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Abstract

We compute the expected number of commutations appearing in a re-
duced word for the longest element in the symmetric group. The asymp-
totic behavior of this value is analyzed and shown to approach the length
of the permutation, meaning that nearly all positions in the reduced word
are expected to support commutations. Finally, we calculate the asymp-
totic frequencies of commutations, consecutive noncommuting pairs, and
long braid moves.

1 Introduction

The symmetric group Sn is generated by the simple reflections {s1, . . . , sn−1}, where
si interchanges i and i+ 1. These reflections satisfy the Coxeter relations

s2i = 1 for all i,
sisj = sjsi for |i− j| > 1, and (1)

sisi+1si = si+1sisi+1. (2)

Definition 1.1. Relations as in equation (1) are called commutations (also, short
braid relations), and those as in equation (2) are long braid relations (also, Yang-
baxter moves).

There is a well-defined notion of “length” for a permutation, and it can be defined
in terms of these simple reflections {si}.
Definition 1.2. Consider w ∈ Sn written as a product w = si1si2 · · · si�(w)

for
1 ≤ ij ≤ n − 1, where �(w) is minimal. This �(w) is the length of w, while the
product si1si2 · · · sil is a reduced decomposition for w and the string of subscripts
i1i2 · · · il is a reduced word for w.
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The Coxeter relations (1) and (2) have obvious analogues in reduced words.
Namely, the letters {i, j} commute when |i− j| > 1, and i(i + 1)i can be rewritten
as (i + 1)i(i+ 1). We will abuse terminology slightly and refer to these phenomena
in reduced words as commutations and long braid moves, respectively, as well.

The structure of reduced words, and the influence of commutations and long
braid moves, is of great interest. Some facts are known, such as those cited below,
but many open questions remain. Additionally, there are objects defined naturally
in terms of reduced words and Coxeter relations, including commutation classes and
the graph of those classes (see, for example, [4] and [9]), for which much of the
architecture is still largely obscure.

Definition 1.3. There is a longest element w0 ∈ Sn, and �(w0) =
(
n
2

)
. In one-line

notation, this w0 is the permutation n(n− 1)(n− 2) · · · 321.
In [5], Reiner showed the following surprising fact about long braid moves in

reduced words for w0 ∈ Sn.

Theorem 1.4 ([5, Theorem 1]). For all n ≥ 3, the expected number of long braid
moves in a reduced word for w0 ∈ Sn is 1.

Similar calculations were made for the finite Coxeter group of type B in [8], one
of which is restated here.

Theorem 1.5 ([8, Theorem 3.1]). For all n ≥ 3, the expected number of long braid
moves in a reduced word for the longest element in the Coxeter group of type Bn is
2− 4/n.

Recent work on random reduced words for the longest element appears under the
guise of “random sorting networks,” as in [1, 2, 3, 10].

In the present article, we compute the expected number of commutations in a
reduced word for the longest element w0 ∈ Sn. We obtain an explicit sum for
this expectation, which is stated in Theorem 2.7. Unfortunately, occurrences of
commutations are not as tidy as occurrences of long braid moves, and so our result
is not independent of n as in Reiner’s work [5], nor of such straightforward form as
the results of [8].

In the final section of the paper, we discuss the asymptotic behavior of the enu-
meration from Theorem 2.7. Finally, we use that analysis to produce Corollary 3.1,
giving the asymptotic frequencies of commutations, consecutive noncommuting pairs,
and long braid moves in reduced words for the longest element.

2 Enumerating commutations

Throughout this section, fix a positive integer n and consider w0 ∈ Sn. Let � =
�(w0) =

(
n
2

)
.

Definition 2.1. For any integer k ∈ [1, � − 1], say that a reduced word i1 · · · i� for
w0 supports a commutation in position k if

|ik − ik+1| > 1.
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We want to compute the expected number of commutations in a reduced word
for the longest element w0 ∈ Sn.

In particular, we are interested in the following statistic.

Definition 2.2. Let Cn be the random variable on a reduced word for w0 ∈ Sn,
which counts positions in the word that support commutations.

To analyze Cn, we will actually look at the complementary event; that is, con-
secutive noncommuting pairs of symbols in a reduced word.

Definition 2.3. Consider a reduced word i1i2 · · · i� for w0. Let A(k,j)
n be the indicator

random variable for the event that ik = j and ik+1 = j + 1, and let

An =

�−1∑
k=1

n−2∑
j=1

A(k,j)
n .

