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Abstract

A k-hypertournament H on n vertices, where 2 ≤ k ≤ n, is a pair
H = (V,AH), where V is the vertex set of H and AH is a set of k-tuples
of vertices, called arcs, such that for all subsets S ⊆ V of order k, AH con-
tains exactly one permutation of S as an arc. Inspired by the successful
extension of classical results for tournaments (i.e. 2-hypertournaments)
to hypertournaments, by Gutin and Yeo [J. Graph Theory 25 (1997),
277–286] and Li et al. [Discrete Appl. Math. 161 (2013), 2749–2752], we
will prove the following: every strong k-hypertournament on n vertices,
where n ≥ k+2 ≥ 3, contains a vertex all of whose out-arcs are pancyclic.
This is a generalization of a known result for tournaments, by Yao et al.
[Discrete Appl. Math. 99 (2000), 245–249]. Furthermore, our result is
best possible in the sense that the bound n ≥ k + 2 is tight.

1 Introduction and Terminology

For all notation not explicitly defined here, we follow [1]. A directed k-hypergraph H
is a tuple (V,A), where V is the vertex set of H and the arc set A of H consists of
k-tuples of vertices. If the vertex and arc set of H are not specified, we denote them
by V (H) and A(H), respectively.

A digraph D is a directed 2-hypergraph. Let D be a digraph. Instead of (x, y) ∈
A(D), we mostly use the notation xy ∈ A(D) or x → y. If X and Y are two disjoint
subsets of V (D), then X ⇒ Y conveys that there are no arcs from Y to X and
X → Y implies xy ∈ A(D) for all x ∈ X and y ∈ Y . For subdigraphs D1, D2 ⊆ D
we write D1 ⇒ D2 and D1 → D2, to express V (D1) ⇒ V (D2) and V (D1) → V (D2),
respectively.

Let X be a subset of V (D). D[X] := (X, {xy ∈ A(D) | x, y ∈ X}) is the
subdigraph of D induced by X. The out-neighborhood of a vertex x ∈ X in D[X]
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is the vertex set N+
D[X](x) := {y | xy ∈ A(D[X])}. The in-neighborhood N−

D[X](x)

is defined analogously. We write N+ and N− instead of N+
D and N−

D , respectively.
The number of out-neighbors of a vertex x, denoted by d+D[X](x), is called out-degree.
As before, we define the in-degree analogously. D − X denotes the subdigraph
D[V (D) \X]. If X consists of a single vertex x ∈ V (D), we write D − x instead of
D − {x}.

For a non-empty vertex set V let AV := {xy | xy ∈ V 2, x 	= y} denote the arc set
of a complete digraph on the vertex set V .

LetH=(V,AH) be a directed k-hypergraph on n vertices. An arc a = (x1, . . . , xk)
∈ AH is called an out-arc of x1 and an in-arc of xk. The set of all out-arcs of a
vertex x is denoted by OutH(x). Furthermore, a−1 := (xk, . . . , x1) is the reverse arc
of a and the converse directed k-hypergraph H−1 := (V,A(H−1)) is defined through
A(H−1) := {a−1 | a ∈ AH}.

Let X ⊆ V . For xy ∈ AV , we define AH(x, y)
∣∣
X

⊆ AH as the set of all arcs
a = (x1, . . . , xk) ∈ AH such that there are indices 1 ≤ i0 < i1 ≤ k with xi0 = x,
xi1 = y and xi ∈ X for all i ∈ {1, . . . , k} \ {i0, i1}. Instead of AH(x, y)

∣∣
V
we write

AH(x, y). Furthermore, AH

∣∣
X
denotes the set of arcs in AH that contain only vertices

from X. If OutH(x) ⊆ AH

∣∣
X

holds for all x ∈ X , we call X self-contained.
An (x1, xl+1)-path of length l or l-path from x1 to xl+1 in H is a sequence P =

x1a1x2 . . . alxl+1 such that the vertices x1, . . . , xl+1 ∈ V and the arcs a1, . . . , al ∈ AH

are pairwise distinct and ai ∈ AH(xi, xi+1) holds for all 1 ≤ i ≤ l. An l-cycle in H is
defined analogously with the exception that x1 = xl+1 holds. If we consider an l-cycle
C = x1a1x2 . . . alx1 in a directed hypergraph, let xl+1 denote x1, for convenience.
An n-cycle ((n − 1)-path, respectively) in H is called Hamiltonian. A vertex (an
arc, respectively) of H is called pancyclic, if it is contained in an l-cycle for all
l ∈ {3, . . . , n}. H is vertex-pancyclic, if all of its vertices are pancyclic. For a path
P = x1a1 . . . al−1xl in H and two vertices xi, xj ∈ V (P ) with i ≤ j, we define xiPxj

as the unique (xi, xj)-subpath of P . xCy is the corresponding subpath of a cycle C
in H .

Since the sequence of vertices of a path (or cycle, respectively) in a digraph
D defines the arcs connecting them, in this case, we usually omit the arcs in our
notation. If P is an (x, y)-path and Q is a (v, w)-path in a digraph D such that
v ∈ N+

D(y) and V (P ) ∩ V (Q) = ∅ holds, then PQ denotes the path obtained by
appending Q to P .

H is called strong, if there is an (x, y)-path in H for all x, y ∈ V , x 	= y. A strong
componentD′ of a digraph D is a maximal strong induced subgraph ofD. The strong
components D1, . . . , Dr of a digraph D can be ordered such that D1 ⇒ D2 ⇒ . . .Dr

holds. The strong components of a digraph D in this order are called the strong
decomposition of D; D1 is the initial, Dr the terminal component of this composition.

For 2 ≤ k ≤ n, a k-hypertournament H = (V,AH) on n vertices is a di-
rected k-hypergraph such that the following statement holds: For every subset
S ⊆ V of order k, AH contains exactly one ordered k-tuple of the vertices con-
tained in S. k-Hypertournaments are therefore a generalization of tournaments (i.e.
2-hypertournaments).
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As Volkmann [13] says in one of several surveys on the subject published over the
past fifty years, “tournaments are without doubt the best studied class of directed
graphs”. In recent years, there has also been an increased interest in generalizations
of tournaments. The simplest of these generalizations is the class of semicomplete
digraphs. While in a tournament, every pair of distinct vertices is connected by
exactly one arc, in a semicomplete digraph, every such pair is connected by at least
one arc. Many results for tournaments are easily proven to hold for semicomplete
digraphs as well.

Other well-studied generalizations are for example multipartite tournaments [13]
and locally-semicomplete digraphs [3] (see [2] for more). A property all of them have
in common is that they are all still classes of digraphs. k-Hypertournaments differ
from these generalizations in that respect. As a consequence, in general, there is no
substructure of a k-hypertournament equivalent to the aforementioned strong decom-
position of a digraph. This was shown for example in [5]. This absence of structure
constitutes an obstacle, as, during the process of extending known results for tour-
naments to hypertournaments, one realizes quickly that its existence is integral to
many of the proofs.

To circumvent this problem, in 1997, Gutin and Yeo [6] introduced the following
auxiliary digraph.

Definition 1.1. Let H = (V,AH) be a k-hypertournament on n ≥ k ≥ 3 vertices.
The majority digraph M(H) = (V,Amaj(H)) of H is a digraph on the same vertex
set V such that for all xy ∈ AV the following holds:

xy ∈ Amaj(H) if and only if |AH(x, y)| ≥ |AH(y, x)|. (1)

Remark 1.2.

• M(H) is obviously a semicomplete digraph.

• Condition (1) is equivalent to:

|AH(x, y)| ≥ 1

2

(
n− 2

k − 2

)
. (2)

• When the considered hypertournament H = (V,AH) is evident, we will also use
the notation xy ∈ Amaj(H) to express that xy ∈ AV and |AH(x, y)| ≥ 1

2

(
n−2
k−2

)
holds, even if we do not consider the majority digraph explicitly.

Using this new substructure, Gutin and Yeo were able to prove generalizations of
two classical results for tournaments by Rédei (1.3) and Camion (1.5), respectively.

Theorem 1.3. [11] Every tournament contains a Hamiltonian path.

Theorem 1.4. [6] Every k-hypertournament on n ≥ k + 1 ≥ 4 vertices contains a
Hamiltonian path.

Theorem 1.5. [4] Every strong tournament contains a Hamiltonian cycle.
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Theorem 1.6. [6] Every strong k-hypertournament on n ≥ k + 2 ≥ 5 vertices
contains a Hamiltonian cycle.

Furthermore, in [6], an example for a strong (n− 1)-hypertournament without a
Hamiltonian cycle is given, thus proving that the bound n ≥ k+2 is best possible. For
k = n ≥ 3, a k-hypertournament obviously contains exactly one arc and hence, no
Hamiltonian cycle or path. In addition, the question was raised whether hypertour-
naments were vertex-pancyclic, a generalization of Moon’s theorem for tournaments.

Theorem 1.7. [9] Every vertex of a strong tournament T is contained in an l-cycle
for all l ∈ {3, . . . , |V (T )|}.
Remark 1.8. Theorem 1.7 obviously holds for strong semicomplete digraphs, since
they contain a strong tournament as a subdigraph.

In 2006, Petrovic and Thomassen [10] and Yang [14], in 2009, gave some sufficient
conditions for hypertournaments to be vertex-pancyclic. Finally, the general question
was answered in the affirmative by Li et al., in 2013.

Theorem 1.9. [8] Every strong k-hypertournament on n ≥ k + 2 ≥ 5 vertices is
vertex-pancyclic.

Inspired by the successful extension of these known results for tournaments to
hypertournaments, the goal of this paper is to prove a generalization of the following
theorem, by Yao et al.

Theorem 1.10. [15] A strong tournament contains a vertex u such that all out-arcs
of u are pancyclic.

