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Abstract

For a graph G, we let γ(G) denote the domination number of G. A graph
G is said to be k-bicritical if γ(G) = k and γ(G − {x, y}) < k for any
two vertices x, y ∈ V (G). Brigham et al. [Discrete Math. 305 (2005),
18–32] conjectured that the diameter of a connected k-bicritical graph is
at most k − 1. However, in [Australas. J. Combin. 53 (2012), 53–65],
counterexamples of the conjecture for k �= 4 were constructed by this
author. In this paper, we construct counterexamples of the conjecture
for k = 4.

Our main aim is to give upper bounds of the diameter of a bicrit-
ical graph. In particular, we show that the diameter of a connected
k-bicritical graph is at most 2k − 3.

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be
a graph. We let V (G) and E(G) denote the vertex set and the edge set of G,
respectively. For u ∈ V (G), we let NG(u) and NG[u] denote the open neighborhood
and the closed neighborhood of u, respectively; thus NG[u] = NG(u)∪{u}. For u, v ∈
V (G), we let dG(u, v) denote the distance between u and v in G. For u ∈ V (G) and a

non-negative integer i, let N
(i)
G (u) = {v ∈ V (G) | dG(u, v) = i}; thus N (0)

G (u) = {u}
and N

(1)
G (u) = NG(u). For u ∈ V (G), we define the eccentricity eccG(u) of u in

G by eccG(u) = max{dG(u, v) | v ∈ V (G)}. The diameter of G is defined to be
the maximum of eccG(u) as u ranges over V (G), and is denoted by diam(G). For
X ⊆ V (G), we let G[X] denote the subgraph of G induced by X . We let G denote
the complement of G. For two graphs H1 and H2, we let H1∪H2 denote the union of
H1 and H2. For a graph H and an integer s ≥ 2, sH denote the disjoint union of s
copies of H . We let Kn denote the complete graph of order n, and let Pn denote the
path of order n. For terms and symbols not defined here, we refer the reader to [5].

Let G be a graph. For two subsets X, Y of V (G), we say that X dominates Y if
Y ⊆ ⋃

u∈X NG[u]. A subset of V (G) which dominates V (G) is called a dominating
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set of G. The minimum cardinality of a dominating set of G is called the domination
number of G, and is denoted by γ(G). A dominating set of G having cardinality γ(G)
is called a γ-set of G. Let V 0(G) = {x ∈ V (G) | γ(G− x) = γ(G)}, V +(G) = {x ∈
V (G) | γ(G− x) > γ(G)} and V −(G) = {x ∈ V (G) | γ(G− x) < γ(G)}. A vertex x
belonging to V −(G) is said to be critical. A graph G is critical if every vertex of G
is critical (i.e., V (G) = V −(G)), and G is k-critical if G is critical and γ(G) = k.

In this paper, we mainly study the relationship between the domination number
and the diameter. For k ≥ 1, it has been known that the diameter of a connected
graph G with γ(G) = k is at most 3k − 1 (see Theorem 2.24 of [8]), and the bound
is best possible. On the other hand, domination criticality often decreases the up-
per bound on the diameter of a connected graph with domination number k. For
example, Fulman, Hanson and MacGillivray [6] showed the following theorem which
was conjectured in [2] (and for each k ≥ 2, since there exist infinitely many k-critical
graphs with diameter exactly 2k − 2, the bound in Theorem A is best possible).

Theorem A ([6]) Let k ≥ 2 be an integer, and let G be a connected k-critical
graph. Then diam(G) ≤ 2k − 2.

Now we introduce another domination critical concept, which was first introduced
in [3]. A graph G is bicritical if γ(G−{x, y}) < γ(G) for any two vertices x, y ∈ V (G),
and G is k-bicritical if G is bicritical and γ(G) = k. Note that every bicritical graph
G satisfies V +(G) = ∅. Brigham, Haynes, Henning and Rall [3] gave a conjecture
concerning the upper bound on the diameter of bicritical graphs.

Conjecture 1 ([3]) Let k ≥ 3 be an integer, and let G be a connected k-bicritical
graph. Then diam(G) ≤ k − 1.

However, the author [7] constructed counterexamples for Conjecture 1 in the case
where k �= 4 as follows.

Theorem B ([7]) Let k ≥ 3 be an integer. Then there exist infinitely many con-
nected k-critical and bicritical graphs G with

diam(G) =

{
3k−3
2

(k is odd)
3k−6
2

(k is even).

In this paper, we refine Theorem B by considering only bicritical graphs (and by
Theorem 1.1, Conjecture 1 is completely disproved).

