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Abstract

In this paper, we provide necessary and sufficient conditions for the ex-
istence of a cyclic m-cycle system of Kn − I when m and n are even and
m | n.

1 Introduction

Throughout this paper, Kn will denote the complete graph on n vertices, Kn−I will
denote the complete graph on n vertices with a 1-factor I removed (a 1-factor is a
1-regular spanning subgraph), and Cm will denote the m-cycle (v1, v2, . . . , vm). An
m-cycle system of a graph G is a set C of m-cycles in G whose edges partition the
edge set of G. An m-cycle system is called hamiltonian if m = |V (G)|.

Several obvious necessary conditions for an m-cycle system C of a graph G to
exist are immediate: m ≤ |V (G)|, the degrees of the vertices of G must be even, and
m must divide the number of edges in G. A survey on cycle systems is given in [4]
and necessary and sufficient conditions for the existence of an m-cycle system of Kn

and Kn − I were given in [1, 16] where it was shown that an m-cycle system of Kn

or Kn − I exists if and only if n ≥ m, every vertex of Kn or Kn − I has even degree,
and m divides the number of edges in Kn or Kn − I, respectively.
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Throughout this paper, ρ will denote the permutation (0 1 . . . n−1), so 〈ρ〉 = Zn.
An m-cycle system C of a graph G with vertex set V (G) = Zn is cyclic if, for every
m-cycle C = (v1, v2, . . . , vm) in C, the m-cycle ρ(C) = (ρ(v1), ρ(v2), . . . , ρ(vm)) is also
in C. A cyclic n-cycle system C of a graph G with vertex set Zn is called a cyclic
hamiltonian cycle system. Finding necessary and sufficient conditions for cyclic m-
cycle systems of Kn is an interesting problem and has attracted much attention (see,
for example, [2, 3, 6, 7, 10, 11, 13, 15]). The obvious necessary conditions for a
cyclic m-cycle system of Kn are the same as for an m-cycle system of Kn; that is,
n ≥ m ≥ 3, n is odd (so that the degree of every vertex is even), and m must divide
the number of edges in Kn. However, these conditions are no longer necessarily
sufficient. For example, it is not difficult to see that there is no cyclic decomposition
of K15 into 15-cycles. Also, if p is an odd prime and α ≥ 2, then Kpα cannot be
decomposed cyclically into pα-cycles [7].

The existence question for cyclic m-cycle systems of Kn has been completely
settled in a few small cases, namely m = 3 [14], 5 and 7 [15]. For even m and n ≡ 1
(mod 2m), cyclic m-cycle systems of Kn are constructed for m ≡ 0 (mod 4) in [13]
and for m ≡ 2 (mod 4) in [15]. Both of these cases are handled simultaneously in
[10]. For odd m and n ≡ 1 (mod 2m), cyclic m-cycle systems of Kn are found using
different methods in [2, 6, 11]. In [3], as a consequence of a more general result, cyclic
m-cycle systems ofKn for all positive integersm and n ≡ 1 (mod 2m) with n ≥ m ≥
3 are given using similar methods. In [7], it is shown that a cyclic hamiltonian cycle
system ofKn exists if and only if n �= 15 and n �∈ {pα | p is an odd prime and α ≥ 2}.
Thus, as a consequence of a result in [6], cyclic m-cycle systems of K2mk+m exist
for all m �= 15 and m �∈ {pα | p is an odd prime and α ≥ 2}. In [17], the last
remaining cases for cyclic m-cycle systems of K2mk+m are settled, i.e., it is shown
that, for k ≥ 1, cyclic m-cycle systems of K2km+m exist if m = 15 or m ∈ {pα |
p is an odd prime and α ≥ 2}. In [19], necessary and sufficient conditions for the
existence of cyclic 2q-cycle and m-cycle systems of the complete graph are given
when q is an odd prime power and 3 ≤ m ≤ 32. In [5], cycle systems with a sharply
vertex-transitive automorphism group that is not necessarily cyclic are investigated.
As a result, it is shown in [5] that no cyclicm-cycle system ofKn exists ifm < n < 2m
with n odd and gcd(m,n) a prime power. In [18], it is shown that if m is even and
n > 2m, then there exists a cyclic m-cycle system of Kn if and only if the obvious
necessary conditions that n is odd and that n(n− 1) ≡ 0 (mod 2m) hold.

These questions can be extended to the case when n is even by considering the
graph Kn − I. In [3], it is shown that for all integers m ≥ 3 and k ≥ 1, there exists
a cyclic m-cycle system of K2mk+2− I if and only if mk ≡ 0, 3 (mod 4). In [12], it is
shown that for an even integer n ≥ 4, there exists a cyclic hamiltonian cycle system
of Kn − I if and only if n ≡ 2, 4 (mod 8) and n �= 2pα where p is an odd prime and
α ≥ 1. In [8], it was shown that in every cyclic cycle decomposition of K2n − I, the
number of cycle orbits of odd length must have the same parity as n(n− 1)/2. As a
consequence of this result, in [8], it is shown that a cyclic m-cycle system of K2n − I
can not exist if n ≡ 2, 3 (mod 4) and m �≡ 0 (mod 4) or n ≡ 0, 1 (mod 4) and m
does not divide n(n − 1). In this paper we are interested in cyclic m-cycle systems
of Kn − I when m and n are even and m | n. The main result of this paper is the
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following.

Theorem 1.1 For an even integer m and integer t, there exists a cyclic m-cycle
system of Kmt − I if and only if

(1) t ≡ 0, 2 (mod 4) when m ≡ 0 (mod 8),

(2) t ≡ 0, 1 (mod 4) when m ≡ 2 (mod 8) with t > 1 if m = 2pα for some prime p
and integer α ≥ 1,

(3) t ≥ 1 when m ≡ 4 (mod 8), and

(4) t ≡ 0, 3 (mod 4) when m ≡ 6 (mod 8).

Our methods involve circulant graphs and difference constructions. In Section 2,
we give some basic definitions and lemmas while the proof of Theorem 1.1 is given
in Sections 3, 4 and 5. In Section 3, we handle the case when m ≡ 0 (mod 8) and
show that there is a cyclic m-cycle system of Kmt − I if and only if t ≥ 2 is even. In
Section 4, we handle the case when m ≡ 4 (mod 8) and show that there is a cyclic
m-cycle system of Kmt − I if and only if t ≥ 1. In Section 5, we handle the case
when m ≡ 2 (mod 4). When m ≡ 2 (mod 8), we show that there is a cyclic m-cycle
system of Kmt − I if and only if t ≡ 0, 1 (mod 4). When m ≡ 6 (mod 8), we show
that there is a cyclic m-cycle system of Kmt − I if and only if t ≡ 0, 3 (mod 4). Our
main theorem then follows.

2 Preliminaries

The notation [1, n] denotes the set {1, 2, . . . , n}. The proof of Theorem 1.1 uses
circulant graphs, which we now define. For x �≡ 0 (modn), the modulo n length of
an integer x, denoted |x|n, is defined to be the smallest positive integer y such that
x ≡ y (modn) or x ≡ −y (modn). Note that for any integer x �≡ 0 (modn), it follows
that |x|n ∈ [1, 	n

2

]. If L is a set of modulo n lengths, we define the circulant graph

〈L〉n to be the graph with vertex set Zn and edge set {{i, j} | |i− j|n ∈ L}. Notice
that in order for a graph G to admit a cyclic m-cycle decomposition, G must be a
circulant graph, so circulant graphs provide a natural setting in which to construct
cyclic m-cycle decompositions.

The graph Kn is a circulant graph, since Kn = 〈{1, 2, . . . , 	n/2
}〉n. For n even,
Kn− I is also a circulant graph, since Kn− I = 〈{1, 2, . . . , (n−2)/2}〉n (so the edges
of the 1-factor I are of the form {i, i+ n/2} for i = 0, 1, . . . , (n− 2)/2).

Let H be a subgraph of a circulant graph 〈L〉n. The notation �(H) will denote
the set of modulo n edge lengths belonging to H , that is,

�(H) = {� ∈ L | {g, g + �} ∈ E(H) for some g ∈ Zn}.

Many properties of �(H) are independent of the choice of L; in particular, the next
lemma in this section does not depend on the choice of L.
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Let C be an m-cycle in circulant graph 〈L〉n and recall that the permutation
ρ = (0 1 . . . n−1), which generates Zn, has the property that ρ(C) ∈ C whenever C ∈
C. We can therefore consider the action of Zn as a permutation group acting on the
elements of C. Viewing matters this way, the length of the orbit of C (under the action
of Zn) can be defined as the least positive integer k such that ρk(C) = C. Observe
that such a k exists since ρ has finite order; furthermore, the well-known orbit-
stabilizer theorem (see, for example [9, Theorem 1.4A(iii)]) tells us that k divides n.
Thus, if G is a graph with a cyclic m-cycle system C with C ∈ C in an orbit of length
k, then it must be that k divides n = |V (G)| and that ρ(C), ρ2(C), . . . , ρk−1(C) are
distinct m-cycles in C.