Theorem 1.10 itself is a generalization of Theorem 1.11, due to Thomassen.

Theorem 1.11. [12] If T is a strong tournament, then T contains a vertex x such
that every arc going out from x is contained in a Hamiltonian cycle.

The standard method to prove such generalizations usually takes advantage of
the fact that many results for tournaments also hold for semicomplete digraphs.
Consider for example the proof of Theorem 1.6. If the majority digraph of a hy-
pertournament H is strong, then it is a strong semicomplete digraph and thus, it
contains a Hamiltonian cycle C by Remark 1.8. Now it suffices to find pairwise dis-
tinct arcs in H that correspond to those in C to find a Hamiltonian cycle in H . By
the definition of the majority digraph, this translation is rather elementary in most
cases, only a few exceptions remain to consider.

Unfortunately, Theorem 1.10 does not hold for semicomplete digraphs, as illus-
trated by the following example. Therefore, the proof of its generalization will be
somewhat more complex.

Example 1.12. An opera-ball-digraph is obtained from a strong tournament by
replacing each of its vertices with a complete digraph of order two, called a couple
or partners.
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Figure 1: The smallest opera-ball-digraph.

Let D be an opera-ball-digraph. Then by definition, D is a strong semicomplete
digraph. Let x be a vertex of D and let y be its partner. Then xy ∈ A is an out-arc
of x. By definition of D, all couples have the same in- and out-neighborhood (except
for their respective partners). Furthermore, there are no 2-cycles between couples,
since the underlying digraph is a tournament. Therefore, there is no out-neighbor z
of y that is also an in-neighbor of x. Thus, the arc xy is not contained in a 3-cycle
and is particularly not pancyclic.

Therefore, opera-ball-digraphs, a subclass of semicomplete digraphs, do not con-
tain a vertex whose all out-arcs are pancyclic.

Even if Theorem 1.10 would hold for semicomplete digraphs, a simple majority
digraph would still not be the right substructure to consider. The fact that all out-
arcs of a vertex are pancyclic in the majority digraph does by no means imply that
all out-arcs of said vertex are pancyclic in the hypertournament, as not all arcs of the
hypertournament are represented in the majority digraph. Therefore, we introduce
a new kind of majority digraph tailored to our needs in the following proofs.

Definition 1.13. Let H = (V,AH) be a k-hypertournament on n ≥ k ≥ 3 vertices
and let X ⊆ V . A semicomplete digraph D = (V,AD) is then called an X-out-arc-
majority digraph of H , if there is a function RD : AV → P(AH) such that the
following conditions are met:

(a) For all xy ∈ AV we have:

(i) RD(xy) ⊆ AH(x, y).

(ii) RD(xy) 	= ∅ implies xy ∈ AD.

xy ∈ AD \ Amaj(H) implies RD(xy) 	= ∅.
(iii) RD(xy) = RD(yx) = ∅ implies {xy, yx} ∩ Amaj(H) ⊆ AD.

{xy, yx} ⊆ AD implies RD(xy) = RD(yx) = ∅ or

RD(xy) 	= ∅ 	= RD(yx).

(b) For all xy ∈ AX we have RD(xy) ⊆ OutH(x).

(c) For all a ∈ AH there is exactly one xy ∈ AD with a ∈ RD(xy).

We call RD a representative function of D and denote the set of all such functions
by REPD. Condition (c) allows us to define a quasi-inverse function R↓

D of RD:

R↓
D : AH → AD, a �→ xy :⇔ a ∈ RD(xy).
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By OAMDX(H), we denote the set of all X-out-arc-majority digraphs of H . A V -
out-arc-majority digraph of H is also simply called an out-arc-majority digraph of H
and the set of all such digraphs is denoted by OAMD(H).

The motivation for these rather technical definitions will become more apparent
through the proof of the following easy theorem, which illustrates how to obtain an
out-arc-majority digraph of an arbitrary k-hypertournament.

Theorem 1.14. Let H = (V,AH) be a k-hypertournament on n ≥ k ≥ 3 vertices.
Then OAMD(H) 	= ∅.
Proof. We construct a semicomplete digraph D = (V,AD) and a representative func-
tion RD of D.

0. We start with D := (V, ∅) and RD : AV → P(AH), xy �→ ∅.
1. Now for every arc a = (x1, . . . , xk) ∈ AH , we choose an i ∈ {2, . . . , k}. The

out-arc a of x1 in the hypertournament H shall be represented by the out-arc
x1xi of x1 in the digraph D. Thus, we add x1xi to AD and add a to RD(x1xi)
(the set of arcs of the hypertournament represented by x1xi).

After step 1, conditions 1.13 (a)(i), (a)(ii), (b) and (c) are met.

2. For all vertices x, y ∈ V , x 	= y, that are not yet adjacent in D, we add
{xy, yx} ∩Amaj(H) to AD to guarantee that D is semicomplete.

After step 2, condition 1.13 (a)(iii) is met. The conditions (a)(i), (a)(ii), (b)
and (c) remain unaffected.

Ideally, we will find a strong out-arc-majority digraph D = (V,AD) of H , i.e. for
every vertex x ∈ V , an out-arc a ∈ AH of x is represented by an out arc xy ∈ AD

of x. In this case, all we need to do is to find a vertex in D, whose all out-arcs are
pancyclic in D and can easily translate the cycles involved to corresponding cycles
in H via the representative function. But such an out-arc-majority digraph need
not exist. All we can guarantee is a strong X-out-arc-majority digraph D for a
suitable vertex set X ⊆ V . The task is to find such a suitable vertex set that, at
the same time, contains a vertex, whose all out-arcs are pancyclic in D, to allow for
the translation mentioned above. To make things even more complicated, remember
that in general, semicomplete digraphs such as out-arc-majority digraphs need not
contain such a vertex. Thus, we will rather have to find a collection of X-out-arc-
majority digraphs and a vertex x ∈ X such that every out-arc of x is pancyclic in at
least one of these digraphs.

To this end, in the following section, we give several technical lemmata for later
use in the proof of our main result:

Theorem 1.15. Let H be a strong k-hypertournament on n ≥ k + 2 ≥ 5 vertices.
Then H contains a vertex, whose all out-arcs are pancyclic.

Remark 1.16. The example of a strong (n−1)-hypertournament on n vertices without
a Hamiltonian cycle given in [6] implies that the bound n ≥ k + 2 is best possible.
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2 Preliminaries

First, we gather some known results. We begin with two lemmata originally formu-
lated for tournaments by Yeo, but they hold for semicomplete digraphs as well.

Lemma 2.1. [16] Let D = (V,AD) be a non-strong semicomplete digraph, let D1, . . . ,
Dr be the strong decomposition of D, 1 ≤ i < j ≤ r, x ∈ V (Di), y ∈ V (Dj) and
l ∈ {1, . . . , |⋃i≤s≤j V (Ds)| − 1}. Then there is an (x, y)-path of length l in D.

Lemma 2.2. [16] Let D = (V,AD) be a strong digraph and let x ∈ V such that
D−x is semicomplete and d+D(x)+ d−D(x) ≥ |V |. Then there is an l-cycle containing
x in D for all l ∈ {2, . . . , |V |}.

Furthermore, we will use the following version of Hall’s marriage theorem and
the subsequent obvious corollary.

Theorem 2.3. [7] Let S be a set, let J be a finite index set and let (Ti)i∈J be a
family of subsets of S. Then there is an injective function r : J → S with r(i) ∈ Ti

for all i ∈ J if and only if |I| ≤ |⋃i∈I Ti| holds for all I ⊆ J .

Corollary 2.4. Let H = (V,AH) be a k-hypertournament, where k ≥ 3, let X ⊆ V ,
D = (V,AD) ∈ OAMDX(H) and let C be a cycle in D. If |I| ≤ |⋃vw∈I AH(v, w)|
for all I ⊆ A(C), then every arc in

⋃
vw∈A(C) AH(v, w) is contained in a cycle CH in

H on the same vertex set as C, particularly of the same length.

Proof. Let C = x1 . . . xlx1. Theorem 2.3 guarantees the existence of an injective
function r : A(C) → AH with r(vw) ∈ AH(v, w) for all vw ∈ A(C). Thus, CH :=
x1r(x1x2)x2 . . . xlr(xlx1)x1 is a cycle in H . If a ∈ AH(v, w) for some vw ∈ A(C) is
not contained in CH , simply exchange r(vw) for a in CH .

Lemma 2.5. [5] Let H = (V,AH) be a strong 3-hypertournament on n ≥ 5 vertices,
let D = (V,AD) be a strong semicomplete digraph on the vertex set of H, BD ⊆ AD

with AD \BD ⊆ Amaj(H) and r : BD → AH an injective function, such that r(xy) ∈
AH(x, y) holds for all xy ∈ BD. Then for every cycle C in D, there is a cycle CH

in H on the same vertex set. Furthermore, if C contains an arc xy ∈ BD, then CH

can be chosen, such that r(xy) is contained in CH .

The following lemma is easy to verify.

Lemma 2.6. Let k ≥ 4 and n ≥ k + 2.

• If (n, k) /∈ {(6, 4), (7, 4), (7, 5)}, then (
n−2
k−2

) ≥ 2n− 1 holds.

• If (n, k) 	= (6, 4), then
(
n−2
k−2

) ≥ 2n− 4 holds.

To allow us to exchange undesirable arcs of an out-arc-majority digraph for more
suitable ones, we give the following definition.
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Definition 2.7. Let H = (V,AH) be a k-hypertournament on n ≥ k ≥ 3 vertices,
let X ⊆ V , D = (V,AD) ∈ OAMDX(H), RD ∈ REPD, xy ∈ AV and a ∈ OutH(x) ∩
AH(x, y) \RD(xy). We define D(RD, x, a, y) := (V,AD(RD ,x,a,y)) through:

(i) (AD ∪ {xy}) \ {yx,R↓
D(a), R

↓
D(a)

−1} ⊆ AD(RD ,x,a,y).