Theorem 1.1 Let k ≥ 3 be an integer. Then there exist infinitely many connected
k-bicritical graphs G with

diam(G) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
3 (k = 3)

6 (k = 5)
3k−1
2

(k is odd and k ≥ 7)
3k−2
2

(k is even).
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Since Conjecture 1 is false, we are interested in a non-trivial upper bound of the
diameter of bicritical graphs. One may consider that Theorem A gives a valuable in-
formation for the diameter of bicritical graphs. However, there exist bicritical graphs
which are not critical; for example, the vertex-expansion of a critical and bicritical
graph is bicritical and not critical (see [3]), and so we cannot apply Theorem A to
all bicritical graphs. Furthermore, there exist infinitely many critical graphs which
are not bicritical; for example, the coalescence of 2-critical graphs is critical and not
bicritical. Thus it seems difficult to deal with criticality and bicriticality together.
So we consider a non-trivial class of graphs which contains all critical graphs and all
bicritical graphs.

A graph G is weak bicritical if G − x is γ(G)-critical for every vertex x ∈
V (G) − V −(G), and G is weak k-bicritical if G is weak bicritical and γ(G) = k.
By the definition, if a graph G is weak bicritical, then V +(G) = ∅. Since all critical
graphs and all bicritical graphs are weak bicritical, weak bicriticality seems a natural
unification of criticality and bicriticality. Indeed, weak bicritical graphs have the
same diameter-property as critical graphs. We show the following theorem which is
an extension of Theorem A.

Theorem 1.2 Let k ≥ 2 be an integer, and let G be a connected weak k-bicritical
graph. Then diam(G) ≤ 2k − 2.

Recall that for each integer k ≥ 2, there exist infinitely many connected k-critical
graphs with diameter 2k − 2. Hence the bound in Theorem 1.2 is best possible.

By Theorem 1.2, the diameter of a connected k-bicritical graph is at most 2k−2.
We further refine such upper bound as follows.

Theorem 1.3 Let k ≥ 3 be an integer, and let G be a connected k-bicritical graph.
Then diam(G) ≤ 2k − 3.

In Section 3, we construct some bicritical graphs and prove Theorem 1.1. We
prove Theorem 1.2 in Section 4, and prove Theorem 1.3 in Section 5.

By considering Theorem 1.1, Theorem 1.3 for the case where k ∈ {3, 4} is sharp.
We conclude this section with the following conjecture.

Conjecture 2 Let k ≥ 5 be an integer. Then there exist infinitely many connected
k-bicritical graphs G with diam(G) = 2k − 3.

2 Basic properties

In this section, we prepare some fundamental properties for our proof.

2.1 Weak bicritical graphs

In this subsection, we give some properties of weak bicritical graphs.
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We first give a degree condition of weak bicritical graphs.

Proposition 2.1 Let G be a connected weak bicritical graph of order at least three.
Then the minimum degree of G is at least two.

Proof. Suppose that there exists a vertex x of G of degree exactly one, and write
NG(x) = {y}. Note that y is not a critical vertex of G. Since |V (G)| ≥ 3, y is
adjacent to a vertex z ( �= x). Let S be a γ-set of G − {y, z}. Since G is weak
bicritical and y is not critical, |S| ≤ γ(G) − 1. Furthermore, x ∈ S because S
dominates x. This implies that S ′ = (S − {x}) ∪ {y} is a dominating set of G with
|S ′| ≤ γ(G)− 1, which is a contradiction. �

We next consider weak 2-bicritical graphs. A characterization of 2-critical graphs
and 2-bicritical graphs was given in the following two theorems.

Theorem C ([1]) A graph G is 2-critical if and only if G = nK2 for some n ≥ 1
(i.e., G is the graph obtained from a complete graph of even order by deleting a
perfect matching).

Theorem D ([3]) There is no 2-bicritical graph of order at least four.

Now we characterize weak 2-bicritical graphs by using Theorem C.

Theorem 2.2 A graph G is weak 2-bicritical if and only if G ∈ {nK2, nK2∪K3, (n−
1)K2 ∪ P3 | n ≥ 1}.
Proof. If G ∈ {nK2, nK2∪K3, (n−1)K2∪P3 | n ≥ 1}, then we can easily check that
G is a weak 2-bicritical graph. Thus it suffices to show that if G is weak 2-bicritical,
then G ∈ {nK2, nK2∪K3, (n−1)K2∪P3 | n ≥ 1}. If G is critical, then by Theorem C,
G = nK2 for some n ≥ 1, as desired. Thus we may assume that G has a non-critical
vertex u. Since γ(G) = 2, V (G)−NG[u] �= ∅. Let x ∈ V (G)−NG[u]. Since G is weak
2-bicritical, G− u is 2-critical, and hence the complement of G− u is isomorphic to
nK2 for some n ≥ 1 by Theorem C. In particular, x is not adjacent to exactly one
vertex y in G−u. Since there is no vertex of G− y dominating V (G)−{y}, y is not
a critical vertex of G. Since G is weak 2-bicritical, it follows that γ(G− {x, y}) = 1.
This implies that u is adjacent to any vertices in V (G)−{u, x, y} in G. If uy ∈ E(G),
then G = (n − 1)K2 ∪ P3, as desired. Thus we may assume that uy �∈ E(G). Then
G = (n − 1)K2 ∪ K3. If n = 1, then G consists of three isolated vertices, and so
γ(G) = 3, which is a contradiction. Thus n ≥ 2, and hence G = mK2 ∪K3 for some
m ≥ 1. �

2.2 Coalescence of two graphs

In this subsection, we introduce a way of constructing of a graph from two small
graphs, which was defined in [2].
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Let H1 and H2 be graphs, and for each i ∈ {1, 2}, let xi be a vertex of Hi. Under
this notation, we let (H1 • H2)(x1, x2 : x) denote the graph obtained from H1 and
H2 by identifying x1 and x2 into a vertex labeled x. We call (H1 •H2)(x1, x2 : x) a
coalescence of H1 and H2 (via x1 and x2).

Some properties for criticality or bicriticality in a coalescence of two graphs have
been known. (Note that Lemma 2.3(iii) is a special case of Theorem 3.3 in [7].)

Lemma 2.3 ([2, 4, 7]) Let H1 and H2 be two graphs, and for each i ∈ {1, 2}, let
xi be a non-isolated vertex of Hi. Let G = (H1 •H2)(x1, x2 : x).

(i) If xi is a critical vertex of Hi for each i ∈ {1, 2}, then V −(G) = ((V −(H1) ∪
V −(H2))− {x1, x2}) ∪ {x} and γ(G) = γ(H1) + γ(H2)− 1.

(ii) The graph G is critical if and only if both H1 and H2 are critical.

(iii) The graph G is bicritical if and only if for some i ∈ {1, 2},
(a) Hi is critical and bicritical,

(b) H3−i is bicritical, and

(c) x3−i is a critical vertex of H3−i.

In particular, G is critical or bicritical, then γ(G) = γ(H1) + γ(H2)− 1.

By combining Lemma 2.3(i) and (iii), we get the following result.

Lemma 2.4 Let H1 and H2 be two graphs, and for each i ∈ {1, 2}, let xi be a
non-isolated vertex of Hi. If G = (H1 • H2)(x1, x2 : x) is bicritical, then V −(G) =
((V −(H1) ∪ V −(H2))− {x1, x2}) ∪ {x}.

2.3 2-coalescence of two graphs

Lemma 2.5 Let G be a graph, and let x1 and x2 be two distinct vertices of G
with NG[x1] ⊆ NG[x2]. Then x2 is not a critical vertex of G. Furthermore, if G is
bicritical, then V (G)− {x1, x2} ⊆ V −(G).

Proof. Let S be a γ-set of G − x2. Since S dominates x1, S ∩ NG[x1] �= ∅, and so
S∩NG[x2] �= ∅. This implies that S is a dominating set of G, and hence γ(G−x2) ≥
γ(G). Consequently x2 is not a critical vertex of G.

Assume that G is bicritical. Let u ∈ V (G) − {x1, x2}, and let S ′ be a γ-set of
G − {x2, u}. Then |S ′| ≤ γ(G) − 1. Since S ′ dominates x1, S

′ also dominates x2.
Hence S ′ is a dominating set of G − u, and so γ(G − u) ≤ |S ′| ≤ γ(G) − 1. Since
u ∈ V (G)− {x1, x2} is arbitrary, we have V (G)− {x1, x2} ⊆ V −(G). �

Let H1 and H2 be graphs, and for each i ∈ {1, 2}, let x(1)
i and x

(2)
i be two adjacent

vertices of Hi. Under this notation, we let (H1 •H2)(x
(1)
1 , x

(1)
2 : x(1))(x

(2)
1 , x

(2)
2 : x(2))
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denote the graph obtained from H1 and H2 by identifying x
(i)
1 and x

(i)
2 into a vertex

labeled x(i) for each i ∈ {1, 2}. We call (H1 • H2)(x
(1)
1 , x

(1)
2 : x(1))(x

(2)
1 , x

(2)
2 : x(2)) a

2-coalescence of H1 and H2.

Proposition 2.6 Let H1 and H2 be two bicritical graphs, and for each i ∈ {1, 2},
let x

(1)
i and x

(2)
i be two distinct vertices of Hi with NHi

[x
(1)
i ] = NHi

[x
(2)
i ]. Then

the graph G = (H1 • H2)(x
(1)
1 , x

(1)
2 : x(1))(x

(2)
1 , x

(2)
2 : x(2)) is bicritical and γ(G) =

γ(H1) + γ(H2)− 1.

Proof. Recall that deleting a vertex of bicritical graphs cannot increase the dom-
ination number. By Lemma 2.5, for each i ∈ {1, 2}, V 0(Hi) = {x(1)

i , x
(2)
i } and

V −(Hi) = V (Hi) − {x(1)
i , x

(2)
i }. Since Hi − x

(1)
i is critical for each i ∈ {1, 2},

(H1 − x
(1)
1 • H2 − x

(1)
2 )(x

(2)
1 , x

(2)
2 : x(2))(= G − x(1)) is critical by Lemma 2.3(ii).