The next lemma gives many useful properties of an m-cycle C in a cyclic m-cycle
system C of a graph G with V (G) = Zn where C is in an orbit of length k. Many
of these properties are also given in [7] in the case that m = n. The proofs of the
following statements follow directly from the previous definitions and are therefore
omitted.

Lemma 2.1 Let C be a cyclic m-cycle system of a graph G of order n and let C ∈ C
be in an orbit of length k. Then

(1) |�(C)| = mk/n;

(2) C has n/k edges of length � for each � ∈ �(C);

(3) (n/k) | gcd(m,n);

Let k > 1 and let P : v0 = 0, v1, . . . vmk/n be a subpath of C of length mk/n. Then

(4) if there exists � ∈ �(C) with k | �, then m = n/ gcd(�, n),

(5) vmk/n = kx for some integer x with gcd(x, n/k) = 1,

(6) v1, v2, . . . , vmk/n are distinct modulo k,

(7) �(P ) = �(C), and

(8) P, ρk(P ), ρ2k(P ), . . . , ρn−k(P ) are pairwise edge-disjoint subpaths of C.

Let X be a set of m-cycles in a graph G with vertex set Zn such that C = {ρi(C) |
C ∈ X, i = 0, 1, . . . , n− 1} is an m-cycle system of G. Then X is called a generating
set for C. Clearly, every cyclic m-cycle system C of a graph G has a generating set
X as we may always let X = C. A generating set X is called a minimum generating
set if C ∈ X implies ρi(C) �∈ X for 1 ≤ i ≤ n unless ρi(C) = C.

Let C be a cyclic m-cycle system of a graph G with V (G) = Zn. To find a
minimum generating set X for C, we start by adding C1 to X if the length of the
orbit of C1 is maximum among the cycles in C. Next, we add C2 to X if the length
of the orbit of C2 is maximum among the cycles in C \ {ρi(C1) | 0 ≤ i ≤ n − 1}.
Continuing in this manner, we add C3 toX if the length of the orbit of C3 is maximum
among the cycles in C \ {ρi(C1), ρ

i(C2) | 0 ≤ i ≤ n− 1}. We continue in this manner
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until {ρi(C) | C ∈ X, 0 ≤ i ≤ n − 1} = C. Therefore, every cyclic m-cycle system
has a minimum starter set. Observe that if X is a minimum generating set for a
cyclic m-cycle system C of the graph 〈L〉n, then it must be that the collection of sets
{�(C) | C ∈ X} forms a partition of L.

In this paper, we are interested in the cyclic m-cycle systems of Kn − I where
n = mt for some positive integer t. Suppose Kn has a cyclic m-cycle system C for
some n = mt. Let X be a minimum generating set for C and let C ∈ X be a cycle in
an orbit of length k. Then, �(C) has mk/n = k/t lengths which implies that k = �t
for some integer �. Also, since |�(C)| = �, it follows that � | m. The following lemma
will be useful in determining the congruence classes of t based on the congruence
class of m modulo 8.

Lemma 2.2 Let m be an even integer and let Kmt− I have a cyclic m-cycle system
for some positive integer t.

(1) If {1, 2, . . . , (mt− 2)/2} has an odd number of even integers, then t is even.

(2) If {1, 2, . . . , (mt− 2)/2} has an odd number of odd integers, then t is odd.

Proof: Let m be even and suppose Kmt − I has a cyclic m-cycle system C for some
positive integer t. Let V (Kmt) = Zmt, and let X be a minimum generating set for C.
Suppose first that {1, 2, . . . , (mt− 2)/2} has an odd number of even integers. Since
the set {�(C) | C ∈ X} is a partition of {1, 2, . . . , (mt− 2)/2}, there must be an odd
number of cycles C in X with �(C) containing an odd number of evens. Let C ∈ X
be a cycle in an orbit of length k with an odd number of even edge lengths. Let
|�(C)| = � and note that k = �t. From Lemma 2.1, we know that the subpath of C
starting at vertex 0 of length � ends at vertex jk with gcd(j,m/�) = 1.

Suppose first k is odd. Then � and t must both be odd. Thus m/� is even so that
jk is odd. Hence, �(C) contains an odd number of odd integers and, since |�(C)| is
odd, an even number of even integers, contradicting the choice of C. Thus, k is even.
Since k is even, jk is even. Thus, �(C) contains an even number of odd integers. If �
is even, then �(C) also contains an even number of even integers, contradicting the
choice of C. Thus, � is odd. Since k is even and k = �t, it must be that t is even.

Now suppose {1, 2, . . . , (mt− 2)/2} has an odd number of odd integers. Hence there
are an odd number of cycles C in X with �(C) containing an odd number of odd
integers. Again, let C ∈ X be such a cycle with |�(C)| = �, in an orbit of length
k = �t. Let the subpath of C starting at vertex 0 of length � end at vertex jk with
gcd(j,m/�) = 1. Now, if k is even, then jk is even so that �(C) contains an even
number of odd integers, contradicting the choice of C. Thus k is odd. Since k = �t,
we have that t is odd. �

The following corollary is an immediate consequence of Lemma 2.2 and [12].

Corollary 2.3 For an even integer m and a positive integer t, if there exists a cyclic
m-cycle system of Kmt − I, then
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(1) t ≡ 0, 2 (mod 4) when m ≡ 0 (mod 8),

(2) t ≡ 0, 1 (mod 4) when m ≡ 2 (mod 8) with t > 1 if m = 2pα for some prime p
and integer α ≥ 1,

(3) t ≡ 0, 3 (mod 4) when m ≡ 6 (mod 8), and

(4) t ≥ 1 when m ≡ 4 (mod 8).

Let n > 0 be an integer and suppose there exists an ordered m-tuple (d1, d2, . . . ,
dm) satisfying each of the following:

(i) di is an integer for i = 1, 2, . . . , m;

(ii) |di| �= |dj| for 1 ≤ i < j ≤ m;

(iii) d1 + d2 + · · ·+ dm ≡ 0(modn); and

(iv) d1 + d2 + · · ·+ dr �≡ d1 + d2 + · · ·+ ds(modn) for 1 ≤ r < s ≤ m.

Then an m-cycle C can be constructed from this m-tuple, that is, let C = (0, d1, d1+
d2, . . . , d1+d2+· · ·+dm−1), and {C} is a minimum generating set for a cyclic m-cycle
system of 〈{d1, d2, . . . , dm}〉n. Thus, in what follows, to find cyclic m-cycle systems of
〈L〉n, it suffices to partition L into m-tuples satisfying the above conditions. Hence,
an m-tuple satisfying (i)-(iv) above is called a difference m-tuple and it corresponds
to the m-cycle C = (0, d1, d1 + d2, . . . , d1 + d2 + · · ·dm−1) in 〈L〉n.

3 The Case when m ≡ 0 (mod 8)

In this section, we consider the case when m ≡ 0 (mod 8) and show that there exists
a cyclic m-cycle system of Kmt − I for each even positive integer t. We begin with
the case t = 2.

Lemma 3.1 For each positive integer m ≡ 0 (mod 8), there exists a cyclic m-cycle
system of K2m − I.

Proof: Let m be a positive integer such that m ≡ 0 (mod 8), say m = 8r for
some positive integer r. Then K2m − I = 〈S ′〉2m where S ′ = {1, 2, . . . , m − 1} =
{1, 2, . . . , 8r − 1}. The proof proceeds as follows. We begin by finding a path P of
length m/2 = 4r, ending at vertex m, so that C = P ∪ ρm(P ) is an m-cycle. Note
that 〈{2}〉2m consists of two vertex disjoint m-cycles. For the remaining 4r− 2 edge
lengths in S ′ \ (�(P ) ∪ {2}), we find 2r − 1 paths Pi of length 2, ending at vertex
4 or −4, so that Ci = Pi ∪ ρ4(Pi) ∪ ρ8(Pi) ∪ · · · ρ2m−4(Pi) is an m-cycle. Then this
collection of cycles will give a minimum generating set for a cyclic m-cycle system of
K2m − I.