(ii) AD(RD ,x,a,y) ⊆ AD ∪ {xy,R↓
D(a)

−1}.
(iii) yx ∈ AD(RD ,x,a,y) if and only if RD(yx) 	= ∅.
(iv) R↓

D(a) ∈ AD(RD ,x,a,y) if and only if RD(R
↓
D(a)) 	= {a} or

RD(R
↓
D(a)

−1) = ∅ and R↓
D(a) ∈ Amaj(H).

(v) R↓
D(a)

−1 ∈ AD(RD ,x,a,y) if and only if RD(R
↓
D(a)

−1) 	= ∅ or

RD(R
↓
D(a)) = {a} and R↓

D(a)
−1 ∈ Amaj(H).

The representative function RD(RD ,x,a,y) : AV → P(AH) is defined trough:

vw �→

⎧⎪⎨
⎪⎩
RD(vw), if vw ∈ AV \ {xy,R↓

D(a)}.
RD(vw) ∪ {a}, if vw = xy.

RD(vw) \ {a}, if vw = R↓
D(a).

It is easy to check that D(RD, x, a, y) ∈ OAMDX(H) and RD(RD ,x,a,y) ∈ REPD

hold, given the assumptions of Definition 2.7. Essentially, we change the represen-
tative of the arc a ∈ AH(x, y). It is now represented by xy in D(RD, x, a, y) and no
longer by R↓

D(a). All we then have to do, is to consider the reverse arcs of xy and
R↓

D(a) to guarantee that the resulting digraph is indeed in OAMDX(H). Thus, D
and D(RD, x, a, y) differ in at most four arcs.

We will put this new definition to work immediately in the following lemma.

Lemma 2.8. Let H = (V,AH) be a k-hypertournament on n ≥ k ≥ 3 vertices,
D = (V,AD) ∈ OAMD(H) and let X be the vertex set of the terminal component of
the strong decomposition of D. If there is a vertex x ∈ X with an out-arc a ∈ AH

that contains a vertex y ∈ V \ X, then there exists a D′ = (V,AD′) ∈ OAMD(H)
such that |X| < |X ′| holds for the vertex set X ′ of the terminal component of the
strong decomposition of D′.

Proof. Let RD ∈ REPD. Since D[X ] is a strong semicomplete digraph, by Remark
1.8, there is either a Hamiltonian cycle x1x2 . . . xlx1 in D[X] or D[X] consists of the
single vertex x. In the former case let l := |X|. Without loss of generality, we may
assume that x = xl and we have yx1 ∈ AD and xy /∈ AD, since x1, x ∈ X and y is
contained in a component preceding X. In the case X = {x}, a contains a vertex
x1 ∈ V \ (X ∪ {y}), since k ≥ 3. Without loss of generality, we may assume that
yx1 ∈ AD. Otherwise, we rename x1 and y. We define l = 2 and xl = x2 := x. As in
the first case, we then have xy /∈ AD. Particularly, a /∈ RD(xy) holds in both cases
and D′ = (V,AD′) := D(RD, x, a, y) is well-defined.

By Definition 2.7 (i) and (ii), D and D′ differ in at most the arcs xy, yx,
R↓

D(a) and R↓
D(a)

−1, which are all incident with x = xl. Hence, yx1x2 . . . xl−1
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is a path in D′, since yxi ∈ AD for all 1 ≤ i ≤ l and yx1 not incident with
x. Analogously, xl−1xl /∈ {xy, yx, R↓

D(a), R↓
D(a)

−1}, implies xl−1xl ∈ AD′ . If
xl−1xl ∈ {xy, yx, R↓

D(a), R
↓
D(a)

−1}, then xl−1xl = R↓
D(a)

−1, since R↓
D(a) is an out-arc

of x = xl and y 	= xl−1. Consequently, we then have a ∈ RD(R
↓
D(a)) = RD(xlxl−1)

and therefore, xlxl−1 ∈ AD, by Definition 1.13 (ii). From {xl−1xl, xlxl−1} ⊆ AD and
a ∈ RD(xlxl−1), we get RD(R

↓
D(a)

−1) = RD(xl−1xl) 	= ∅, by Definition 1.13 (iii).
Thus, as in the first case, we have xl−1xl = R↓

D(a)
−1 ∈ AD′ , by Definition 2.7 (v).

Altogether C := yx1x2 . . . xly is an (l + 1)-cycle in D′.
Suppose that V (C) is not a subset ofX ′ (the vertex set of the terminal component

of the strong decomposition of D′). By the definition of the strong decomposition,
there is a vertex z ∈ X ′ \ V (C) such that xlz ∈ AD′ holds. Since R↓

D(a) is an out-
arc of x, z 	= y and AD′ \ AD ⊆ {xy,R↓

D(a)
−1}, we have xlz ∈ AD. Thus, xlz is

an arc from a vertex xl from the terminal component of the strong decomposition
of D to a vertex z from a component preceding it, a contradiction. Therefore,
|X ′| ≥ |V (C)| = l + 1 > l = |X| holds.
Lemma 2.9. Let H = (V,AH) be a strong k-hypertournament on n ≥ k ≥ 3 vertices
and D ∈ OAMD(H) such that the cardinality of the vertex set X of the terminal
component of the strong decomposition of D is maximum. Then |X| ≥ k + 1 holds
or H contains a vertex without an out-arc.

Proof. Suppose that every vertex of H has an out-arc. If X contains less than k+ 1
vertices, then at most one arc of H contains solely vertices from X. The existence
of such an arc obviously implies |X| = k ≥ 3. Combined with the fact that every
vertex has an out-arc, it follows that there is a vertex x ∈ X with an out-arc a ∈ AH

that contains a vertex y ∈ V \X, a contradiction to the maximality of X, by Lemma
2.8.

With the next two lemmata we lay some groundwork for the cases (n, k) ∈
{(6, 4), (7, 4), (7, 5)}, which we will have to consider separately from all other cases.

Lemma 2.10. Let H = (V,AH) be a strong k-hypertournament on n = k+2 vertices.
Then there exists a strong D ∈ OAMD(H) or H contains a vertex without an out-arc.

Proof. Suppose that every vertex of H has an out-arc. Let D ∈ OAMD(H) such
that the cardinality of the vertex set X of the terminal component of the strong
decomposition of D is maximum. By Lemma 2.9, X contains at least k+1 vertices.
Suppose that |X| = k + 1 = n − 1. Let y ∈ V \ X. Since H is strong, there is
an arc a ∈ AH(x

′, y) for some vertex x′ ∈ V \ {y} = X. Obviously, a is an out-arc
of some vertex x ∈ X. By Lemma 2.8, there exists a D′ ∈ OAMD(H) such that
n − 1 = |X| < |X ′| holds for the vertex set X ′ of the terminal component of the
strong decomposition of D′. Therefore, D′ is strong.

Lemma 2.11. Let H = (V,AH) be a strong 4-hypertournament on 7 vertices. Then
there exists a strong D ∈ OAMD(H) or H contains a vertex whose all out-arcs are
pancyclic.



Y. GUO AND M. SURMACS/AUSTRALAS. J. COMBIN. 61 (3) (2015), 227–250 236

Proof. Suppose that every vertex of H has an out-arc. Let D ∈ OAMD(H) such
that the cardinality of the vertex set X of the terminal component of the strong
decomposition of D is maximum. By Lemma 2.9, X contains at least 5 vertices. If
|X| = 6 = n− 1, we find a strong D′ ∈ OAMD(H) as in the proof of Lemma 2.10.

Suppose that X = {x3, . . . , x7}, i.e. |X| = 5. By Lemma 2.8, out-arcs of vertices
from X contain solely vertices from X. Since

(
5
4

)
= 5 = |X|, xi ∈ X has exactly one

out-arc ai ∈ AH for all i ∈ {3, . . . , 7} and AH

∣∣
X

= {a3, . . . , a7} holds. We consider

such an out-arc ai ∈ AH

∣∣
X
. Without loss of generality, we may assume that i = 3.

a3 contains x3 and three more vertices from X . Without loss of generality, we may
assume that these vertices are x4, x5 and x6, where their order is irrelevant. Since
every vertex from X is contained in exactly four arcs from AH

∣∣
X
, x3 is contained in

at least two of the arcs from {a4, a5, a6}. Without loss of generality, we may assume
that these arcs are a5 and a6. Conversely, every arc from AH

∣∣
X
contains exactly four

vertices fromX, and thus, a4 contains at least one vertex from {x5, x6}. Without loss
of generality, we may assume a4 contains x6. Altogether, Ca3,3 := x3a3x4a4x6a6x3 is
a 3-cycle in H that contains a3.

Since x7 is not contained in a3, it is contained in a4, a5 and a6. Furthermore, a7
contains either x5 or x6. Without loss of generality, we may assume that it contains
x6. Then Ca3,4 := x3a3x4a4x7a7x6a6x3 is a 4-cycle in H that contains a3.