By Lemma 2.3,

γ(G− x(1)) = γ(H1 − x
(1)
1 ) + γ(H2 − x

(1)
2 )− 1 = γ(H1) + γ(H2)− 1.

Since NG[x
(1)] = NG[x

(2)], we see that x(1) ∈ V 0(G). Hence γ(G) = γ(H1)+γ(H2)−1.

We show that G is bicritical. Let u and v be two distinct vertices of G. It suffices
to show that there exists a dominating set S ofG−{u, v} with |S| ≤ γ(H1)+γ(H2)−2.

Case 1: {u, v} = {x(1), x(2)}.
For each i ∈ {1, 2}, let Si be a γ-set of Hi − {x(1)

i , x
(2)
i }. Then S1 ∪ S2 is a

dominating set of G − {u, v}. Since both H1 and H2 are bicritical, |S1 ∪ S2| =
|S1|+ |S2| ≤ (γ(H1)− 1) + (γ(H2)− 1).

Case 2: |{u, v} ∩ {x(1), x(2)}| = 1.

We may assume that u = x(1) and v ∈ V (H1)− {x(1)
1 , x

(2)
1 }. Let S1 be a γ-set of

H1−{x(1)
1 , v}, and let S2 be a γ-set of H2−{x(1)

2 , x
(2)
2 }. If x(2)

1 �∈ S1, let S = S1∪S2; if

x
(2)
1 ∈ S1, let S = (S1−{x(2)

1 })∪{x(2)}∪S2. Then S is a dominating set of G−{u, v}.
Since both H1 and H2 are bicritical, |S| = |S1|+ |S2| ≤ (γ(H1)− 1) + (γ(H2)− 1).

Case 3: {u, v} ∩ {x(1), x(2)} = ∅ and u, v ∈ V (Hi) for some i ∈ {1, 2}.
We may assume that u, v ∈ V (H1)−{x(1)

1 , x
(2)
1 }. Let S1 be a γ-set of H1−{u, v},

and let S2 be a γ-set ofH2−{x(1)
2 , x

(2)
2 }. Since NH1−{u,v}[x

(1)
1 ] = NH1−{u,v}[x

(2)
1 ], we see

that |S1∩{x(1)
1 , x

(2)
1 }| ≤ 1. We may assume that x

(1)
1 �∈ S1. If x

(2)
1 �∈ S1, let S = S1∪S2;

if x
(2)
1 ∈ S1, let S = (S1−{x(2)

1 })∪{x(2)}∪S2. Then S is a dominating set ofG−{u, v}.
Since both H1 and H2 are bicritical, |S| = |S1|+ |S2| ≤ (γ(H1)− 1) + (γ(H2)− 1).

Case 4: {u, v} ∩ {x(1), x(2)} = ∅ and |V (Hi) ∩ {u, v}| = 1 for each i ∈ {1, 2}.
We may assume that u ∈ V (H1) − {x(1)

1 , x
(2)
1 } and v ∈ V (H2) − {x(1)

2 , x
(2)
2 }.

Let S1 be a γ-set of H1 − {u, x(1)
1 }, and let S2 be a γ-set of H2 − {u, x(1)

2 }. If

x
(2)
i �∈ Si for each i ∈ {1, 2}, let S = S1 ∪ S2; if x

(2)
i ∈ Si for some i ∈ {1, 2}, let

S = ((S1 ∪S2)−{x(2)
1 , x

(2)
2 })∪{x(2)}. Then S is a dominating set of G−{u, v, x(1)}.
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X Y

Figure 1: Graph A

Since S dominates x(2) and NG[x
(1)] = NG[x

(2)], S also dominates x(1), and hence
S is a dominating set of G − {u, v}. Since both H1 and H2 are bicritical, |S| ≤
|S1|+ |S2| ≤ (γ(H1)− 1) + (γ(H2)− 1).

This completes the proof of Proposition 2.6. �

3 Examples

In this section, we show Theorem 1.1. We first construct some bicritical graphs with
small domination number.

Let A be the graph on X∪Y depicted in Figure 1. Let s be a positive integer, and
let A

(j)
i (i ∈ {1, 2}, 1 ≤ j ≤ s) be disjoint copies of A. For i ∈ {1, 2} and 1 ≤ j ≤ s,

let X
(j)
i (resp. Y

(j)
i ) be the subset of V (A

(j)
i ) which corresponds to the set X (resp.

the set Y ). Let z(1), z(2), y be new vertices. We define some sets of edges as follows:
Let

F1 =

{
z(1)u, z(2)u

∣∣∣∣ u ∈
⋃

1≤j≤s

X
(j)
1

}
∪
{
yu

∣∣∣∣ u ∈
⋃

1≤j≤s

X
(j)
2

}
∪ {z(1)z(2)},

F2 =
{
uv | u ∈ Y

(j)
i , v ∈ V (A

(j′)
i ), i ∈ {1, 2}, j �= j′

}
,

and

F3 =

{
uv

∣∣∣∣ u ∈
⋃

1≤j≤s

Y
(j)
1 , v ∈

⋃
1≤j≤s

Y
(j)
2

}
.