Suppose first that r is odd. For r = 1, let P : 0,−3, 3, 7, 8 and note that the edge
lengths of P in the order encountered are 3, 6, 4, 1. For r = 3, let

P : 0,−3, 3,−7, 7,−11, 11, 23, 19, 20,−20,−4, 24
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and note that edge lengths of P in the order encountered are 3, 6, 10, 14, 18, 22, 12, 4,
1, 8, 16, 20. For r ≥ 5, let

P : 0,−3, 3,−7, 7, . . . ,−(4r − 1), 4r − 1, 8r − 1, 8r − 5, 8r − 4, 8r + 4, 8r − 8,

8r + 8, . . . , 6r + 2, 10r − 2, 6r − 10, 10r + 2, 6r − 14, . . . , 12r − 8, 4r − 4, 8r

be a path of length m/2 whose edge lengths in the order encountered are 3, 6, 10,
14, . . . , 8r−6, 8r−2, 4r, 4, 1, 8, 12, 16, . . . , 4r−4, 4r+8, 4r+12, . . . , 8r−8, 8r−4, 4r+4.

Now suppose that r is even. For r = 2, let P : 0,−3, 3,−7, 7,−1,−5,−4, 16 and
note that the edge lengths of P in the order encountered are 3, 6, 10, 14, 8, 4, 1, 12.
For r ≥ 4, let

P : 0,−3, 3,−7, 7, . . . ,−(4r − 1), 4r − 1,−1,−5,−4, 4,−8, 8, . . . ,−(2r − 4),

2r − 4,−2r, 2r + 8,−(2r + 4), 2r + 12, . . . ,−(4r − 8), 4r,−(4r − 4), 8r

be a path of length m/2 whose edge lengths in the order encountered are 3, 6, 10,
14, . . . , 8r−6, 8r−2, 4r, 4, 1, 8, 12, 16, . . . , 4r−8, 4r−4, 4r+8, 4r+12, . . . , 8r−8, 8r−
4, 4r + 4.

In each case, let C = P ∪ ρm(P ) and observe that C is an m-cycle C with �(C) =
{1, 3, 4, 6, 8, . . . , 8r − 2}. Let C ′ = (0, 2, 4, 6, . . . , 2m − 2) and note that C ′ is an
m-cycle with �(C ′) = {2}.
For 0 ≤ i ≤ r − 2, let Pi : 0, 9 + 8i, 4 be the path of length 2 with edge lengths
9 + 8i, 5 + 8i and let P ′

i : 0, 11 + 8i, 4 be the path of length 2 with edge lengths
11+8i, 7+8i. Let Ci = Pi ∪ ρ4(Pi)∪ ρ8(Pi)∪ · · · ∪ ρ2m−4(Pi) and C ′

i = P ′
i ∪ ρ4(P ′

i )∪
ρ8(P ′

i )∪· · ·∪ρ2m−4(P ′
i ) and note that each is an m-cycle with �(Ci) = {5+8i, 9+8i}

and �(C ′
i) = {7 + 8i, 11 + 8i}.

Finally, let P ′′ : 0, 8r − 3,−4 be the path of length 2 with edge lengths 8r − 3 and
8r − 1. Let C ′′ = P ′′ ∪ ρ4(P ′′) ∪ ρ8(P ′′) ∪ · · · ∪ ρ2m−4(P ′′) and note that C ′′ is an
m-cycle with �(C ′′) = {8r − 3, 8r − 1}.
Then {C,C ′, C0, . . . , Cr−2, C

′
0, . . . , C

′
r−2, C

′′} is a minimum generating set for a cyclic
m-cycle system of K2m − I. �

We now consider the case when t is even and t > 2.

Lemma 3.2 For each positive integer k and each positive integer m ≡ 0 (mod 8),
there exists a cyclic m-cycle system of K2mk − I.

Proof: Letm and k be positive integers such thatm ≡ 0 (mod 8). Lemma 3.1 handles
the case when k = 1 and thus we may assume that k ≥ 2. Then K2km − I = 〈S ′〉2km
where S ′ = {1, 2, . . . , km−1}. Since K2m− I has a cyclic m-cycle system by Lemma
3.1 and 〈{k, 2k, . . . , mk}〉2km consists of k vertex-disjoint copies of K2m − I, we
need only show that 〈S〉2km has a cyclic m-cycle system where S = {1, 2, . . . , mk} \
{k, 2k, . . . , mk}.
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Let A = [ai,j] be the (k − 1)×m array

⎡
⎢⎣

k − 1 2k − 1 3k − 1 4k − 1 (m− 1)k − 1 mk − 1
...

...
...

... · · · ...
...

2 k + 2 2k + 2 3k + 2 (m− 2)k + 2 (m− 1)k + 2
1 k + 1 2k + 1 3k + 1 (m− 2)k + 1 (m− 1)k + 1

⎤
⎥⎦ .

It is straightforward to verify that A satisfies∑
j≡0,1 (mod 4)

ai,j =
∑

j≡2,3 (mod 4)

ai,j ,

and
ai,1 < ai,2 < . . . < ai,m

for each i with 1 ≤ i ≤ k − 1.

For each i = 1, 2, . . . , k − 1, the m-tuple

(ai,1,−ai,3, ai,5,−ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,

−ai,6, ai,4,−ai,2, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with �(Ci) = {ai,1, ai,2, . . . ,
ai,m}. Hence, X = {C1, C2, . . . , Ck−1} is a minimum generating set for a cyclic
m-cycle system of 〈S〉2km. �

4 The Case when m ≡ 4 (mod 8)

In this section, we consider the case when m ≡ 4 (mod 8) and show that there exists
a cyclic m-cycle system of Kmt − I for each t ≥ 1. We begin with the case when t is
odd, say t = 2k + 1 for some nonnegative integer k.

Lemma 4.1 For each nonnegative integer k and each m ≡ 4 (mod 8), there exists a
cyclic m-cycle system of Km(2k+1) − I.

Proof: Let m and k be nonnegative integers such that m ≡ 4 (mod 8). Since Km −
I has a cyclic hamiltonian cycle system [12], we may assume that k ≥ 1. Let
m = 4r for some positive integer r. Then Km(2k+1) − I = 〈S ′〉(2k+1)m where S ′ =
{1, 2, . . . , 4rk + 2r − 1}. Again, since Km − I has a cyclic hamiltonian cycle system
[12] and 〈{2k+1, 4k+2, . . . , (2r−1)(2k+1)}〉(2k+1)m consists of 2k+1 vertex-disjoint
copies of Km − I, we need only show that 〈S〉(2k+1)m has a cyclic m-cycle system
where

S = {1, 2, . . . , 4rk + 2r − 1} \ {2k + 1, 4k + 2, . . . , (2r − 1)(2k + 1)}.
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Let r and k be positive integers. Let A = [ai,j ] be the k ×m array[
k 2k 3k + 1 4k + 1 5k + 2 (4r − 2)k + 2r − 2 (4r − 1)k + 2r − 1 4rk + 2r − 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.
2 k + 2 2k + 3 3k + 3 4k + 4 (4r − 3)k + 2r (4r − 2)k + 2r + 1 (4r − 1)k + 2r + 1
1 k + 1 2k + 2 3k + 2 4k + 3 (4r − 3)k + 2r − 1 (4r − 2)k + 2r (4r − 1)k + 2r

]
.

It is straightforward to verify that A satisfies∑
j≡0,1 (mod 4)

ai,j =
∑

j≡2,3 (mod 4)

ai,j ,

and
ai,1 < ai,2 < . . . < ai,m

for each i with 1 ≤ i ≤ k.

For each i = 1, 2, . . . , k, the m-tuple

(ai,1,−ai,3, ai,5,−ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,

−ai,6, ai,4,−ai,2, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with �(Ci) = {ai,1, ai,2, . . . ,
ai,m}. Hence, X = {C1, C2, . . . , Ck} is a minimum generating set for a cyclic m-cycle
system of Km(2k+1) − I. �

We now handle the case when t is even, say t = 2k for some positive integer k.

Lemma 4.2 For each positive integer k and each m ≡ 4 (mod 8), there exists a
cyclic m-cycle system of K2mk − I.

Proof: As before, let m and k be positive integers such that m ≡ 4 (mod 8).
Thus m = 4r for some positive integer r. Then K2mk − I = 〈S ′〉2km where S ′ =
{1, 2, . . . , 4rk − 1}. Since Km − I has a cyclic hamiltonian cycle system [12] and
〈{2k, 4k, . . . , (2r − 1)(2k)}〉2km consists of 2k vertex-disjoint copies of Km − I, we
need only show that 〈S〉2km has a cyclic m-cycle system where

S = {1, 2, . . . , 4rk − 1} \ {2k, 4k, . . . , (2r − 1)(2k)}.

Since |S| = m(k − 1) + m/2, we will start by partitioning a subset T ⊆ S with
|T | = m(k − 1) into k − 1 difference m-tuples.