If a7 does not contain the vertex x5, then it is contained in a6 and we obtain a
5-cycle Ca3,5 := x3a3x4a4x7a7x6a6x5a5x3 in H that contains a3. If a7 contains x5 (in
addition to x6), then we consider a4, which, again, contains at least one of these two
vertices. Without loss of generality, we may assume that a4 contains x6, whereby
we obtain the 5-cycle Ca3,5 := x3a3x4a4x6a6x7a7x5a5x3 in H that contains a3. Since
i = 3 was chosen arbitrarily, ai ∈ AH

∣∣
X
is contained in an l-cycle in H that consists

solely of arcs from AH

∣∣
X

for all l ∈ {3, 4, 5} and all i ∈ {3, . . . , 7}.
Let {x1, x2} := V \ X. Since H is strong, there is an arc a ∈ AH from X

to {x1, x2}. Without loss of generality, we may assume that a ∈ AH(x7, x1). By
Lemma 2.8, all arcs that contain a vertex from {x1, x2} are also an out-arc of a
vertex from {x1, x2}. Thus, a ∈ AH is an out-arc of x2. Conversely, there is an
out-arc b ∈ AH of x1 that contains x2. a and b are obviously pairwise distinct
from all arcs in AH

∣∣
X
. Let i0 ∈ {3, . . . , 7} such that ai0 ∈ AH

∣∣
X

does not contain
x7 and let C = y1b1y2b2 . . . y5b5y1 be a 5-cycle in H that consists solely of arcs
from AH

∣∣
X
. Without loss of generality, we may assume that y5 = x7. b5 	= ai0

follows by the choice of ai0 . Furthermore, for all j ∈ {1, 2}, let aj be an arc that
contains xj , y1 and two more vertices from X. By Lemma 2.8, aj is an out-arc of
xj that contains y1. By definition, it is also distinct from all arcs in {a, b} ∪ AH

∣∣
X

for all j ∈ {1, 2}. Consequently, Cai0 ,6
:= y1b1y2b2 . . . y5ax1a1y1 is a 6-cycle and

Cai0 ,7
:= y1b1y2b2 . . . y5ax1bx2a2y1 is a 7-cycle in H that contains ai0 . Altogether, ai0 ,

the sole out-arc of xi0 , is pancyclic in H .

We will use the following lemma in the case that there is no strong X-out-arc-
majority digraph containing a vertex whose all out-arcs are vertex pancyclic. As
mentioned in the introduction, we will then consider different X-out-arc-majority
digraphs for each out-arc of a suitable vertex.
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Lemma 2.12. Let H = (V,AH) be a k-hypertournament on n ≥ k + 2 ≥ 5 ver-
tices. Let X ⊆ V be self-contained, let D = (V,AD) ∈ OAMDX(H) and let
RD ∈ REPD. For every xy ∈ AD ∩ AX with RD(xy) 	= ∅, there exist Dxy =
(V,ADxy) ∈ OAMDX(H) and RDxy ∈ REPDxy with the following properties:

(i) AD ∪AX ⊇ ADxy ⊇ AD \ ({zy | zy ∈ AD, z ∈ X \ {x}} ∪ {yx}).
(ii) RDxy(xy) = RD(xy).

(iii) d+Dxy
(x) = d+D(x).

(iv) d+Dxy
(y) ≥ 1.

(v) d+Dxy
(y) ≥ d+D(y) or |ADxy ∩AX | < |AD ∩AX |.

(vi) yx /∈ ADxy .

Proof. We will prove the following by inverse induction on m:
for all m ∈ {0, . . . , |RD(yx)|}, there are Dm ∈ OAMDX(H) and RDm ∈ REPDm such
that

AD ∪AX ⊇ ADm ⊇ AD \ ({zy ∈ AD | z ∈ X \ {x}} ∪ {yx}),
RDm(xy) = RD(xy), RDm(yx) ⊆ RD(yx), |RDm(yx)| = m,

d+Dm
(x) = d+D(x), d+Dm

(y) ≥ 1 and

(d+Dm
(y)− |ADm ∩ AX |)− (d+D(y)− |AD ∩AX |) ≥ 0

hold. The base case is trivial (D|RD(yx)| := D).
Let the statement be true for an m ∈ {1, . . . , |RD(yx)|}. By induction hypoth-

esis, we have |RDm(yx)| = m ≥ 1. Thus, we may choose an arc a = (x1, . . . , xk) ∈
RDm(yx). Definition 1.13 (b) implies x1 = y, since RDm(yx) ⊆ OutH(y). Further-
more, x = xi holds for some i ∈ {2, . . . , k}, by Definition 1.13 (a)(i). Therefore,
a is contained in OutH(y) ∩ AH(y, xj) \ RDm(yxj) for some j ∈ {2, . . . , k} \ {i},
since a ∈ RDm(yxi) and k ≥ 3. Hence, Dm−1 := D(RDm , y, a, xj) ∈ OAMDX(H)
and RDm−1 := RD(RDm ,y,a,xj) ∈ REPDm−1 are well-defined. By Definition 2.7 (i) and
(ii), ADm ∪ {yxj, xy} ⊇ ADm−1 ⊇ (ADm ∪ {yxj}) \ {xjy, yx, xy} holds, which im-
plies d+Dm−1

(y) ≥ 1. Furthermore, we have xy ∈ ADm−1 , by Definition 2.7 (iv), since

RDm(xy) 	= ∅. Thus, d+Dm−1
(x) = d+Dm

(x) = d+D(x). Altogether, we have

AD ∪AX ⊇ ADm ∪AX

⊇ ADm−1

⊇ ADm \ ({zy | zy ∈ ADm , z ∈ X \ {x}} ∪ {yx})
⊇ AD \ ({zy | zy ∈ AD, z ∈ X \ {x}} ∪ {yx}),

by induction hypothesis. In addition, we have RDm−1(xy) = RDm(xy) = RD(xy),
RDm−1(yx) = RDm(yx) \ {a} ⊆ RD(yx) and |RDm−1(yx)| = |RDm(yx) \ {a}| = m−1,
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by Definition 2.7 of RDm−1 = RD(RDm ,y,a,xj) and induction hypothesis. Since X is
self-contained, x1 = y ∈ X implies xj ∈ X.

Suppose that d+Dm−1
(y) < d+Dm

(y). By Definition 2.7 (i), ADm−1 is a superset of

(ADm ∪{yxj}) \ {xjy, yx, xy}, which implies d+Dm−1
(y) = d+Dm

(y)− 1, yxj ∈ ADm and
yx /∈ ADm−1 , since xy ∈ ADm−1 . Furthermore, we have RDm(xy) = RD(xy) 	= ∅ and
|RDm(yx)| = m ≥ 1 and thus, xy, yx ∈ ADm , by Definition 1.13 (a)(ii). ADm−1 ⊆ AD

and yx ∈ ADm \ADm−1 follow, since ADm−1 ⊆ ADm ∪{yxj, xy}, by Definition 2.7 (ii).
Consequently,

|ADm−1 ∩ AX | ≤ |(ADm ∩ AX) \ {yx}| = |ADm ∩ AX | − 1

and thus,

(d+Dm−1
(y)− |ADm−1 ∩AX |)− (d+Dm

(y)− |ADm ∩AX |)
≥ (d+Dm

(y)− 1− (|ADm ∩ AX | − 1))− (d+Dm
(y)− |ADm ∩ AX |)

= 0

hold. Suppose now that |ADm−1∩AX | > |ADm∩AX |. We have RDm(xy) = RD(xy) 	=
∅ and thus, xy ∈ ADm , by Definition 1.13 (a)(ii). Therefore, by Definition 2.7 (i),
ADm−1 ⊆ ADm ∪ {yxj, xy}, implies ADm−1 = ADm ∪ {yxj} and yxj ∈ ADm−1 \ ADm.
Hence,

(d+Dm−1
(y)− |ADm−1 ∩AX |)− (d+Dm

(y)− |ADm ∩AX |)
= (d+Dm

(y) + 1− (|ADm ∩AX |+ 1))− (d+Dm
(y)− |ADm ∩AX |)

= 0

holds. Finally, if d+Dm−1
(y) ≥ d+Dm

(y) and |ADm−1 ∩ AX | ≤ |ADm ∩AX |, then

(d+Dm−1
(y)− |ADm−1 ∩ AX |)− (d+Dm

(y)− |ADm ∩ AX |) ≥ 0

is a direct consequence.
Altogether, we have

(d+Dm−1
(y)− |ADm−1 ∩AX |)− (d+D(y)− |AD ∩AX |)

= (d+Dm−1
(y)− |ADm−1 ∩AX |)− (d+Dm

(y)− |ADm ∩ AX |)
+ (d+Dm

(y)− |ADm ∩ AX |)− (d+D(y)− |AD ∩AX |)
≥ (d+Dm

(y)− |ADm ∩ AX |)− (d+D(y)− |AD ∩AX |)
≥ 0,

by induction hypothesis.
Therefore, our statement holds by inverse induction. We consider Dxy := D0.

Dxy obviously has the properties (i), (ii), (iii) and (iv). Property (v) is implied by
(d+D0

(y) − |AD0 ∩ AX |) − (d+D(y) − |AD ∩ AX |) ≥ 0. Since RDxy(xy) = RD0(xy) =
RD(xy) 	= ∅ and |RDxy(yx)| = |RD0(yx)| = 0, we have xy ∈ ADxy , by Definition 1.13
(a)(ii), and {xy, yx} � ADxy , by Definition 1.13 (a)(iii). Thus (vi) holds as well.
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Before we give some more technical lemmata, we will need some additional nota-
tion for certain classes of X-out-arc-majority digraphs.

Definition 2.13. Let H = (V,AH) be a strong k-hypertournament on n ≥ k ≥ 3
vertices, X ⊆ V and let D = (V,AD) ∈ OAMDX(H). We then define the following
classes of X-out-arc-majority digraphs of H :

EXCX(D) := {D′ = (V, (AD \ AX) ∪B) ∈ OAMDX(H)} | B ⊆ AX}
EXCS

X(D) := {D′ ∈ EXCX(D) | D′ is strong.}
MINS

X(D) := {D′ ∈ EXCS
X(D) | min

D′′∈EXCS
X(D)

{|AD′′ ∩AX |} = |AD′ ∩AX |}

While the previous lemmata dealt with properties of certain X-out-arc-majority
digraphs, the following ones will deal with vertices that are candidates for having
pancyclic out-arcs, particularly those with small out-degree.