Similarly, let B
(k,j)
n be the indicator random variable for the event that ik = j + 1

and ik+1 = j, and let

Bn =

�−1∑
k=1

n−2∑
j=1

B(k,j)
n .

Therefore E(An)+E(Bn) computes the expected number of consecutive noncom-
muting pairs in a reduced word for w0, and so

E(Cn) = �− 1− (
E(An) + E(Bn)

)
. (3)

In fact, the symmetry sn−1−iw0si = w0 gives a correspondence between A
(k,j)
n and

B
(k,n−1−j)
n , and so we can simplify equation (3) to

E(Cn) = �− 1− 2E(An). (4)

The proof of Theorem 2.7 will employ similar techniques to those used by Reiner
in [5]. In particular, we will recognize that particular permutations are vexillary, and
then use a result of Stanley to enumerate reduced words.

Definition 2.4. A permutation is vexillary if it avoids the pattern 2143. That is,
w(1) · · ·w(n) is vexillary if there are no indices 1 ≤ i1 < i2 < i3 < i4 ≤ n such that
w(i2) < w(i1) < w(i4) < w(i3).

Stanley showed in [7] that the reduced words for a vexillary permutation are enu-
merated by standard Young tableaux of a particular shape, which can be enumerated
using the hook-length formula, as discussed in [6].

Definition 2.5. Fix a permutation w = w(1) · · ·w(n). For all integers i ∈ [1, n], let

ri = |{j : j < i and w(j) > w(i)}| .
The partition λ(w) = (λ1(w), λ2(w), . . .) is defined by writing {r1, . . . , rn} in nonin-
creasing order.
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Theorem 2.6 ([7, Corollary 4.2]). If w is vexillary, then the number of reduced words
for w is equal to fλ(w), the number of standard Young tableaux of shape λ(w).

We are now able to compute the expected number of commutations in a reduced
word for w0 ∈ Sn.

Theorem 2.7. For all n ≥ 3, E(Cn) =

(
n

2

)
− 1− 1

3
(
n
2

)
22n−7

n−2∑
j=1

(2j − 1)!!

(j − 1)!
· (2j + 1)!!

j!
· (2n− 2j − 3)!!

(n− j − 2)!
· (2n− 2j − 1)!!

(n− j − 1)!
.

Proof. Fix an integer n ≥ 3 and let � =
(
n
2

)
. To calculate the expected number

of positions that support a commutation in a reduced word for w0 ∈ Sn, we will
analyze the complementary event and use equation (4).

As noted in [5], the fact that siw0sn−i = w0 for all i ∈ [1, n − 1] gives a cyclic
symmetry to reduced words for w0:

i1i2 · · · i�
is a reduced word for w0 if and only if

i2i3 · · · i�(n− i1)

is as well. Therefore it is enough to consider the appearance of a commutation (or
not) in the first position of a reduced word, using the identity

A(k,j)
n = A(1,j)

n

for all 1 ≤ k ≤ �− 1. Thus equation (4) can be rewritten as

E(Cn) = �− 1− 2(�− 1)
n−2∑
j=1

E(A(1,j)
n ).

The expected value E(A
(1,j)
n ) is equal to the probability that the reduced word

for w0 is
j(j + 1)i3i4 · · · i�,

in which case i3i4 · · · i� is a reduced word for the permutation

a(j)n = sj+1sjw0

= n(n− 1)(n− 2) · · · (j + 3)(j + 1)j(j + 2)(j − 1) · · ·321,

in one-line notation.
The permutation a

(j)
n is vexillary, meaning that we can enumerate its reduced

words by counting standard Young tableaux as described in Theorem 2.6. The shape
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δ9 λ(a
(3)
9 )

Figure 1: The staircase shape δ9 corresponding to w0 ∈ S9 and the shape λ(a
(3)
9 ).

The shaded cells are the only ones in which the hook-lengths for the two shapes will
differ.

λ(a
(j)
n ) is obtained from the staircase shape δn by deleting the corner squares from

rows j and j + 1 as in Figure 1. Therefore,

E(Cn) = �− 1− 2(�− 1)
n−2∑
j=1

fλ(a
(j)
n )

f δn
. (5)

We evaluate equation (5) using the hook-length formula. In fact, many hook-
lengths of δn and λ(a

(j)
n ) are the same, and thus cancel in the ratio

fλ(a
(j)
n )

f δn
.