Let T = {1, 2, . . . , 4rk− 1} \ {1, 2k, 4k− 1, 4k, 4k+1, 6k, 8k− 1, 8k, 8k+1, . . . , (4r−
4)k−1, (4r−4)k, (4r−4)k+1, (4r−2)k, 4rk−1}, and observe that |T | = (k−1)m.
Let A = [ai,j], with entries from the set T , be the (k − 1)×m array

⎡
⎢⎣

k 2k − 1 3k − 1 4k − 2 5k 6k − 1 7k − 1 8k − 2 9k
...

...
...

...
...

...
...

...
... · · ·

3 k + 2 2k + 2 3k + 1 4k + 3 5k + 2 6k + 2 7k + 1 8k + 3
2 k + 1 2k + 1 3k 4k + 2 5k + 1 6k + 1 7k 8k + 2
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(4r − 3)k (4r − 2)k − 1 (4r − 1)k − 1 4rk − 2

· · · ...
...

...
...

(4r − 4)k + 3 (4r − 3)k + 2 (4r − 2)k + 2 (4r − 1)k + 1
(4r − 4)k + 2 (4r − 3)k + 1 (4r − 2)k + 1 (4r − 1)k

⎤
⎥⎦ .

It is straightforward to verify that the array A satisfies∑
j≡0,1 (mod 4)

ai,j =
∑

j≡2,3 (mod 4)

ai,j ,

and
ai,1 < ai,2 < . . . < ai,m

for each i with 1 ≤ i ≤ k − 1.

For each i = 1, 2, . . . , k − 1, the m-tuple

(ai,1,−ai,3, ai,5,−ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,

−ai,6, ai,4,−ai,2, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with �(Ci) = {ai,1, ai,2, . . . ,
ai,m}. Hence, X = {C1, C2, . . . , Ck−1} is a minimum generating set for a cyclic
m-cycle system of 〈T 〉2km.
It now remains to find a minimum generating set for a cyclicm-cycle system of 〈B〉2km
where B = {1, 4k− 1, 4k+1, 8k− 1, 8k+1, . . . , (4r− 4)k− 1, (4r− 4)k+1, 4rk− 1}.
For i = 1, 2, . . . , r, define d2i−1 = 4(i − 1)k + 1 and d2i = 4ik − 1. Observe that
B = {d1, d2, . . . , d2r} and dj+2−dj = 4k for j = 1, 2, . . . , 2r−2. Sincem ≡ 4 (mod 8),
it follows that r is odd. Let P1 : 0, 1, 4k, and let Pi : 0, d2i+1, 4k if i is even and let
Pi : 0, d2i, 4k if i is odd. Let C ′

i = Pi ∪ ρ4k(Pi)∪ ρ8k(Pi)∪ · · · ∪ ρ(2m−4)k(Pi), and note
that C ′

i is an m-cycle with �(C ′
1) = {1, 4k − 1}, �(C ′

i) = {d2i−1, d2i+1} if i is even,
and �(C ′

i) = {d2i−2, d2i} if i is odd. Then �(C ′
1) ∪ �(C ′

2) ∪ · · · ∪ �(C ′
r) = B so that

{C ′
1, C

′
2, . . . , C

′
r} is a minimum generating set for 〈B〉2km. �

5 The Case when m ≡ 2 (mod 4)

In this section, we consider the case when m ≡ 2 (mod 4) and prove parts (2) and
(4) of Theorem 1.1. We divide this proof into three parts, each dealt with in its own
subsection. First we consider the case t ≡ 0 (mod 4). Then we consider the case
m ≡ 2 (mod 8) and t ≡ 1 (mod 4). Finally we consider the case m ≡ 6 (mod 8) and
t ≡ 3 (mod 4).

5.1 The case when t ≡ 0 (mod 4).

We consider the case t ≡ 0 (mod 4), starting with the special case t = 4.

Lemma 5.1 For each positive integer m ≥ 6 with m ≡ 2 (mod 4), there exists a
cyclic m-cycle system of K4m − I.
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Proof: Let m ≥ 6 be a positive integer with m ≡ 2 (mod 4). Then K4m − I = 〈S ′〉4m
where S ′ = {1, 2, . . . , 2m − 1}. The proof proceeds as follows. We begin by finding
one difference m-tuple which corresponds to an m-cycle C with |�(C)| = m. Note
that 〈{4}〉4m consists of four vertex disjoint m-cycles. For the remaining m− 2 edge
lengths in S ′ \ (�(C)∪ {4}), we find (m− 2)/2 paths Pi of length 2, ending at vertex
8 or −8, so that Ci = Pi ∪ ρ8(Pi)∪ ρ16(Pi)∪ · · · ∪ ρ4m−8(Pi) is an m-cycle. Then this
collection of cycles will give a minimum generating set for a cyclic m-cycle system of
K4m − I.

Consider the difference m-tuple

(1,−2, 6,−10, . . . , 2m− 6,−(2m− 2),−3, 8,−12, . . . , 2m− 12,−(2m− 8), 2m− 4)

and the corresponding m-cycle C with �(C) = {1, 2, 3, 6, 8, . . . , 2m−2}. It is straight-
forward to verify that the odd vertices visited all lie between −m+1 and m−1 with
no duplication. Similarly, the even vertices visited all lie between −2m+ 4 and −4,
and have no duplication.

Let C ′ = (0, 4, 8, . . . , 4m− 4) and note that C ′ is an m-cycle with �(C ′) = {4}.
Letm = 8k+m′, som′ is either 2 or 6. If k = 0, thenm′ = 6 and let P : 0, 13, 8 be the
path of length 2 with edge lengths 11, 5. Then, C ′′ = P ∪ ρ8(P )∪ ρ16(P ) is a 6-cycle
with �(C ′′) = {11, 5}. Then {C,C ′, C ′′} is a minimum generating set for cyclic 6-cycle
system of K24 − I. Now suppose that k ≥ 1. For 0 ≤ i ≤ k − 1, let Pi : 0, 13 + 16i, 8
be the path of length 2 with edge lengths 13 + 16i, 5 + 16i; let P ′

i : 0, 15 + 16i, 8 be
the path of length 2 with edge lengths 15 + 16i, 7 + 16i; let P ′′

i : 0, 17 + 16i, 8 be
the path of length 2 with edge lengths 17 + 16i, 9 + 16i; and let P ′′′

i : 0, 19 + 16i, 8
with edge lengths 19+ 16i, 11+ 16i. Let Ci = Pi ∪ ρ8(Pi)∪ ρ16(Pi)∪ · · · ∪ ρ4m−8(Pi),
C ′

i = P ′
i∪ρ8(P ′

i )∪ρ16(P ′
i )∪· · ·∪ρ4m−8(P ′

i ), C
′′
i = P ′′

i ∪ρ8(P ′′
i )∪ρ16(P ′′

i )∪· · ·∪ρ4m−8(P ′′
i ),

and C ′′′
i = P ′′′

i ∪ρ8(P ′′′
i )∪ρ16(P ′′′

i )∪· · ·∪ρ4m−8(P ′′′
i ) and note that each is an m-cycle

with �(Ci) = {5+16i, 13+16i}, �(C ′
i) = {7+16i, 15+16i}, �(C ′′

i ) = {9+16i, 17+16i},
and �(C ′′′

i ) = {11 + 16i, 19 + 16i}.
If m′ = 2, then {C,C ′, C0, C

′
0, C

′′
0 , C

′′′
0 , . . . , Ck−1, C

′
k−1, C

′′
k−1, C

′′′
k−1} is a minimum gen-

erating set for a cyclicm-cycle system ofK4m−I . Ifm′ = 6, then let Pk : 0, 2m−1,−8
and P ′

k : 0, 2m − 3,−8 be paths of length 2 with �(Pk) = {2m − 1, 2m − 7} and
�(P ′

k) = {2m − 3, 2m − 5}. Let Ck = Pk ∪ ρ8(Pk) ∪ ρ16(Pk) ∪ · · · ∪ ρ4m−8(Pk)
and C ′

k = P ′
k ∪ ρ8(P ′

k) ∪ ρ16(P ′
k) ∪ · · · ∪ ρ4m−8(P ′

k) and observe that each is an
m-cycle with �(Ck) = {2m − 1, 2m − 7} and �(C ′

k) = {2m − 3, 2m − 5}. Thus,
{C,C ′, C0, C

′
0, C

′′
0 , C

′′′
0 , . . . , Ck−1, C

′
k−1, C

′′
k−1, C

′′′
k−1, Ck, C

′
k} is a minimum generating

set for a cyclic m-cycle system of K4m − I. �

We now consider the case when t ≡ 0 (mod 4) with t > 4.

Lemma 5.2 For each positive integer k and each positive integer m ≡ 2 (mod 4)
with m ≥ 6, there exists a cyclic m-cycle system of K4mk − I.