Lemma 2.14. Let D = (V,AD) be a strong semicomplete digraph and let v1, . . . , v|V |
be an enumeration of its vertices such that d+D(v1) ≤ . . . ≤ d+D(v|V |). Furthermore,
let x ∈ {v1, v2} and y ∈ V \ {x}. If D− y is not strong and D1, . . . , Dr is the strong
decomposition of D − y, then at least one of the following conditions holds:

• x ∈ V (Dr).

• xy /∈ AD, V (Dr−1) = {x}, Dr − v1 is a complete digraph and zy ∈ AD for all
z ∈ V (Dr − v1). Particularly, d

+
D(x) = d+D(z) follows for all z ∈ V (Dr − v1).

• x = v2 and V (Dr) = {v1}. In particular, δ+(D) = 1.

Proof. By the definition of the strong decomposition, all vertices z ∈ V (Dr) only
have out-arcs to vertices in V (Dr) ∪ {y}. Thus, d+D(z) ≤ |V (Dr)| for all z ∈ V (Dr).
Suppose that x ∈ V (Di) for some i ∈ {1, . . . , r − 1}, which implies xz ∈ AD for all
z ∈ V (Dr) and thus, d+D(x) ≥ |V (Dr)| ≥ d+D(z) for all z ∈ V (Dr). If V (Dr) = {v1},
then we have x = v2 and d+D(v1) ≤ 1. Therefore, δ+(D) = 1, since D is strong.
If V (Dr) 	= {v1}, then d+D(x) = |V (Dr)| = d+D(z) holds for all z ∈ V (Dr − v1),
by choice of x. As a direct consequence, Dr − v1 is a complete digraph, zy ∈ AD

for all z ∈ V (Dr − v1) and x has no out-arcs that do not end in Dr. Therefore,
we have xy /∈ AD, i = r − 1, since otherwise xz̄ ∈ AD for all z̄ ∈ V (Dr−1), and
V (Dr−1) = {x}, since otherwise the strong connectivity of Dr−1 would require an
arc xz̄ ∈ AD for some z̄ ∈ V (Dr−1).

Lemma 2.15. Let H = (V,AH) be a strong k-hypertournament on n ≥ k + 2 ≥ 5
vertices. Let X ⊆ V be self-contained, let D = (V,AD) ∈ MINS

X(D) and RD ∈
REPD. Furthermore, let v1, . . . , vn be an enumeration of V such that d+D(v1) ≤
. . . ≤ d+D(vn). If x ∈ {v1, v2} such that D − x is strong and xy ∈ AD ∩ AX such
that RD(xy) 	= ∅ and d+D(x) ≤ d+D(y), then either δ+(D) = 1 holds or there exist
Dxy = (V,ADxy) ∈ EXCS

X(D) such that xy is contained in ADxy and pancyclic in
Dxy, and RDxy ∈ REPDxy such that RDxy(xy) = RD(xy).
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Proof. Suppose that D − y is not strong. If x is not contained in the terminal
component of the strong decomposition of D − y, then xy ∈ AD implies δ+(D) = 1,
by Lemma 2.14. Suppose now that x is contained in the terminal component. Since
D is strong, there is a vertex x1 in the initial component of the strong decomposition
of D−y such that yx1 ∈ AD. By Lemma 2.1, there is a Hamiltonian path x1 . . . xn−1

in D− y with xn−1 = x. Thus, C := x1 . . . xn−1yx1 is a Hamiltonian cycle in D with
xn−1 = x.

Suppose now that D − y is strong. If D − {x, y} is not strong, then there is a
vertex x1 in the initial component of the strong decomposition of D − {x, y} and
a vertex xn−2 in the terminal component such that yx1, xn−2x ∈ AD, since D − x
and D − y are strong. By Lemma 2.1, there is a Hamiltonian path x1 . . . xn−2 in
D − {x, y}. Thus, C := x1 . . . xn−2xyx1 is a Hamiltonian cycle in D.

Let us now consider the X-out-arc-majority digraph Dxy of H from Lemma 2.12.
Then we have RDxy(xy) = RD(xy) 	= ∅ and therefore, xy ∈ ADxy by Definition
1.13 (a)(ii). Suppose that there is a Hamiltonian cycle C = x1 . . . xn−2xyx1 in D.
Then C is also a Hamiltonian cycle in Dxy, since ADxy ⊇ AD \ ({zy | zy ∈ AD, z ∈
X \ {x}} ∪ {yx}).

Suppose now that there is no such Hamiltonian cycle C in D. We then already
know thatD−y andD−{x, y} are strong. Dxy is strong as well, sinceDxy−y ⊇ D−y,
d+Dxy

(y) ≥ 1 and xy ∈ ADxy , by Lemma 2.12 (i), (iv) and (vi), respectively. Lemma

2.12 (i) implies Dxy ∈ EXCS
X(D). Let C̄ = x1 . . . xn−2x1 be a Hamiltonian cycle in

D − {x, y}. Since D ∈ MINS
X(D) and Dxy ∈ EXCS

X(D), we have |ADxy ∩ AX | ≥
|AD ∩AX |, by Definition 2.13. Therefore, Lemma 2.12 (v) and (iii) imply d+Dxy

(y) ≥
d+D(y) ≥ d+D(x) = d+Dxy

(x). Furthermore, yx /∈ ADxy holds, by Lemma 2.12 (vi) and

thus, d+Dxy−x(y) > d+Dxy−y(x). Consequently, there is an index i ∈ {1, . . . , n− 2} such
that yxi ∈ ADxy but xxi−1 /∈ ADxy (where x0 := xn−2). Without loss of generality, we
may assume i = 1. Hence, xn−2x ∈ ADxy , since Dxy is semicomplete, and therefore,
C := x1 . . . xn−2xyx1 is a Hamiltonian cycle in Dxy.

Thus, in both cases, Dxy is strong and contains a Hamiltonian cycle C = x1 . . .
xn−2xyx1. We now define the digraph

D′
xy := ((V \ {x, y}) ∪ {vx,y}, AD′

xy
),

where vx,y /∈ V , through

AD′
xy

:= (ADxy ∩AV \{x,y}) ∪ {vx,yz | yz ∈ ADxy} ∪ {zvx,y | zx ∈ ADxy}.

D′
xy contains the Hamiltonian cycle x1 . . . xn−2vx,yx1 and is therefore strong. Fur-

thermore, D′
xy − vx,y ⊆ Dxy is semicomplete and

d+D′
xy
(vx,y) + d−D′

xy
(vx,y) = d+Dxy−x(y) + d−Dxy−y(x) = d+Dxy

(y) + d−Dxy
(x)

≥ d+Dxy
(y) + (n− 1− d+Dxy

(x)) ≥ n− 1 = |D′
xy|

holds, since Dxy is semicomplete, yx /∈ ADxy and d+Dxy
(y) ≥ d+Dxy

(x). By Lemma 2.2,

there is an l-cycle Cl
′ = x′

1 . . . x
′
lx

′
1 in D′

xy that contains vx,y for all 2 ≤ l ≤ |D′
xy| =
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n − 1. Without loss of generality, we may assume that x′
l = vx,y. Consequently,

the arc xy ∈ Dxy is contained in an (l + 1)-cycle Cl+1 := x′
1 . . . x

′
l−1xyx

′
1 for all

2 ≤ l ≤ |D′
xy| = n− 1 and thus, is pancyclic in Dxy.

Lemma 2.16. Let H = (V,AH) be a strong k-hypertournament on n ≥ k + 2 ≥ 5
vertices. Let X ⊆ V be self-contained, let D = (V,AD) ∈ MINS

X(D) and RD ∈
REPD. Furthermore, let v1, . . . , vn be an enumeration of V such that d+D(v1) ≤ . . . ≤
d+D(vn). Then there is a vertex x ∈ {v1, v2} such that the following statement holds:
For all arcs xy ∈ AD∩AX with RD(xy) 	= ∅, there exist Dxy = (V,ADxy) ∈ EXCS

X(D)
such that xy ∈ ADxy is pancyclic in Dxy, and RDxy ∈ REPDxy such that RDxy(xy) =
RD(xy).

Proof. If δ+(D) = 1, then v1 has exactly one out-arc v1y ∈ AD. This arc is pancyclic
in D, since D, a strong semicomplete digraph, is vertex-pancyclic. Suppose now that
d+D(v1) = δ+(D) ≥ 2.

Suppose that D − v1 is strong. d+D(v1) ≤ d+D(y) is trivially true for all arcs
v1y ∈ AD ∩ AX with RD(v1y) 	= ∅ and thus, we obtain a strong X-out-arc-majority
digraph Dv1y via Lemma 2.15.