Let Ls be the graph defined by

V (Ls) = {z(1), z(2), y} ∪
⎛
⎝ ⋃

i∈{1,2}

( ⋃
1≤j≤s

V (A
(j)
i )

)⎞⎠
and

E(Ls) =

( ⋃
1≤h≤3

Fh

)
∪
⎛
⎝ ⋃

i∈{1,2}

( ⋃
1≤j≤s

E(A
(j)
i )

)⎞⎠ .
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Then we can verify that Ls is 4-bicritical graph with diam(Ls) = 5 by tedious
argument (and we omit the details). By Lemma 2.5, V 0(Ls) = {z(1), z(2)} and
V −(Ls) = V (Ls)− {z(1), z(2)}. In particular, y is a critical vertex of Ls.

Let s be a positive integer, and let H1 and H2 be disjoint copies of Ls. For each
i ∈ {1, 2}, let x(1)

i and x
(2)
i be the distinct vertices of Hi with NHi

[x
(1)
i ] = NHi

[x
(2)
i ].

Then by Proposition 2.6, L∗
s = (H1 • H2)(x

(1)
1 , x

(1)
2 : x(1))(x

(2)
1 , x

(2)
2 : x(2)) is a 7-

bicritical graph with diam(L∗
s) = 10. By Lemma 2.5, V 0(L∗

s) = {x(1), x(2)} and
V −(L∗

s) = V (L∗
s)− {x(1), x(2)}.

Proof of Theorem 1.1. Let k be as in Theorem 1.1. If k ∈ {3, 5}, then Theorem B
yields the desired result. Thus we may assume that k �∈ {3, 5}. Fix a positive integer
s. If k is even, let G1 = Ls and m = (k − 2)/2; if k is odd, let G1 = L∗

s and
m = (k − 5)/2. In either case, there exists a vertex w′

1 ∈ V −(G1) with eccG1(w
′
1) =

diam(G1). By Theorem B, there exists a connected 3-critical and bicritical graph
with diameter 3. For each 2 ≤ i ≤ m, let Gi be a connected 3-critical and bicritical
graph with diameter 3, and let wi and w′

i be vertices of Gi which are at distance
three apart. Let G be the graph obtained by concatenating G1, . . . , Gm by letting
Gi−1 and Gi coalesce via w′

i−1 and wi for each 2 ≤ i ≤ m. Then

diam(G) =
∑

1≤i≤m

diam(Gi) =

{
3k−1
2

(k is odd)
3k−2
2

(k is even).

Further by Lemma 2.3(iii), G is bicritical and γ(G) = γ(G1)+
∑

2≤i≤m(γ(Gi)−1) = k.
Since there exist infinitely many candidates for G1, this yields the desired conclusion.

�

4 Proof of Theorem 1.2

Let l ≥ 3 be an integer, and let G be a connected graph. A pair (x, j) of a vertex
x ∈ V (G) and an integer j ≥ 2 is l-sufficient if eccG(x) = diam(G) and there exists

a γ-set S of G with |S ∩ (
⋃

0≤i≤j N
(i)
G (x))| ≥ (j + l)/2.

Lemma 4.1 Let k ≥ 3 and l ≥ 3 be integers, and let G be a connected weak
k-bicritical graph having an l-sufficient pair. Then diam(G) ≤ 2k − l + 1.

Proof. Let (x,m) be an l-sufficient pair of G so that m is as large as possible. For

each i ≥ 0, let Xi = N
(i)
G (x) and Ui = X0 ∪ · · · ∪ Xi. Then there exists a γ-set

S1 of G with |S1 ∩ Um| ≥ (m + l)/2. Suppose that diam(G) ≥ 2k − l + 2. Since
k ≥ |S1∩Um| ≥ (m+l)/2, it follows that diam(G) ≥ m+2. Since |S1∩Um| ≥ (m+l)/2
and |S1 ∩Um+2| < ((m+ 2) + l)/2 by the maximality of m, |S1 ∩ (Xm+1 ∪Xm+2)| =
|S1 ∩ Um+2| − |S1 ∩ Um| < (m + l + 2)/2 − (m + l)/2 = 1. This implies that
S1 ∩ (Xm+1 ∪Xm+2) = ∅, and hence S1 ∩Xm+3 �= ∅. Since diam(G) ≥ 2k− l+2 and
k ≥ |S1 ∩ Um+3| ≥ (m+ l)/2 + 1, we have diam(G) ≥ m+ 4.
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Claim 4.1 For every γ-set S0 of G, |S0 ∩ Um+2| ≥ (m + l)/2 and |S0 ∩ (Xm+3 ∪
Xm+4)| ≤ 1.