The only non-identical hook-lengths in the shapes δn and λ(a
(j)
n ) occur as indicated

in Figure 1, and so equation (5) becomes

E(Cn) = �− 1− 2(�− 1)

n−2∑
j=1

(�− 2)!

�!
· 3 ·

(
2

3

)2

uj−1ujun−j−2un−j−1,

where
ui =

3 · 5 · · · (2i+ 1)

2 · 4 · · · (2i) .

Thus

E(Cn) = �− 1− 8

3�

n−2∑
j=1

uj−1ujun−j−2un−j−1

= �− 1− 1

3�22n−7

n−2∑
j=1

(2j − 1)!!

(j − 1)!
· (2j + 1)!!

j!
· (2n− 2j − 3)!!

(n− j − 2)!
· (2n− 2j − 1)!!

(n− j − 1)!
,

completing the proof.
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3 Asymptotic behavior

In this last section of the paper, we analyze the expected value E(Cn) as n goes to
infinity. In fact, we will draw conclusions about appearances of all three possibilities
of consecutive symbols in a reduced word for the longest element: commutations,
consecutive noncommuting pairs i(i+ 1) or (i+ 1)i, and long braid moves.

Set

σ(j)
n =

1

3
(
n
2

)
22n−7

· (2j − 1)!!

(j − 1)!
· (2j + 1)!!

j!
· (2n− 2j − 3)!!

(n− j − 2)!
· (2n− 2j − 1)!!

(n− j − 1)!
,

and recall from Theorem 2.7 that

n−2∑
j=1

σ(j)
n = 2E(An).

In particular, this is the expected number of consecutive noncommuting pairs in a
reduced word for w0 ∈ Sn.

Central binomial coefficients satisfy
(
2x

x

)
≤ 4x√

πx
.

Combining this with the fact that

(2x− 1)!!

(x− 1)!
=

(
2x

x

)
· x

2x

yields

σ(j)
n =

256

3π2
·
√
j(j + 1)(n− j − 1)(n− j)

n(n− 1)

≈ 256

3π2
· j(n− j)

n2
.

Similarly, (
2x

x

)
≥ 4x√

πx
·
(
1− 1

8x

)

yielding the lower bound

σ(j)
n ≥ 256

3π2
·
√
j(j + 1)(n− j − 1)(n− j)

n(n− 1)

·
(
1− 1

8j

)
·
(
1− 1

8(j + 1)

)
·
(
1− 1

8(n− j − 1)

)
·
(
1− 1

8(n− j)

)

≈ 256

3π2
· j(n− j)

n2

(
1− n

8j(n− j)

)2

.
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Therefore
σ(j)
n =

256

3π2
· j(n− j)

n2
+O

(
1

n

)
.

From this we can compute the asymptotic behavior of the expected number of
consecutive pairs of noncommuting symbols in a reduced word for w0 ∈ Sn:

2E(An) =

n−2∑
j=1

σ(j)
n

=
256

3π2

n−2∑
j=1

j(n− j)

n2
+ O(1)

=
256

3π2

(
(n− 1)(n− 2)

2n
− (n− 1)(n− 2)(2n− 3)

6n2

)
+O(1)

=
128

9π2
· (n− 1)(n− 2)(n+ 3)

n2
+O(1)

=
128

9π2
n+O(1). (6)

Combining equation (6) with Theorem 2.7 yields

E(Cn) =

(
n

2

)
− 1− 2E(An)

=

(
n

2

)
− 128

9π2
n +O(1). (7)

It is interesting to compare equation (7) with Theorem 1.4. These computations
imply that appearances of commutations and appearances of long braid moves have
vastly different behaviors in reduced words for the longest element. Namely, while
only one long braid move is expected to appear, nearly all positions are expected to
support commutations. This is, perhaps, not surprising because commutations are
positions in a reduced word where a symbol i is followed by anything other than
{i − 1, i, i + 1}, and the proportion (n − 4)/(n − 1) of “acceptable” successors to i
approaches 1 as n gets large.

To conclude this article, we use equations (6) and (7) and Theorem 1.4 to state the
asymptotic expectation of the proportion of appearances of Coxeter-related behaviors
in reduced words for w0 ∈ Sn.

Corollary 3.1. Consider the reduced words for the longest element w0 ∈ Sn.

• E(number of commutations)
length

≈ 1

• E(number of consecutive noncommuting pairs)
length

≈ 256

9π2n

• E(number of long braid moves)
length

≈ 2

n2
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