Suppose now that D − v1 is not strong. Let D1, . . . , Dr be the strong decompo-
sition of D − v1. Suppose that v2 /∈ V (Dr). Then we have v2v1 /∈ AD by Lemma
2.14 and thus, v1v2 ∈ AD. Furthermore, the completeness of Dr and the existence
of zv1 ∈ AD for all z ∈ V (Dr), guaranteed by Lemma 2.14, imply the existence
of a (z, v1)-path P l

z,v1
of length l in D[V (Dr) ∪ {v1}] for all z ∈ V (Dr) and for all

l in {1, . . . , |V (Dr)|}. In addition, there is an x1 ∈ V (D1) such that v1x1 ∈ AD,
since D is strong. By Lemma 2.1, there is an (x1, v2)-path P l

x1v2
of length l in

D[
⋃

1≤s≤r−1 V (Ds)] for all l ∈ {1, . . . , |⋃1≤s≤r−1 V (Ds)| − 1}. Let v2z ∈ AD and
l ∈ {3, . . . , n} be arbitrarily chosen. If l ≤ |V (Dr)| + 2, then v2z is contained in
the l-cycle v2P

l−2
z,v1

v2 in D. If l > |V (Dr)| + 2, then v2z is contained in the l-cycle

P
|V (Dr)|+2−l
x1,v2 P

|V (Dr)|
z,v1 x1 in D. Therefore, all out-arcs of v2 are pancyclic in D. Thus,

we may assume that v2 ∈ V (Dr).
Suppose that D − v2 is not strong. Let D̃1, . . . , D̃t be the strong decomposition

of D − v2. It follows analogously that all out-arcs of v1 are pancyclic in D or that
v1 ∈ V (D̃t). Thus, we may assume that v1 ∈ V (D̃t). By the definition of the strong
decomposition, we have zv /∈ AD for all zv ∈ (V \ (V (D1) ∪ {v1}))× V (D1) and all
zv ∈ (V \ (V (D̃1) ∪ {v2})) × V (D̃1). If there are vertices z ∈ V (D̃1) \ V (D1) and
v ∈ V (D̃s)∩V (D1) for an s ∈ {2, . . . , t}, then zv ∈ (V \(V (D1)∪{v1}))×V (D1) and
zv ∈ AD hold by the definition of the strong composition, a contradiction. If V (D̃1)\
V (D1) 	= ∅ 	= V (D̃1) ∩ V (D1), we reach the same contradiction by consideration of
an arc zv ∈ (V (D̃1) \ V (D1))× (V (D̃1) ∩ V (D1)) ⊆ (V \ (V (D1) ∪ {v1}))× V (D1),
which exists, since D̃1 is strong. Therefore, V (D̃1) ⊆ V (D1) holds. But then v ∈
V (D̃1) ⊆ V (D1) already implies that v2v ∈ (V \ (V (D1) ∪ {v1}))× V (D1) and thus,
v2v /∈ AD. Consequently, D is not strong, a contradiction.

Hence, D− v2 is strong. For all arcs v2y ∈ (AD ∩AX) \ {v2v1} with RD(v2y) 	= ∅
we have d+D(v2) ≤ d+D(y) and thus, we obtain a suitable strong X-out-arc-majority
digraph Dv2y via Lemma 2.15. Since D is strong, there is a vertex x1 ∈ V (D1) such
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that v1x1 ∈ AD. By Lemma 2.1 there exists an (x1, v2)-path P l
x1,v2 of length l in

D − v1 for all l ∈ {1, . . . , n− 2}. If v2v1 ∈ AD, then v2v1 is contained in the l-cycle
v2v1P

l−2
x1,v2

in D for all l ∈ {3, . . . , n}. Thus, all out-arcs of v2 are pancyclic.

The final lemma of this section will provide a self-contained vertex set X ⊆ V and
an appropriate X-out-arc-majority digraph that will enable us to apply the previous
lemmata.

Lemma 2.17. Let H = (V,AH) be a strong k-hypertournament on n ≥ k + 2 ≥ 5
vertices such that every vertex of H has at least one out-arc. Then there exist a
self-contained vertex set X ⊆ V and a strong digraph D ∈ OAMDX(H) such that
the following statement holds: For all digraphs D′ ∈ EXCX(D) and enumerations
v1, . . . , vn of V such that d+D′(v1) ≤ . . . ≤ d+D′(vn) we have {v1, v2} ⊆ X.

Proof. If there is a strong D ∈ OAMD(H), then we are finished. Thus, we may
assume that there is no such digraph. Let D′′ = (V,AD′′) ∈ OAMD(H) such that the
cardinality of the vertex set X of the terminal component of the strong decomposition
of D′′ is maximum and let RD′′ ∈ REPD′′. By Lemma 2.8, X is self-contained. We
construct a suitable X-out-arc-majority digraph D = (V,AD) of H and an RD ∈
REPD as follows:

0. We start with D := (V,AD′′ ∩AX) and

RD : AV → P(AH), xy �→
{
RD′′(xy), if xy ∈ AX ,

∅, otherwise.

After this step, D restricted to AX is identical to RD′′ ∈ REPD′′ . Thus, the con-
ditions 1.13 (a) and (b) hold for all xy ∈ AX as well as RD(xy) ⊆ AH(x, y)

∣∣
X
,

since otherwise, there would exist an arc a = (x1, . . . , xk) ∈ AH(x, y) such that
x1 = x ∈ X and an index i0 ∈ {2, . . . , k} such that xi0 ∈ V \X , in contradiction
to Lemma 2.8. Furthermore, for all a ∈ AH there is at most one xy ∈ AD with
a ∈ RD(xy).

1. For all xy ∈ (V \X)×X we have AH(x, y)
∣∣
X
⊆ OutH(x), since otherwise, there

would exist an arc a = (x1, . . . , xk) ∈ AH(x, y)
∣∣
X

such that x1 ∈ X and an
index i0 ∈ {2, . . . , k} with xi0 = x ∈ V \ X, in contradiction to Lemma 2.8.
Particularly, AH(x1, y1)

∣∣
X

∩ AH(x2, y2)
∣∣
X

= ∅ holds for all x1, x2 ∈ V \ X,
x1 	= x2 and y1, y2 ∈ X. Furthermore, we have

|AH(x, y)
∣∣
X
| =

(|X| − 1

k − 2

)
≥

( |X| − 1

(|X| − 1)− 2

)
=

(|X| − 1

2

)

=
|X|2 − 3|X|+ 2

2
≥ |X| − 1

for all xy ∈ (V \ X) × X and k ≥ 4, since k ≤ |X| − 1 by choice of D′′ and
Lemma 2.9. For k = 3, |AH(x, y)

∣∣
X
| = |X| − 1 follows directly.

Let x ∈ V \X and I ⊆ {x} × X . If |I| > |⋃xy∈I AH(x, y)
∣∣
X
|, then |I| = |X|

and |⋃xy∈I AH(x, y)
∣∣
X
| = |X| − 1 = |AH(x, y)

∣∣
X
| holds for all xy ∈ I and
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thus, AH(xy1)
∣∣
X

= AH(xy2)
∣∣
X

for all xy1, xy2 ∈ I. Therefore, every arc in⋃
xy∈I AH(x, y)

∣∣
X

contains at least |I| = |X| ≥ k + 1 vertices, a contradiction.

Hence, |I| ≤ |⋃xy∈I AH(x, y)
∣∣
X
| and we obtain an injective function rx : {x}×

X → AH such that rx(xy) ∈ AH(x, y)
∣∣
X

via Hall’s marriage theorem (2.3).

Since AH(x1, y1)
∣∣
X
∩ AH(x2y2)

∣∣
X

= ∅ for all x1, x2 ∈ V \ X, x1 	= x2 and
y1, y2 ∈ X,

r : (V \X)×X → AH , xy �→ rx(y)

is an injective function such that r(xy) ∈ AH(x, y)
∣∣
X
for all xy ∈ (V \X)×X.

For all xy ∈ (V \X)×X, we add xy to AD and define RD(xy) := {r(xy)}.
For an arc xy added to AD in step 1, we have RD(xy) = {r(xy)} and thus,
∅ 	= RD(xy) ⊆ AH(x, y)

∣∣
X
⊆ AH(x, y), xy /∈ AX and yx /∈ AD. Therefore, the

conditions 1.13 (a) and (b) are met. Furthermore, RD(x1y1) ∩ RD(x2y2) = ∅
holds for all x1y1, x2y2 ∈ ((V \X)×X)∩AD, x1y1 	= x2y2, since r is injective.
Thus, for all arcs a ∈ AH , there is at most one xy ∈ AD such that a ∈ RD(xy),
since arcs in RD(xy) contain only vertices from X, if xy ∈ AX ∩ AD, and
contain exactly one vertex from V \X , if xy ∈ ((V \X)×X) ∩AD.

2. For xy ∈ AV \X , we add the arc xy to AD, if |AH(x, y)
∣∣
X
| ≥ |AH(y, x)

∣∣
X
| holds

and define RD(xy) := AH(x, y)
∣∣
X
.

After step 2, D is semicomplete, since either xy or yx were added to AD for
all xy ∈ AV \X , D[X] was already semicomplete as an induced subgraph of D′′

and (V \X)×X ⊆ AD holds, by step 1. Furthermore, D is not strong and the
terminal component of the strong decomposition of D is identical to the one of
D′′.

For an arc xy added to AD in step 2, we have RD(xy) = AH(x, y)
∣∣
X
⊆ OutH(x),

since otherwise, there would be an arc a = (x1, . . . , xk) ∈ AH(x, y)
∣∣
X
such that

x1 ∈ X and an index i0 ∈ {2, . . . , k} such that xi0 = x ∈ V \X, in contradiction
to Lemma 2.8. We know RD(xy) ⊆ AH(x, y) and in addition, RD(xy) 	= ∅
holds if and only if xy ∈ AD, which implies the conditions 1.13 (a)(i) and (ii),
respectively. Since {xy, yx} ⊆ AD if and only if AH(x, y)

∣∣
X

= AH(yx)
∣∣
X

and
thus, RD(xy) 	= ∅ 	= RD(yx), condition 1.13 (a)(iii) is met as well. Condition
1.13 (b) remains unaffected, since only arcs xy /∈ AX were added to AD.

xy ∈ AV \X ∩ AD is the sole arc in D such that arcs in RD(xy) contain x,
y ∈ V \ X in this order. Combined with the fact that the arcs in RD(xy)
contain at most one vertex from V \X for all xy ∈ (AX ∪ (V \X)×X)∩AD,
we see that for all a ∈ AH , there exists at most one arc xy ∈ AD such that
a ∈ RD(xy).