Proof: Let m ≥ 6 and k be positive integers such that m ≡ 2 (mod 4). Lemma
5.1 handles the case when k = 1 and thus we may assume that k ≥ 2. Then
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K4km − I = 〈S ′〉4km where S ′ = {1, 2, . . . , 2km− 1}. Since K4m − I has a cyclic m-
cycle system by Lemma 5.1 and 〈{k, 2k, . . . , 2km}〉4km consists of k vertex-disjoint
copies of K4m− I, we need only show that 〈S〉2km has a cyclic m-cycle system where
S = {1, 2, . . . , 2km} \ {k, 2k, . . . , 2km}.
Let A = [ai,j] be the 2k ×m array⎡

⎢⎢⎢⎣
2k 4k 6k 8k (m− 1)2k 2km
2k − 1 2k + 1 6k − 1 8k − 1 (m− 1)2k − 1 2km− 1
...

...
...

... · · · ...
...

2 4k − 2 4k + 2 6k + 2 (m− 2)2k + 2 (m− 1)2k + 2
1 4k − 1 4k + 1 6k + 1 (m− 2)2k + 1 (m− 1)2k + 1

⎤
⎥⎥⎥⎦ .

(Observe that the second column does not follow the same pattern as the others.)

Let A′ be the (2k−2)×m array obtained from A by deleting rows 1 and k+1. Then
the entries in A′ are precisely the elements of S. Also, it is straightforward to verify
that A′ satisfies

ai,j + ai,j+3 = ai,j+1 + ai,j+2

for each positive integer j ≡ 3 (mod 4) with j ≤ m− 3,

ai,1 + ai,2 + ai,m−3 + ai,m−1 = ai,m−2 + ai,m,

and
ai,1 < ai,2 < . . . < ai,m

for each i with 1 ≤ i ≤ 2k − 2.

For each i = 1, 2, . . . , 2k − 2, the m-tuple

(ai,1, ai,2,−ai,4, ai,6,−ai,8, ai,10, . . . ,−ai,m−2,−ai,m, ai,m−3,−ai,m−5, ai,m−7, . . . ,

ai,3, ai,m−1)

is a difference m-tuple and corresponds to an m-cycle Ci with �(Ci) = {ai,1, ai,2, . . . ,
ai,m}. Hence, X = {C1, C2, . . . , C2k−2} is a minimum generating set for a cyclic
m-cycle system of 〈S〉4km. �

What remains is to find cyclic m-cycle systems of Kmt − I for the appropriate
odd values of t, which we do in the following subsections.

5.2 The case when m ≡ 2 (mod 8) and t ≡ 1 (mod 4).

In this subsection, we find a cyclic m-cycle system of Kmt−I when m ≡ 2 (mod 8)
and t ≡ 1 (mod 4). We begin with two special cases, namely when m = 10 or t = 5.

Lemma 5.3 For each positive integer t ≡ 1 (mod 4) with t > 1, there exists a cyclic
10-cycle system of K10t − I.



H. JORDAN AND J. MORRIS /AUSTRALAS. J. COMBIN. 67 (2) (2017), 304–326 316

Proof: Let t ≡ 1 (mod 4) with t > 1, say t = 4s + 1 where s ≥ 1. Then K10t − I =
〈S ′〉10t where S ′ = {1, 2, . . . , 20s+ 4}. Consider the paths P1 : 0, 5t− 1, 2t and P2 :
0, 5t−2, 2t. Then, �(P1) = {3t−1, 5t−1} and �(P2) = {3t−2, 5t−2}. For i ∈ {1, 2},
let Ci = Pi ∪ ρ2t(Pi)∪ ρ4t(Pi)∪ · · · ∪ ρ8t(Pi). Then clearly each Ci is an 10-cycle and
X = {C1, C2} is a minimum generating set for 〈{3t − 2, 3t − 1, 5t − 2, 5t − 1}〉10t.
Since 3t− 3 = 12s and 5t− 2 = 20s+ 3, it remains to find a cyclic 10-cycle system
of 〈S〉10t where S = {1, 2, . . . , 12s, 12s + 3, 12s + 4, . . . , 20s + 2}. Let A = [ai,j ] be
the 2s× 10 array⎡
⎢⎣

1 2 3 4 8s+ 1 8s+ 3 12s+ 3 12s+ 4 12s+ 5 12s+ 6
5 6 7 8 8s+ 2 8s+ 4 12s+ 7 12s+ 8 12s+ 9 12s+ 10
...

...
...

...
...

...
...

...
8s− 3 8s− 2 8s− 1 8s 12s− 2 12s 20s− 1 20s 20s+ 1 20s+ 2

⎤
⎥⎦ .

Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ 10)

and
ai,1 < ai,2 < . . . < ai,10.

Thus the 10-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7,−ai,9,−ai,8, ai,6,−ai,4, ai,10)

is a difference 10-tuple and corresponds to a 10-cycle C ′
i with �(C ′

i) = {ai,1, ai,2, . . . ,
ai,10}. Hence, X ′ = {C ′

1, C
′
2, . . . , C

′
2s} is a minimum generating set for a cyclic 10-

cycle system of 〈S〉10t. �

We now consider the case when t = 5.

Lemma 5.4 For each positive integer m ≡ 2 (mod 8), there exists a cyclic m-cycle
system of K5m − I.

Proof: Let m be a positive integer such that m ≡ 2 (mod 8), say m = 8r+2 for some
positive integer r. By Lemma 5.3, we may assume r ≥ 2. Then K5m − I = 〈S ′〉5m
where S ′ = {1, 2, . . . , 20r + 4}.
Let 2r = 6q + 4 + b for integers q ≥ 0 and b ∈ {0, 2, 4}. Let a be a positive integer
such that 1+ log2(q+2) ≤ a ≤ 1+ log2(5q+2), and note that a exists since if q = 0
then log2(q+2) is an integer, while if q ≥ 1 then 2(q+2) = 2q+4 ≤ 4q+2 < 5q+2.
For nonnegative integers i and j, define di,j = 10(2r − i) + j. Consider the path
Pi,j : 0, di,j, 5 · 2a and observe that �(Pi,j) = {10(2r − i) + j, 10(2r − i) + j − 5 · 2a}.
If 0 < j < 10, then Ci,j = Pi,j ∪ ρ10(Pi,j) ∪ ρ20(Pi,j) ∪ · · · ∪ ρ5m−10(Pi,j) is an
m-cycle since m ≡ 2 (mod 8) gives gcd(5 · 2a, 5m) = 10. Thus, if 0 < j < 10,
�(Ci,j) = {10(2r − i) + j, 10(2r − i) + j − 5 · 2a}. Let
X = {C0,j | 1 ≤ j ≤ 4}∪{Ci,j | 1 ≤ i ≤ q and 1 ≤ j ≤ 6}∪{Cq+1,j | 6−b+1 ≤ j ≤ 6}
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and let

B = {20r + j, 20r + j − 5 · 2a | 1 ≤ j ≤ 4}
∪ {10(2r − i) + j, 10(2r − i) + j − 5 · 2a | 1 ≤ i ≤ q and 1 ≤ j ≤ 6}
∪ {10(2r − q − 1) + j, 10(2r − q − 1) + j − 5 · 2a | 6− b+ 1 ≤ j ≤ 6},

where if q = 0 or b = 0, we take the corresponding sets to be empty as necessary. Now
B will consist of 4r distinct lengths andX will be a minimum generating set for 〈B〉5m
if 20r+4−5·2a ≤ 10(2r−q−1)+6−b. Note that 1+log2(q+2) ≤ a ≤ 1+log2(5q+2)
gives q + 2 ≤ 2a−1 ≤ 5q + 2. So,

20r + 4− [10(2r − q − 1) + 6− b] = 10q + 8 + b ≤ 10q + 12

and
(10q + 12)/10 < q + 2 ≤ 2a−1.

Thus 20r+4−5 ·2a ≤ 10(2r− q−1)+6− b so that B consists of 4r distinct lengths,
and X is a minimum generating set for 〈B〉5m.
It remains to find a cyclic m-cycle system of 〈S ′ \B〉5m. The smallest length in B is
10(2r−q−1)+6−b+1−5 ·2a, and we wish to show 10(2r−q−1)+6−b−5 ·2a ≥ 12.
So,

10(2r − q − 1) + 6− b− 12 = 20r − 10q − 16− b ≥ 20r − 10q − 20

and (20r − 10q − 20)/10 ≥ 2r − q − 2. Now

2r − q − 2 = 5q + 2 + b ≥ 5q + 2 ≥ 2a−1.