Proof. We first show that S ′
0 = (S0 ∩ Um+2) ∪ (S1 − Um+2) is a dominating set of

G. Since S0 dominates V (G), S0 ∩Um+2 dominates Um+1. Since S1 dominates V (G)
and S1 ∩Xm+1 = S1 ∩Xm+2 = ∅, S1 − Um+2 dominates V (G) − Um+1. Hence S ′

0 is
a dominating set of G.

Since S1 is a γ-set of G, |S1| ≤ |S ′
0|. In particular, |S0 ∩ Um+2| = |S ′

0| − |S1 −
Um+2| ≥ |S1| − |S1 − Um+2| = |S1 ∩ Um+2| ≥ (m + l)/2. Since S0 is not (m + 4)-
sufficient by the maximality of m, |S0 ∩ Um+4| < ((m + 4) + l)/2. Therefore |S0 ∩
(Xm+3 ∪Xm+4)| = |S0 ∩ Um+4| − |S0 ∩ Um+2| < (m+ l + 4)/2− (m+ l)/2 = 2. �

Since S1∩Xm+3 �= ∅, |S1∩Xm+3| = 1 and S1∩Xm+4 = ∅ by Claim 4.1. Hence the
unique vertex w in S1 ∩Xm+3 dominates Xm+2 ∪Xm+3. Let w

′ ∈ Xm+2. Note that
ww′ ∈ E(G). If w is critical, let S2 be a γ-set ofG−w; if w is not critical, let S2 be a γ-
set ofG−{w,w′}. Since G is weak bicritical, |S2| ≤ γ(G)−1, and hence both S2∪{w}
and S2 ∪ {w′} are γ-sets of G. By Claim 4.1, |S2 ∩ Um+2| = |(S2 ∪ {w}) ∩ Um+2| ≥
(m+ l)/2. Then |(S2∪{w′})∩Um+2| = |S2∩Um+2|+1 ≥ ((m+2)+ l)/2, and hence
(x,m+ 2) is an l-sufficient pair of G, which contradicts the maximality of m.

This completes the proof of Lemma 4.1. �

Now we prove Theorem 1.2.

Proof of Theorem 1.2. Let k and G be as in Theorem 1.2. If k = 2, then diam(G) =
2 = 2k − 2 by Theorem 2.2, as desired. Thus we may assume that k ≥ 3. Suppose
that diam(G) ≥ 2k − 1. Then by Lemma 4.1, there exists no 3-sufficient pair of G.

Let x be a vertex of G with eccG(x) = diam(G). Since diam(G) ≥ 2k − 1 ≥ 5,

N
(4)
G (x) �= ∅. Let w ∈ N

(3)
G (x) and w′ ∈ N

(4)
G (x) be vertices so that ww′ ∈ E(G). If

w is a critical vertex of G, let S be a γ-set of G − w; if w is not a critical vertex
of G, let S be a γ-set of G − {w,w′}. In either case, since G is weak k-bicritical,
|S| ≤ k − 1 and S ∪ {w} is a γ-set of G. Since (x, 3) is not a 3-sufficient pair of G,

|(S ∪ {w}) ∩ (
⋃

0≤i≤3N
(i)
G (x))| < (3 + 3)/2 = 3. Furthermore, S ∩ (

⋃
0≤i≤3 N

(i)
G (x))

dominates
⋃

0≤i≤2N
(i)
G (x) in G− w or G− {w,w′} according as w is critical or not.

This implies that S ∩ (
⋃

0≤i≤3N
(i)
G (x)) consists of exactly one vertex a ∈ NG(x)

dominating
⋃

0≤i≤2N
(i)
G (x). Since NG[x] ⊆ NG[a], a is not a critical vertex of G by

Lemma 2.5. By Proposition 2.1, NG(x) − {a} �= ∅. Let b ∈ NG(x) − {a}, and let
S ′ be a γ-set of G − {a, b}. Since G is weak bicritical, |S ′| ≤ γ(G) − 1. Since S ′

dominates x in G − {a, b}, S ′ ∩ NG−{a,b}[x] �= ∅. Let c ∈ S ′ ∩ NG−{a,b}[x]. Since a

dominates
⋃

0≤i≤2 N
(i)
G (x) in G, NG[c] ⊆ NG[a], and hence S ′′ = (S ′ −{c})∪ {a} is a

dominating set of G with |S ′′| = |S ′| ≤ γ(G)−1, which is a contradiction. Therefore
diam(G) ≤ 2k − 2. �
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5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We start with a lemma.