3. Since H is strong, there is a shortest path P = y1a1y2 . . . yl in H from a vertex
y1 in the terminal component of the strong decomposition of D to a vertex yl
in the initial component. For i ∈ {1, . . . , l− 1}, we add the arc yiyi+1 to AD if
and only if yiyi+1 /∈ AD. In this case, we define RD(yiyi+1) := {ai} and remove
ai from RD(xy) for all arcs xy ∈ AD \ {yiyi+1} with ai ∈ RD(xy).
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After step 3, D is strong. Let i ∈ {1, . . . , l − 1}. Suppose that before step 3,
there was an arc xy ∈ AD \ {yiyi+1} with ai ∈ RD(xy). If xy ∈ AX ∪ ((V \
X)×X), then RD(xy) ⊆ AH(x, y)

∣∣
X
∩OutH(x) holds, by step 0 or 1 and thus,

yi+1 ∈ X, in contradiction to the choice of P as a shortest path. Therefore,
xy ∈ AV \X was added to AD in step 2. Hence, |RD(xy)| = |AH(x, y)

∣∣
X
| ≥

|AH(y, x)
∣∣
X
| held before step 3, i.e.

|RD(xy)| ≥ 1

2

( |X|
k − 2

)
≥ 1

2

(
k + 1

k − 2

)
≥ 1

2

(
4

1

)
= 2,

by Lemma 2.9. Suppose that RD(xy) contains aj for an index j ∈ {1, . . . , l −
1} \ {i} as well. Without loss of generality, we may assume that i < j. Then
there is a vertex ỹ ∈ {yi+1, yj, yj+1}\{x, y}, since RD(xy) ⊆ OutH(x) and thus,
x /∈ {yi+1, yj+1}. Furthermore, ỹ ∈ X holds, since all arcs in RD(xy) contain
only vertices from X, except for x and y, by construction. This constitutes a
contradiction to the choice of P as a shortest path. Consequently, only ai is
removed from RD(xy) in step 3 and thus, |RD(xy)| ≥ 1 holds. Particularly,
RD(xy) 	= ∅ before step 3 implies RD(xy) 	= ∅ after step 3 for all xy ∈ AD.

In addition, we have ∅ 	= RD(yiyi+1) = {ai} ⊆ AH(x, y) and yiyi+1 /∈ AX , since
P is a shortest path. If the arc yi+1yi is contained in AD, then it must have
been added in step 1 or 2 and thus, RD(yi+1yi) 	= ∅. Therefore, the conditions
1.13 (a) and (b) are met. By removing ai from all RD(xy) it was contained in
before step 3, we still have: For all a ∈ AH exists at most one xy ∈ AD with
a ∈ RD(xy).

4. For all arcs a = (x1, . . . , xk) ∈ AH such that there is no xy ∈ AD with
a ∈ RD(xy), we choose an index i ∈ {2, . . . , k}, add x1xi to AD and define
RD(x1xi) := RD(x1xi) ∪ {a}.
After step 4, condition 1.13 (c) is obviously met. Let a = (x1, . . . , xk) ∈ AH

be an arc considered in step 4 and let x1xi be the corresponding arc added
to AD for an i ∈ {2, . . . , k}. Then ∅ 	= {a} ⊆ RD(x1xi) ⊆ AH(x1, xi) implies
the conditions 1.13 (a)(i) and (ii) for x1xi. Suppose that x1 ∈ X. Then there
is exactly one arc xy ∈ AD′′ with a ∈ RD′′(xy) ⊆ AH(x, y) ∩ OutH(x), since
AD′′ ∈ OAMD(H) and RD′′ ∈ REPD′′. It follows that x = x1 ∈ X and thus,
y ∈ X, by Lemma 2.8. After step 0 in the construction of D, we then have
xy ∈ AD and a ∈ RD(xy), a contradiction to the choice of a. Therefore,
x1 /∈ X and thus, x1xi, xix1 /∈ AX . Consequently, condition 1.13 (b) for D
remains unaffected by step 4 and xix1 ∈ AD implies that xix1 was added to
AD in step 1 to 4 and thus, RD(xix1) 	= ∅. Therefore, condition 1.13 (a)(iii)
is met by D as well. Altogether, we have D ∈ OAMDX(H) is strong and
RD ∈ REPD.

LetD′ ∈ EXCX(D) and let v1, . . . , vn be an enumeration of V such that d+D′(v1) ≤
. . . ≤ d+D′(vn). Then, by step 1 of the construction of D and Definition 2.13, xy ∈
AD\AX ⊆ AD′ holds for all xy ∈ (V \X)×X. Consequently, we have d+D′(v) ≥ |X| for
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all v ∈ V \X. By the construction of D, the arc y1y2 ∈ AD added in step 3 is the only
one from X to V \X in D and thus, the only such arc in D′, since AD′ ⊆ AD ∪AX .
Therefore, d+D′(v) ≤ |X| − 1 < |X| ≤ d+D′(w) holds for all v ∈ X \ {y1} and all
w ∈ V \ X. The choice of D′′ combined with Lemma 2.9 implies |X| ≥ k + 1 ≥ 4
and thus, {v1, v2, v3} ⊆ X.

3 Main results

In this section, we will combine the gathered lemmata to prove our main result.

Lemma 3.1. Let H = (V,AH) be a strong k-hypertournament on n ≥ k + 2 ≥ 5
vertices. Then there exist a vertex set X ⊆ V and a vertex x ∈ X such that the
following statement holds: For every out-arc a ∈ AH of x there is a strong Da =
(V,ADa) ∈ OAMDX(H) and an RDa ∈ REPDasuch that R↓

Da
(a) is contained in ADa

and pancyclic in Da. If there is a strong D ∈ OAMD(H), then we can choose X = V .

Proof. Suppose that every vertex of H has an out-arc. Let D′ be a strong out-
arc-majority digraph of H , if one exists. In this case, let X = V . Otherwise,
let X ⊆ V be self-contained and let D′ be a strong X-out-arc-majority digraph
of H , whose existence Lemma 2.17 guarantees. Then D′ ∈ EXCS

X(D
′) and thus,

MINS
X(D

′) 	= ∅. Let D ∈ MINS
X(D

′) ⊆ EXCS
X(D

′), RD ∈ REPD and let v1, . . . , vn be
an enumeration of V such that d+D(v1) ≤ . . . ≤ d+D(vn). Then {v1, v2} ⊆ X holds by
Lemma 2.17 as well as D ∈ MINS

X(D), since EXCS
X(D) = EXCS

X(D
′). By Lemma

2.16, there is a vertex x ∈ {v1, v2} ⊆ X such that the following holds: For all arcs
xy ∈ AD ∩AX with RD(xy) 	= ∅, there exist Dxy = (V,ADxy) ∈ EXCS

X(D) such that
xy ∈ ADxy is pancyclic in Dxy, and RDxy ∈ REPDxy such that RDxy(xy) = RD(xy).
Let a = (x1, . . . , xk) ∈ AH be an out-arc of x. By definition 1.13 (c), there is exactly
one vw ∈ AD with a ∈ RD(vw). Definition 1.13 (a)(i) implies a ∈ AH(v, w), i.e.
there exist indices 1 ≤ i < j ≤ k such that v = xi and w = xj . By assumption,
x1 = x ∈ X implies xi, xj ∈ X, i.e. xixj ∈ AD ∩ AX and xi = x, by Definition 1.13
(b). Thus, by choice of x, the fact that a ∈ RD(xxj) holds, implies the existence
of a Da := Dxxj

= (V,ADxxj
) ∈ EXCS

X(D) such that xxj ∈ ADa is pancyclic in

Da and RDa := RDxxj
∈ REPDa such that RDa(xxj) = RD(xxj). Thus, we have

a ∈ RDa(xxj) and therefore, R↓
Da

(a) = xxj holds, by Definition 1.13 (c).

Lemma 3.2. Let H = (V,AH) be a strong k-hypertournament on n ≥ k + 2 ≥ 5
vertices and let (n, k) /∈ {(6, 4), (7, 4), (7, 5)}. Then H contains a vertex, whose all
out arcs are pancyclic.

Proof. Let X ⊆ V and x ∈ X be chosen as in Lemma 3.1. Let a ∈ AH be an
out-arc of x. Then there exists a strong Da = (V,ADa) ∈ OAMDX(H) and an
RDa ∈ REPDa such that R↓

Da
(a) ∈ ADa is pancyclic in Da, by the previous Lemma.

Let l ∈ {3, . . . , n}, let C = x1 . . . xlx1 be an l-cycle in Da with xlx1 = R↓
Da

(a) and
let BDA

:= {vw | vw ∈ ADa , RDa(vw) 	= ∅}. Then ADa \ BDa = {vw | vw ∈
ADa , RDa(vw) = ∅} ⊆ Amaj(H) holds, by Definition 1.13 (a)(ii). For all vw ∈ BDa ,
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we choose an arc r(vw) ∈ RDa(vw), particularly r(xlx1) := a. By Definition 1.13 (c)
and (a)(i), r : BDa → AH is an injective function and r(vw) ∈ AH(v, w) holds for all
vw ∈ BDa .

Case 1. k = 3. Lemma 2.5 implies the existence of an l-cycle CH in H on the
same vertex set as C, which contains a = r(xlx1).