Hence, 10(2r − q − 1) + 6 − b − 5 · 2a ≥ 12. Since |B| = 4r, we have |S ′ \ B| =
20r + 4− 4r = 2(8r + 2). Now

S ′ \B = {1, 2, . . . , 10(2r − q − 1) + 6− b− 5 · 2a}
∪ {10(2r− i)− 5 · 2a − 3, 10(2r− i)− 5 · 2a − 2, 10(2r − i)− 5 · 2a − 1,

10(2r − i)− 5 · 2a | 0 ≤ i ≤ q}
∪ {10(2r) + 5− 5 · 2a, . . . , 10(2r − q − 1) + 6− b}
∪ {10(2r− i)− 3, 10(2r − i)− 2, 10(2r − i)− 1, 10(2r − i) | 0 ≤ i ≤ q}.

Note that each the sets {1, 2, . . . , 10(2r − q − 1) + 6 − b − 5 · 2a}, {10(2r − i) − 5 ·
2a − 3, 10(2r − i) − 5 · 2a − 2, 10(2r − i) − 5 · 2a − 1, 10(2r − i) − 5 · 2a | 0 ≤ i ≤
q}, {10(2r) + 5 − 5 · 2a, . . . , 10(2r − q − 1) + 6 − b}, and {10(2r − i) − 3, 10(2r −
i) − 2, 10(2r − i) − 1, 10(2r − i) | 0 ≤ i ≤ q} has even cardinality and consists of
consecutive integers. Therefore, we may partition S ′ \B into sets T, S1, S2, . . . , S8r−4

where T = {1, 2, . . . , 12} and for i = 1, 2, . . . , 8r − 4, let Si = {bi, bi + 1} with
b1 < b2 < · · · < b8r−4.

Let A = [ai,j] be the 2×m array[
1 2 3 4 9 11 b1 b1 + 1 b2 b2 + 1 · · · b4r−2 b4r−2 + 1
5 6 7 8 10 12 b4r−1 b4r−1 + 1 b4r b4r + 1 · · · b8r−4 b8r−4 + 1

]
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It is straightforward to verify that, for 1 ≤ i ≤ 2,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ m)

and
ai,1 < ai,2 < . . . < ai,m.

Hence, for 1 ≤ i ≤ 2, the m-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,

ai,6,−ai,4, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with �(Ci) = {ai,1, ai,2, . . . ,
ai,m}. Hence, X ′ = {C1, C2} is a minimum generating set for a cyclic m-cycle system
of 〈S ′ \B〉5m. �

We are now ready to prove the main result of this subsection, namely, thatKmt−I
has a cyclic m-cycle system for every t ≡ 1 (mod 4) and m ≡ 2 (mod 8) with t > 1
if m = 2pα for some prime p and integer α ≥ 1.

Lemma 5.5 For each positive integer t ≡ 1 (mod 4) and each m ≡ 2 (mod 8) with
t > 1 if m = 2pα for some prime p and integer α ≥ 1, there exists a cyclic m-cycle
system of Kmt − I.

Proof: Let m and t be positive integers such that m ≡ 2 (mod 8) and t ≡ 1 (mod 4).
Thus m = 8r + 2 for some positive integer r. Then Kmt − I = 〈S ′〉mt where S ′ =
{1, 2, . . . , (mt − 2)/2}. Since Km − I has a cyclic hamiltonian cycle system [12] if
and only if m �= 2pα for some prime p and integer α ≥ 1, we may assume that t > 1.
Thus, let t = 4s + 1 for some positive integer s. By Lemmas 5.3 and 5.4, we may
assume that s ≥ 2 and r ≥ 2.

The proof proceeds as follows. We begin by finding a set B ⊆ S ′ such that |B| = 4r
and 〈B〉mt has a cyclic m-cycle system with a minimum generating set X consisting
of cycles each with two distinct lengths and orbit 2t. We then construct an (|S ′ \
B|/m)×m array A = [ai,j ] with the property that for each i with 1 ≤ i ≤ |S ′\B|/m,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ m)

and
ai,1 < ai,2 < . . . < ai,m.

Thus for each i = 1, 2, . . . , |S ′ \B|/m, the m-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,

ai,6,−ai,4, ai,m)
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is a difference m-tuple and corresponds to an m-cycle Ci with �(Ci) = {ai,1, ai,2, . . . ,
ai,m}. Hence, X ′ = {C1, C2, . . . , C|S′\B|/m} will be a minimum generating set for a
cyclic m-cycle system of 〈S ′ \B〉mt.

Let w = 	r/2
, and let δr = 2(r/2−w), so that δr = 1 if r is odd and δr = 0 if r is even.
Write w = qs+b where q and b are non-negative integers with 0 ≤ b < s (note that it
may be the case that q = 0). For integers i and j, define di,j = 4(r−2i)t+j. Consider
the path Pi,j : 0, di,j, 4t and observe that �(Pi,j) = {4(r− 2i)t+ j, 4(r− 2i− 1)t+ j}.
If 0 < j < t, then Ci,j = Pi,j ∪ ρ2t(Pi,j) ∪ ρ4t(Pi,j) ∪ · · · ∪ ρ(m−2)t(Pi,j) is an m-
cycle since m ≡ 2 (mod 8) gives gcd(4t,mt) = 2t. Thus, if 0 < j < t, �(Ci,j) =
{4(r − 2i)t + j, 4(r − 2i− 1)t+ j}. Let
X = {Ci,j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ t− 1} ∪ {Cq,j | t− 4b− 2δr ≤ j ≤ t− 1}

and let

B = {4(r − 2i)t+ j, 4(r − 2i− 1)t+ j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ t− 1}
∪{4(r − 2q)t+ j, 4(r − 2q − 1)t+ j | t− 4b− 2δr ≤ j ≤ t− 1},

where we take the appropriate sets to be empty if q = 0 or b = 0. Observe that X is
a minimum generating set for 〈B〉mt, and consider the set S ′\B. Now |X| = 4qs+4b
so that |B| = 2(4qs+4b) = 4r. Hence |S ′ \B| = (4r+1)t− 1− 4r = 2s(8r+2) and

S ′ \B = {1, 2, . . . , 4(r − 2q − 1)t+ t− 1− 2δr − 4b}
∪ {4(r − 2q − 1)t+ t, 4(r − 2q − 1)t+ t+ 1, . . . ,

4(r − 2q)t+ t− 1− 2δr − 4b}
∪ {4kt+ t, 4kt+ t + 1, . . . , 4(k + 1)t | r − 2q ≤ k ≤ r − 1}.

Note that S ′ \ B has been written as the disjoint union of sets, each of which has
even cardinality and consists of consecutive integers.

The smallest length in B is 4(r − 2q − 1)t + t − 4b− 2δr, and we wish to show this
length is at least 12s + 1. Now r ≥ 2w = 2(qs + b) > 2q + 1 since s ≥ 2. Next
since 0 ≤ b < s and t = 4s + 1, we have t − 1 − 4b = 4s − 4b ≥ 4. Therefore,
4(r − 2q − 1)t ≥ 4t > 16s, and thus 4(r − 2q − 1)t + t − 3 − 4b > 16s + 2 > 12s.
Since the smallest length is S ′ \ B is at least 12s + 1 and since S ′ \ B consists of
sets of consecutive integers of even cardinality, we may partition S ′ \ B into sets
T, S1, . . . , S8rs−4s where T = {1, 2, . . . , 12s}, and for i = 1, 2, . . . , 8rs − 4s, Si =
{bi, bi + 1} with b1 < b2 < · · · < b8rs−4s. Let A = [ai,j ] be the 2s×m array⎡
⎢⎣

1 2 3 4 8s+ 1 8s+ 3 b1 b1 + 1
5 6 7 8 8s+ 2 8s+ 4 b4r−1 b4r−1 + 1
...

...
...

...
...

...
...

... · · ·
8s− 3 8s− 2 8s− 1 8s 12s− 2 12s b8rs−4s−4r+3 b8rs−4s−4r+3 + 1

b2 b2 + 1 · · · b4r−2 b4r−2 + 1
b4r b4r + 1 · · · b8r−4 b8r−4 + 1
...

... · · · ...
...

b8rs−4s−4r+4 b8rs−4s−4r+4 + 1 · · · b8rs−4s b8rs−4s + 1

⎤
⎥⎦ .
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Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ m)

and
ai,1 < ai,2 < . . . < ai,m.

Thus the m-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,

ai,6,−ai,4, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with �(Ci) = {ai,1, ai,2, . . . ,
ai,m}. Hence, X ′ = {C1, C2, . . . , C2s} is a minimum generating set for a cyclicm-cycle
system of 〈S ′ \B〉mt. �

5.3 The Case when m ≡ 6 (mod 8) and t ≡ 3 (mod 4)

In this subsection, we find a cyclic m-cycle system of Kmt−I when m ≡ 6 (mod 8)
and t ≡ 3 (mod 4). We begin with three special cases, namely when m = 6, m = 14,
or t = 3. We first consider the case m = 6.

Lemma 5.6 For all positive integers t ≡ 3 (mod 4), there exists a cyclic 6-cycle
system of K6t − I.