Lemma 5.1 Let G be a bicritical graph, and let x be a non-isolated vertex of G.
Then there exists a vertex y ∈ NG(x) such that no vertex in NG(x)−{y} dominates
NG[x]− {y}.
Proof. Suppose that for every y ∈ NG(x), there exists a vertex in NG(x)−{y} which
dominates NG[x]− {y}. Let y1 ∈ NG(x), and for each i ≥ 2, let yi ∈ NG(x)− {yi−1}
be a vertex which dominates NG[x] − {yi−1}. Suppose that y1 = y3. Let S1 be a
γ-set of G−{y1, y2}. Since S1 dominates x, S1 ∩ (NG[x]−{y1, y2}) �= ∅. Since every
vertex in NG[x] − {y1, y2} is adjacent to both y1 and y2 by the choice of y1 (= y3)
and y2, this implies that S1 is a dominating set of G with |S1| ≤ γ(G)− 1, which is
a contradiction. Thus y1 �= y3. Since y2 dominates NG[x]− {y1}, y2y3 ∈ E(G), and
hence y3 dominates NG[x]. Let S2 be a γ-set of G − {y3, y4}. Since S2 dominates
x, S2 ∩ (NG[x] − {y3, y4}) �= ∅. Since every vertex in NG[x] − {y3, y4} is adjacent to
both y3 and y4, this implies that S2 is a dominating set of G with |S2| ≤ γ(G)− 1,
which is a contradiction. �

Proof of Theorem 1.3. Let k and G be as in Theorem 1.3. Suppose that diam(G) ≥
2k − 2. Then by Theorem 1.2, diam(G) = 2k − 2. By Lemma 4.1, there exists no
4-sufficient pair. Let A = {x ∈ V (G) | eccG(x) = diam(G)}. By Lemma 5.1, for
each x ∈ A, there exists a vertex yx ∈ NG(x) such that no vertex in NG(x) − {yx}
dominates NG[x]− {yx}.

Claim 5.1 Let x ∈ A be a vertex. Then the following hold:

(i) There exists a vertex in N
(2)
G (x) which dominates NG(x)− {yx}.

(ii) The vertex yx is not a critical vertex of G.

(iii) |N (2)
G (x)| ≥ 2.

(iv) There exists no vertex in NG(x) which dominates NG[x].

Proof. We first show (i) and (ii). If yx is a critical vertex of G, let S be a γ-set of
G − yx; if y is not a critical vertex of G, let S be a γ-set of G − {x, yx}. In either
case, |S| ≤ k− 1 and S ∪ {x} is a γ-set of G. Since (x, 2) is not a 4-sufficient pair of

G, |(S ∪{x})∩ (
⋃

0≤i≤2N
(i)
G (x))| < (2+4)/2 = 3, and hence |S ∩ (

⋃
0≤i≤2N

(i)
G (x))| ≤

1. Since S dominates NG(x) − {yx} and no vertex in NG(x) − {yx} dominates

NG(x) − {yx}, this implies that |S ∩ (
⋃

0≤i≤2N
(i)
G (x))| = |S ∩ N

(2)
G (x)| = 1 and the

unique vertex w ∈ S ∩ N
(2)
G (x) dominates NG(x) − {yx}. In particular, (i) holds. If

yx is a critical vertex of G, then S dominates x, which is a contradiction. Thus (ii)
holds.
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We next show (iii). Suppose that |N (2)
G (x)| = 1, and let H1 = G[

⋃
0≤i≤2N

(i)
G (x)]

and H2 = G − NG[x]. Then we can regard G as a coalescence of H1 and H2, and
hence H1 is bicritical by Lemma 2.3(iii). On the other hand, since |V (H1)| ≥ 4 and
γ(H1) ≤ 2, H1 is not bicritical by Theorem D, which is a contradiction.

We finally show (iv). Suppose that there exists a vertex inNG(x) which dominates
NG[x] in G. By the definition of yx, no vertex in NG(x)− {yx} dominates NG[x] in
G. Thus yx dominates NG[x] in G. Let x′ ∈ V (G) with dG(x, x

′) = eccG(x). Since
x′ ∈ A, the vertex yx′ is not a critical vertex of G by (ii). Let S be a γ-set of
G − {yx, yx′}. Since S dominates x, S ∩ (NG[x] − {yx}) �= ∅. Since yx dominates
NG[x] in G, S dominates yx. In particular, S is a dominating set of G − yx′, and
hence yx′ is a critical vertex of G, which is a contradiction. �

Let x ∈ A. For each i ≥ 0, let Xi = N
(i)
G (x) and Ui = X0 ∪ · · · ∪ Xi. By

Claim 5.1(i), there exists a vertex w2 ∈ X2 which dominates NG(x) − {yx}. Let
S1 be a γ-set of G − {yx, w2}. If S1 ∩ NG(x) �= ∅, then S1 is a dominating set of
G− yx, and hence yx is a critical vertex of G, which contradicts Claim 5.1(ii). Thus
S1 ∩ NG(x) = ∅. Since S1 dominates x, we have x ∈ S1. Note that S1 ∪ {w2} is a
γ-set of G. Since both (x, 2) and (x, 3) are not a 4-sufficient pair, |(S1∪{w2})∩U2| <
(2 + 4)/2 = 3 and |(S1 ∪ {w2}) ∩ U3| < (3 + 4)/2 = 7/2. This forces S1 ∩ U2 = {x}
and |S1 ∩X3| ≤ 1. By Claim 5.1(iii), X2 − {w2} �= ∅, and hence |S1 ∩X3| = 1 and
the unique vertex w3 in S1 ∩X3 dominates X2 − {w2}.

