.

Proof. If G′ is 132-represented by w then removing from w the letter corresponding
to the isolated vertex we obtain a word 132-representing G.

Conversely, suppose that G is 132-represented by w and n is larger than any
letter in w. Then we label the isolated vertex by n and note that the word nnw
132-represents G′.

Lemma 4.8 cannot be generalized to adding to a graph a new connected 132-
representable component instead of an isolated vertex. This follows from the fact
established in [8] that disjoint union of two complete graphs K4 is non-132-repres-
entable, while K4 is 132-representable. However, such a generalization can be done
in a special case as recorded in the following simple, but useful lemma.

Lemma 4.9. Let G1, G2, . . . , Gk be connected components of a graph G that can
be 132-represented by 2-uniform words w1, w2, . . . , wk, respectively. Then G is 132-
representable (by a 2-uniform word).
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Proof. For 1 ≤ i ≤ k, let ai = |A(wi)| denote the number of vertices in Gi, and
let red∗(wi) denote the word obtained from red(wi) by replacing each element j,
1 ≤ j ≤ ai, by j +

∑i−1
m=1 am. Then the 2-uniform word

w = red∗(wk)red
∗(wk−1) · · · red∗(w1)

132-represents G.
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Figure 4.9: 132-representants for graphs on four vertices

By Lemma 4.8, we exclude isolated vertices from our considerations in the rest
of this subsection. Moreover, graphs on up to three vertices are either trees or
the cycle graph C3, and thus they are 132-representable. Further, there are seven
graphs on four vertices which can be 132-represented as shown in Figure 4.9. Finally,
there are 23 graphs on five vertices that have no isolated vertices, and these graphs
can be 132-represented as in Figure 4.10. Note that Lemma 4.9 was used (in a
straightforward way) to 132-represent graphs in Figures 4.9 and 4.10 that have two
connected components.
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Figure 4.10: 132-representants for graphs on five vertices (with no isolated vertices)

5 Concluding remarks

This paper just scratches the surface of a big research direction dealing with rep-
resenting graphs by pattern-avoiding words. Our studies were extended to 123-
representation of graphs in [8], where more results on 132-representable graphs were
obtained as well. Further steps may be in considering longer patterns and/or pat-
terns of other types (e.g. those described in [2, 4]) while defining words to be used
to represent graphs, and asking the question on which classes of graphs can be rep-
resented in this way. Simultaneous avoidance of patterns, like avoiding the patterns
132 and 231 at the same time, can be considered as well.

To conclude, we state the following question, solving which by exhaustive search
would involve finding appropriate labelling of graphs and then considering all words
over six letter alphabet that have at most two occurrences of each letter.

Question: Is the wheel graph W5 the only non-132-representable graph on six ver-
tices?
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