Proof: Let t be a positive integer such that t ≡ 3 (mod 4), say t = 4s + 3 for some
non-negative integer s. Then K6t − I = 〈S ′〉6t where S ′ = {1, 2, . . . , 12s+ 8}.
Consider the paths Pi : 0, 3t− i, 2t, for 1 ≤ i ≤ 4; then �(Pi) = {3t− i, t− i}. Next,
let Ci = Pi ∪ ρ2t(Pi) ∪ ρ4t(Pi). Then each Ci is a 6-cycle and X = {C1, C2, C3, C4}
is a minimum generating set for 〈B〉6t where B = {3t − i, t − i | 1 ≤ i ≤ 4}. Now,
t− 5 = 4s− 2 and thus S ′ \B = {1, 2, . . . , 4s− 2, 4s+3, 4s+4, . . . , 12s+4}, and so
we must find a cyclic 6-cycle system of 〈S ′ \B〉6t. Let A = [ai,j ] be the 2s× 6 array⎡

⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 8s+ 5 8s+ 7
5 6 7 8 8s+ 6 8s+ 8
...

...
...

...
...

...
4s− 3 4s− 2 4s+ 3 4s+ 4 α α+ 2
...

...
...

...
...

...
8s+ 1 8s+ 2 8s+ 3 8s+ 4 12s+ 2 12s+ 4

⎤
⎥⎥⎥⎥⎥⎥⎦

where

α =

{
10s+ 2 if s is even,

10s+ 3 if s is odd.
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Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ 6)

and
ai,1 < ai,2 < . . . < ai,6.

Thus the 6-tuple
(ai,1,−ai,2, ai,3,−ai,4,−ai,5, ai,6)

is a difference 6-tuple and corresponds to a 6-cycle C ′
i with �(C ′

i) = {ai,1, ai,2, . . . , ai,6}.
Hence, X ′ = {C ′

1, C
′
2, . . . , C

′
2s} is a minimum generating set for a cyclic 6-cycle system

of 〈S ′ \B〉6t. �

Next we consider the case when m = 14.

Lemma 5.7 For all positive integers t ≡ 3 (mod 4), there exists a cyclic 14-cycle
system of K14t − I.

Proof: Let t be a positive integer such that t ≡ 3 (mod 4), say t = 4s + 3 for some
non-negative integer s. Then K14t − I = 〈S ′〉14t where S ′ = {1, 2, . . . , 28s+ 20}.
Consider the paths Pi : 0, 7t − i, 2t, for 1 ≤ i ≤ 10; then �(Pi) = {7t − i, 5t − i}.
Next, let Ci = Pi ∪ ρ2t(Pi) ∪ ρ4t(Pi) ∪ · · · ∪ ρ12t(Pi). Then each Ci is a 14-cycle and
X = {C1, C2, . . . , C10} is a minimum generating set for 〈B〉14t where B = {7t−i, 5t−
i | 1 ≤ i ≤ 10}. Now, 5t − 10 = 20s + 5 and thus S ′ \ B = {1, 2, . . . , 20s + 4, 20s +
15, 20s+16, . . . , 28s+10}, and so we must find a cyclic 14-cycle system of 〈S ′\B〉14t.
Let A = [ai,j] be the 2s× 14 array⎡
⎢⎢⎢⎣

1 2 3 4 8s+ 1 8s+ 3 12s+ 1 12s+ 2 12s+ 3 12s+ 4
5 6 7 8 8s+ 2 8s+ 4 12s+ 5 12s+ 6 12s+ 7 12s+ 8
9 10 11 12 8s+ 5 8s+ 7 12s+ 9 12s+ 10 12s+ 11 12s+ 12
...

...
...

...
...

...
...

...
...

...
8s− 3 8s− 2 8s− 1 8s 12s− 2 12s 20s− 3 20s− 2 20s− 1 20s

20s+ 1 20s+ 2 20s+ 3 20s+ 4
20s+ 15 20s+ 16 20s+ 17 20s+ 18
20s+ 19 20s+ 20 20s+ 21 20s+ 22
...

...
...

...
28s+ 7 28s+ 8 28s+ 9 28s+ 10

⎤
⎥⎥⎥⎦ .

Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ 14)

and
ai,1 < ai,2 < . . . < ai,14.
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Thus the 14-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7,−ai,9, ai,11,−ai,13,−ai,12, ai,10,−ai,8, ai,6,−ai,4, ai,14)

is a difference 14-tuple and corresponds to a 14-cycle C ′
i with �(C ′

i) = {ai,1, ai,2, . . . ,
ai,14}. Hence, X ′ = {C ′

1, C
′
2, . . . , C

′
2s} is a minimum generating set for a cyclic 14-

cycle system of 〈S ′ \B〉14t. �

We now consider the case when t = 3.

Lemma 5.8 For all positive integers m ≡ 6 (mod 8), there exists a cyclic m-cycle
system of K3m − I.

Proof: Let m be a positive integer such that m ≡ 6 (mod 8), say m = 8r + 6 for
some non-negative integer r. By Lemmas 5.6 and 5.7, we may assume r ≥ 2. Then
K3m−I = 〈S ′〉mt where S

′ = {1, 2, . . . , 12r+8}. Write 2r = 4q+b+2 for integers q ≥
0 and b ∈ {0, 2}, and let a be a positive integer such that 1 + log2(q + 1) ≤ a ≤
1 + log2(3q + 4/3 + 5b/6). For integers i and j, define di,j = 6(2r − i) + j. Then
consider the path Pi,j : 0, di,j, 3 · 2a; so �(Pi,j) = {6(2r− i) + j, 6(2r− i) + j − 3 · 2a}.
Now, let Ci,j = Pi,j ∪ ρ6(Pi,j) ∪ · · · ∪ ρ3(m−2)(Pi,j). Then Ci,j is an m-cycle since
m ≡ 6 (mod 8) implies gcd(3 · 2a, 3m) = 6. Thus, �(Ci,j) = �(Pi,j).

Now, let

X = {C0,j | j = 7, 8}
∪ {Ci,j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ 4}
∪ {Cq,j | 5− b ≤ j ≤ 4}

and let

B = {12r + 7, 12r + 7− 3 · 2a, 12r + 8, 12r + 8− 3 · 2a}
∪ {6(2r − i) + j, 6(2r − i)− 3 · 2a + j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ 4}
∪ {6(2r − q) + j, 6(2r − q)− 3 · 2a + j | 5− b ≤ j ≤ 4}

where, if q = 0 or b = 0, we take the corresponding sets to be empty as necessary.
Now B will consists of 4r distinct lengths and X will be a minimum generating set
for 〈B〉3m if 12r+ 8− 3 · 2a ≤ 6(2r− q) + 5− b− 1. Note that 1 + log2(q+ 1) ≤ a so
that q + 1 ≤ 2a−1. Next,

12r + 8− [6(2r− q) + 5− b− 1] = 6q + 4 + b ≤ 6q + 6 = 6(q + 1) ≤ 6 · 2a−1 = 3 · 2a,
and hence 12r + 8 − 3 · 2a ≤ 6(2r − q) + 5 − b − 1. Thus, B consists of 4r distinct
lengths, and X is a minimum generating set for 〈B〉3m. Now, the smallest length in
B is 6(2r − q) + 5 − b− 3 · 2a and we want this length to be greater than 8. Recall
that a ≤ 1 + log2(3q + 3/2 + 5b/6) and thus 2a−1 ≤ 3q + 3/2 + 5b/6. Hence, 3 · 2a ≤
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18q+9+5b = 12r−6q−3−b since 2r = 4q+b+2. Therefore, 6(2r−q)+5−b−3·2a ≥ 8.
Since |B| = 4r, we have |S ′ \B| = 8r + 8. Note that

S ′ \B = {1, 2, . . . , 6(2r − q) + 5− b− 3 · 2a − 1}
∪ {6(2r − i)− 3 · 2a + 5, 6(2r− i)− 3 · 2a + 6 | 0 ≤ i ≤ q}
∪ {12r − 3 · 2a + 9, . . . , 6(2r − q) + 5− b− 1}
∪ {6(2r − i) + 5, 6(2r− i) + 6 | 0 ≤ i ≤ q}.

Note that S ′ \ B has been written as the disjoint union of sets, each of which has
even cardinality and consists of consecutive integers. Therefore, we may partition
S ′ \B into sets T, S1, S2, . . . , S4r where T = {1, 2, . . . , 8} and for i = 1, 2, . . . , 4r, let
Si = {bi, bi + 1} with b1 < b2 < · · · < b4r.