Let m be the maximum integer satisfying that S1 ∩X2j+1 �= ∅ for all j with 1 ≤
j ≤ m. Choose a γ-set S1 of G−{yx, w2} so thatm is as large as possible. Recall that
x ∈ S1. This together with the definition of m leads to |S1 ∩ U2m+1| ≥ m+ 1. Since
(x, 2m+2) is not a 4-sufficient pair, |(S1∪{w2})∩U2m+2| < ((2m+2)+4)/2 = m+3
(i.e., |S1 ∩ U2m+2| ≤ m+ 1). This forces

• |S1 ∩ U2m+1| = m+ 1,

• S1 ∩X2j = ∅ for all j with 1 ≤ j ≤ m+ 1, and

• |S1 ∩X2j+1| = 1 for all j with 1 ≤ j ≤ m.

By the maximality of m, we have S1 ∩X2m+3 = ∅. Write S1 ∩X2m+1 = {z}. Since
S1 ∩ X2m = S1 ∩ X2m+2 = S1 ∩ X2m+3 = ∅, z dominates X2m+1 ∪ X2m+2. Since
m+ 2 = |(S1 ∪ {w2}) ∩ U2m+1| ≤ k, 1 ≤ m ≤ k − 2.

Suppose that m = k − 2 (i.e., diam(G) = 2k − 2 = 2m + 2). Let x′ ∈ X2k−2.
Then x′ ∈ A. Since NG[x

′] ⊆ X2k−3 ∪X2k−2, z dominates NG[x
′], which contradicts

Claim 5.1(iv). Thus m ≤ k−3, and so diam(G) = 2k−2 ≥ 2m+4. Let S2 be a γ-set
of G − {yx, z}. If S2 dominates z in G, then S2 is a dominating set of G − yx, and
hence yx is a critical vertex of G, which contradicts Claim 5.1(ii). Thus S2 does not
dominate z. This implies that S2 ∩ (X2m+1 ∪X2m+2) = ∅. Since diam(G) ≥ 2m+ 4,
we have

S2 ∩X2m+3 �= ∅. (5.1)

Claim 5.2 |S2 − U2m+1| ≤ k −m− 2.
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Proof. We first show that S0 = (S2∩U2m)∪(S1−U2m) is a dominating set of G−yx.
Since S2 dominates V (G)−{yx, z} and S2∩X2m+1 = ∅, S2∩U2m dominates U2m−{yx}.
Recall that z dominates X2m+1 ∪ X2m+2. Since S1 dominates V (G) − {yx, w2} and
z ∈ S1 − U2m, S1 − U2m dominates V (G) − U2m. Hence S0 is a dominating set of
G− yx.

Since yx is not a critical vertex of G by Claim 5.1(ii), |S2 ∩ U2m| + |S1 − U2m| =
|S0| ≥ k. On the other hand, |S1 − U2m| = |S1| − |S1 ∩ U2m| = (k − 1) − m.
Consequently, we have |S2 ∩ U2m+1| = |S2 ∩ U2m| ≥ k − (k − m − 1) = m + 1.
This together with |S2| ≤ k − 1 leads to |S2 − U2m+1| = |S2| − |S2 ∩ U2m+1| ≤
(k − 1)− (m+ 1) = k −m− 2. �

Set S∗ = (S1∩U2m+1)∪(S2−U2m+1). Since S1 is a dominating set of G−{yx, w2}
and z ∈ S1∩U2m+1, S1∩U2m+1 dominates U2m+2−{yx, w2} and yx, w2 �∈ S1∩U2m+1.
Since S2 dominates V (G) − {yx, z}, S2 − U2m+1 dominates V (G) − U2m+2. Hence
S∗ is a dominating set of G− {yx, w2}. Since |S∗| = |S1 ∩ U2m+1| + |S2 − U2m+1| ≤
(m+ 1) + (k −m− 2) = k − 1 by Claim 5.2, S∗ is a γ-set of G− {yx, w2}. Then by
the definition of m and (5.1), S∗ ∩ X2j+1 �= ∅ for all j with 1 ≤ j ≤ m + 1, which
contradicts the maximality of m. Therefore diam(G) ≤ 2k − 3.

This completes the proof of Theorem 1.3. �
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