Consider the m-tuple

(1,−3, 6,−7, b1,−b2, b3,−b4, . . . , b4r−1,−b4r,−(b4r−1 + 1), b4r−2 + 1,

−(b4r−3 + 1), b4r−4 + 1, . . . , b2 + 1,−(b1 + 1), 8,−5, b4r + 1)

which is a difference m-tuple and corresponds to an m-cycle C1 with

�(C1) = {1, 3, 5, 6, 7, 8, b1, b1 + 1, b2, b2 + 1, . . . , b4r, b4r + 1}.
Then consider the path P : 0, 2, 6; so �(P ) = {2, 4}. Now, let C2 = P ∪ ρ6(P ) ∪
· · ·∪ρ3(m−2)(P ). Then C2 is an m-cycle since m ≡ 6 (mod 8) implies gcd(6, 3m) = 6.
Thus, �(C2) = �(P ) = {2, 4}. Hence, X ′ = {C1, C2} is a minimum generating set for
a cyclic m-cycle system of 〈S ′ \B〉3m. �

We now prove the main result of this subsection, namely that Kmt−I has a cyclic
m-cycle system for every t ≡ 3 (mod 4) and m ≡ 6 (mod 8).

Lemma 5.9 For all positive integers t ≡ 3 (mod 4) and m ≡ 6 (mod 8), there exists
a cyclic m-cycle system of Kmt − I.

Proof: Let m and t be positive integers such that m ≡ 6 (mod 8) and t ≡ 3 (mod 4).
Then m = 8r + 6 and t = 4s + 3 for some non-negative integers r and s. Then
Kmt − I = 〈S ′〉mt where S ′ = {1, 2, . . . , (4r + 3)t− 1}.
By Lemmas 5.6, 5.7, and 5.8, we may assume s ≥ 1 and r ≥ 2. First, write 6r+4 =
(2t− 2)q+(t− 1)�+ b for integers q, � and b with q ≥ 0, 0 ≤ b < 2t− 2 , and � = 0 if
6r+4 < t−1, or � = 1 otherwise. For integers i and j, define di,j = 2t(2r−2i−1)+j.
Consider the path Pi,j : 0, di,j, 2t and note that �(Pi,j) = {2t(2r− 2i− 1)+ j, 2t(2r−
2i− 2)+ j}. If 0 < j < 2t, then Ci,j = Pi,j ∪ ρ2t(Pi,j)∪ ρ4t(Pi,j)∪ · · · ∪ ρ(m−2)t(Pi,j) is
an m-cycle since m ≡ 6 (mod 8) implies gcd(2t,mt) = 2t. Thus, if 0 < j < 2t, then
�(Ci,j) = �(Pi,j).

Now, let

X = {C−1,j | 1 ≤ j ≤ t− 1}
∪ {Ci,j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ 2t− 2}
∪ {Cq,j | 2t− 1− b ≤ j ≤ 2t− 2}
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and let

B = {2t(2r + 1) + j, 2t(2r) + j | 1 ≤ j ≤ t− 1}
∪ {2t(2r−2i−1) + j, 2t(2r−2i−2) + j | 1 ≤ j ≤ 2t−2 and 0 ≤ i ≤ q−1}
∪ {2t(2r − (2q + 1)) + 2t− 1− b+ j, 2t(2r − 2q − 2) + 2t− 1− b+ j

| 0 ≤ j ≤ b− 1}.
where we take the first set to be empty if � = 0, the second to be empty if q = 0,
and the third to be empty if b = 0. Then X is a minimum generating set for 〈B〉mt.

Now we must find a cyclic m-cycle system of 〈S ′ \ B〉mt. First, |B| = 2[(2t − 2)q +
(t − 1)� + b] = 12r + 8 so that |S ′ \ B| = (4r + 3)t − 1 − 12r − 8 = (8r + 6)(2s).
Moreover,

S ′ \B = {1, 2, . . . , 2t(2r − 2q − 1)− b− 2}
∪ {2t(2r − 2q − 1)− 1, 2t(2r − 2q − 1), . . . , 2t(2r − 2q)− b− 2}
∪ {2t(2r − i)− 1, 2t(2r − i) | 0 ≤ i ≤ 2q}
∪ {4rt+ t, 4rt+ t+ 1, . . . , 4rt+ 2t}.

The smallest length in B is 4t(r− q− 1) + (2t− 1)− b, and we must verify that this
length is at least 12s + 1. Note that we have 2t − 1 − b > 1. Thus, it is sufficient
to prove that 4t(r − q − 1) ≥ 12s, or t(r − q − 1) ≥ 3s. This inequality follows if
r > q + 1. Clearly, this is true if q = 0 since r ≥ 2, so assume q ≥ 1. Then � = 1,
and so 6r + 4 = 2q(4s+ 2) + (4s+ 2) + b, or

3r + 2 = q(4s+ 2) + 2s+ 1 + b/2

= 4qs+ 2q + 2s+ 1 + b/2

≥ 6q + 3 (since s ≥ 1).

So, r ≥ 2q + 1/3 > q + 1 since q ≥ 1. Since the smallest length in B is at least
12s + 1 and S ′ \ B consists of sets of consecutive integers of even cardinality, we
may partition S ′ \ B into sets T, S1, . . . , S8rs where T = {1, 2, . . . , 12s}, and for
i = 1, 2, . . . , 8rs, Si = {bi, bi + 1} with b1 ≤ b2 ≤ · · · ≤ b8rs. Let A = [ai,j ] be the
2s×m array⎡

⎢⎣
1 2 3 4 8s+ 1 8s+ 3 b1 b1 + 1
5 6 7 8 8s+ 2 8s+ 4 b4r+1 b4r+1 + 1
...

...
...

...
...

...
...

... · · ·
8s− 3 8s− 2 8s− 1 8s 12s− 2 12s b8rs−4r+1 b8rs−4r+1 + 1

b2 b2 + 1 · · · b4r b4r + 1
b4r+2 b4r+2 + 1 · · · b8r b8r + 1
...

... · · · ...
...

b8rs−4r+2 b8rs−4r+2 + 1 · · · b8rs b8rs + 1

⎤
⎥⎦ .
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Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ m)

and
ai,1 < ai,2 < . . . < ai,m.

Thus the m-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,

ai,6,−ai,4, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with �(Ci) = {ai,1, ai,2, . . . ,
ai,m}. Hence, X ′ = {C1, C2, . . . , C2s} is a minimum generating set for a cyclicm-cycle
system of 〈S ′ \B〉mt. �

References

[1] B. Alspach and H. Gavlas, Cycle decompositions of Kn and Kn− I, J. Combin.
Theory Ser. B 81(2001), 77–99.

[2] A. Blinco, S. El-Zanati and C. Vanden Eynden, On the cyclic decomposition
of complete graphs into almost-bipartite graphs, Discrete Math. 284 (2004),
71–81.

[3] D. Bryant, H. Gavlas and A. Ling, Skolem-type difference sets for cycles, Elec-
tronic J. Combin. 10 (2003), #R38.

[4] D. Bryant and C.A. Rodger, Cycle Decompositions, in the CRC Handbook of
Combinatorial Designs, 2nd Ed., (eds. C. J. Colbourn and J.H. Dinitz), Chap-
man & Hall/CRC, Boca Raton FL (2007).

[5] M. Buratti, Cycle decompositions with a sharply vertex transitive automorphism
group, Le Matematiche 59 (2004), 91–105.

[6] M. Buratti and A. Del Fra, Existence on cyclic k-cycle systems of the complete
graph. Discrete Math. 261 (2003), 113–125.

[7] M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete
graph, Discrete Math., 279 (2004), 107–119.

[8] M. Buratti and G. Rinaldi, A non-existence result on cyclic cycle-decompositions
of the cocktail party graph, Discrete Math. 309 (2009) 4722–4726.

[9] J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag New York,
Berlin, Heidelberg, Graduate Texts in Mathematics, 163, 1996.



H. JORDAN AND J. MORRIS /AUSTRALAS. J. COMBIN. 67 (2) (2017), 304–326 326

[10] S. I. El-Zanati, N. Punnim and C. Vanden Eynden, On the cyclic decomposition
of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209–
219.

[11] H.-L. Fu and S.-L. Wu, Cyclically decomposing the complete graph into cycles,
Discrete Math. 282 (2004), 267–273.

[12] H. Jordon and J. Morris, Cyclic hamiltonian cycle systems of the complete graph
minus a 1-factor, Discrete Math. 308 (2008), 2440–2449.

[13] A. Kotzig, On decompositions of the complete graph into 4k-gons, Mat.-Fyz.
Cas. 15 (1965), 227–233.

[14] R. Peltesohn, Eine Losung der beiden Heffterschen Differenzenprobleme, Com-
pos. Math. 6 (1938), 251-257.

[15] A. Rosa, On cyclic decompositions of the complete graph into (4m + 2)-gons,
Mat.-Fyz. Cas. 16 (1966), 349–352.
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