Case 2. k ≥ 4. It follows that for all i ∈ {1, . . . , l − 1} with xixi+1 /∈ BDa ,
xixi+1 ∈ Amaj(H) holds, by Definition 1.13 (a)(ii) and thus,

|AH(xi, xi+1)| ≥ �1
2

(
n− 2

k − 2

)
� ≥ �1

2
(2n− 1)� = n,

by Lemma 2.6. Hence, there is an injective function

r′ : {xixi+1 | 1 ≤ i ≤ l} → AH

such that r′(vw) = r(vw) for all vw ∈ BDa ∩ {xixi+1 | 1 ≤ i ≤ l} and r′(vw) ∈
AH(v, w) for all vw ∈ {xixi+1 | 1 ≤ i ≤ l}. Consequently, CH := x1r(x1x2)x2r(x2x3)
. . . xlr(xlx1)x1 is an l-cycle in H , which contains a = r(xlx1). Since a ∈ OutH(x)
and l ∈ {3, . . . , n} were chosen arbitrarily, all out-arcs of x are pancyclic in H .

Lemma 3.3. Let H = (V,AH) be a strong k-hypertournament on n vertices and
(n, k) ∈ {(7, 4), (7, 5)}. Then H contains a vertex, whose all out-arcs are pancyclic.

Proof. Without loss of generality, we may assume that there is a D ∈ OAMD(H),
since otherwise, Lemma 2.10 or Lemma 2.11 would give the result. By Lemma 3.1,
there exists a vertex x ∈ V such that the following holds for every out-arc a ∈ AH of
x: There is a strongDa = (V,ADa) ∈ OAMD(H) and anRDa such thatR↓

Da
(a) ∈ ADa

is pancyclic in Da. Let a ∈ OutH(x), l ∈ {3, . . . , n} and let C = x1 . . . xlx1 be an
l-cycle in Da with xlx1 = R↓

Da
(a). Furthermore, let I ⊆ {x1x2, . . . , xl−1xl, xlx1},

I1 := {vw | vw ∈ I, RDa(vw) 	= ∅} and I2 := I \ I1.
By Definition 1.13 (a)(i) and (b), we have RDa(vw) ⊆ AH(v, w) ∩ OutH(v) for all
vw ∈ ADa , which implies |⋃vw∈I AH(v, w)| ≥ |I1|. Furthermore, by Definition 1.13
(a)(ii), vw ∈ Amaj(H) holds for all vw ∈ I2 and thus,

|AH(v, w)| ≥ �1
2

(
n− 2

k − 2

)
� ≥ �1

2
(2n− 4)� = 5,

by Definition 1.1 and Lemma 2.6.

(∗) If there are two non-incident arcs v1w1, v2w2 ∈ I2, then

|AH(v1, w1) ∩ AH(v2, w2)| ≤
(
n− 4

k − 4

)
≤

(
3

1

)
= 3

and thus,

|
⋃
vw∈I

AH(v, w)| ≥ |AH(v1, w1) ∪ AH(v2, w2)| ≥ 7.
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(†) If there is an i ∈ {1, . . . , l − 1} such that xixi+1 ∈ I2 and xi+1xi+2 ∈ I1, then
there exists at least one arc ai+1 ∈ AH(xi+1, xi+2) ∩ OutH(xi+1), since ∅ 	=
RDa(xi+1xi+2) ⊆ AH(xi+1, xi+2)∩OutH(xi+1). Thus, ai+1 cannot be contained
in AH(xi, xi+1) and therefore, we have

|
⋃
vw∈I

AH(v, w)| ≥ |AH(xi, xi+1) ∪ AH(xi+1, xi+2)| ≥ 6.

By Corollary 2.4, we may assume that |I| > i|⋃vw∈I AH(v, w)|. Because of
|⋃vw∈I AH(v, w)| ≥ |I1|, there exists a vw ∈ I2. |AH(v, w)| ≥ 5 implies |I| ≥ 6.

Case 1. |I| = 6. If l = 7, then the arcs in I form an (l − 1)-path y1 . . . yl.
If yl−1yl ∈ I1, let i0 := max{i | 1 ≤ i ≤ l − 2, yiyi+1 ∈ I2}. By definition, we
have yi0+1yi0+2 ∈ I1 and thus, |⋃vw∈I AH(v, w)| ≥ 6 = |I| by (†), a contradiction.
For l = 6, we reach the same contradiction by consideration of the (l − 1)-path
y1 . . . yl := x2 . . . x6x1, since x6x1 ∈ I1. Thus we may assume that l = 7 and y6y7 ∈ I2.

If I1 = I \ {y6y7}, then ∅ 	= RDa(yiyi+1) ⊆ AH(yi, yi+1) ∩ OutH(yi) for all
i ∈ {1, . . . , 5} combined with |AH(y6, y7)| ≥ 5 and |⋃vw∈I AH(v, w)| < |I| = 6
imply {ai} = RDa(yiyi+1) ⊆ OutH(yi) for all i ∈ {1, . . . , 5} and

⋃
vw∈I AH(v, w) =

AH(y6, y7) = {a1, . . . , a5}. Hence, we have

|AH(y6, y5) \ {a1, . . . , a5}| ≥
(
n− 2

k − 2

)
− |AH(y5, y6) ∪ {a1, . . . , a5}| = 5

If RDa(y7y1) 	= ∅, we choose a7 ∈ RDa(y7y1). Particularly, if y7y1 = x7x1, we choose
a7 = a. Then a7 /∈ {a1, . . . , a5} holds, since RDa(y7y1) ⊆ OutH(y7). If RDa(y7y1) = ∅,
then y7y1 ∈ Amaj(H), by Definition 1.13 (a)(ii) and thus, |AH(y7, y1)| ≥ 5. Since
we have a1 ∈ OutH(y1) and therefore, a1 /∈ AH(y7, y1), we can choose an a7 ∈
AH(y7, y1) \ {a1, . . . , a5}. Finally, we choose an a6 ∈ AH(y6, y5) \ {a1, . . . , a5, a7}. In
addition, we have a4 ∈ AH(y4, y6) and a5 ∈ AH(y5, y7), because of ai ∈ OutH(yi) ∩
AH(y6, y7) for all i ∈ {4, 5}. Hence, CH := y1a1y2a2y3a3y4a4y6a6y5a5y7a7y1 is an
l-cycle in H that contains a.

If I1 	= I \ {y6y7}, then (∗) implies

I1 = {y1y2, y2y3, y3y4, y4y5} and I2 = {y5y6, y6y7}.
Since |AH(y5, y6)| ≥ 5, |AH(y6, y7)| ≥ 5 and |⋃vw∈I AH(v, w)| < |I| = 6, we
then have AH(y5, y6) = AH(y6, y7) =

⋃
vw∈I AH(v, w). Since ∅ 	= RDa(yiyi+1) ⊆

AH(yi, yi+1) ∩ OutH(yi) holds for all i ∈ {1, . . . , 4}, we can choose arcs ai ∈
RDa(yiyi+1) ⊆ AH(yi, yi+1)∩OutH(yi) for all i ∈ {1, . . . , 4} such that {a1, . . . , a4, b} =⋃

vw∈I AH(v, w). Particularly, in the case yiyi+1 = x7x1, we choose ai = a. Then we
have

|AH(y5, y4) \ {a1, . . . , a4, b}| ≥
(
n− 2

k − 2

)
− |AH(y4, y5) ∪ {a1, . . . , a4, b}| = 5.

If RDa(y7y1) = {b}, then we obtain an l-cycle CH in H that contains a as in the case
above, by consideration of the path ỹ1 . . . ỹ7 = y7y1 . . . y6 with RDa(ỹ1ỹ2) = {b} and
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RDa(ỹiỹi+1) = {ai−1} for all i ∈ {2, . . . , 5} and AH(ỹ6, ỹ7) = {a1, . . . , a4, b}. Suppose
that RDa(y7y1) 	= {b}. If RDa(y7y1) 	= ∅, we choose a7 ∈ RDa(y7y1) \ {b}. In the case
y7y1 = x7x1 and a 	= b, we choose a7 = a, in particular. Then a7 /∈ {a1, . . . , a4},
because of RDa(y7y1) ⊆ OutH(y7). If RDa(y7y1) = ∅, then y7y1 ∈ Amaj(H), by
Definition 1.13 (a)(ii) and thus, |AH(y7, y1)| ≥ 5. Since a1 ∈ OutH(y1) holds and
therefore, a1 /∈ AH(y7, y1), we can choose an a7 ∈ AH(y7, y1)\{a1, . . . , a4, b}. Finally,
we choose an a5 ∈ AH(y5, y4) \ {a1, . . . , a4, b, a7}. Since ai ∈ OutH(yi) ∩ AH(y5, y6)
for all i ∈ {3, 4}, we have a3 ∈ AH(y3, y5) and a4 ∈ AH(y4, y6). Hence, CH :=
y1a1y2a2y3a3y5a5y4a4y6by7a7y1 is an l-cycle in H that contains a.

Case 2. |I| = 7. Obviously, we have l = 7. Since there is a vw ∈ I2 and x7x1 ∈ I1
holds, there exists an index i ∈ {1, . . . , 6} such that xixi+1 ∈ I2 and xi+1xi+2 ∈ I1.
Without loss of generality, we may assume that i = 6. If I1 = I \ {x6x7}, then
∅ 	= RDa(xixi+1) ⊆ AH(xi, xi+1) ∩OutH(xi) for all i ∈ {1, . . . , 5, 7}, |AH(x6, x7)| ≥ 5
and |⋃vw∈I AH(v, w)| < |I| = 7 imply {ai} = RDa(xixi+1) ⊆ OutH(xi) for all
i ∈ {1, . . . , 5, 7}, AH(x6, x7) = {a1, . . . , a5} and

⋃
vw∈I AH(v, w) = {a1, . . . , a5, a7}.

Thus, we have

|AH(x6, x5) \ {a1, . . . , a5, a7}| ≥
(
n− 2

k − 2

)
− |AH(x5, x6) ∪ {a1, . . . , a5, a7}| = 4.

Hence, we may choose an a6 ∈ AH(x6, x5) \ {a1, . . . , a5, a7}. Furthermore, a4 ∈
AH(x4, x6) and a5 ∈ AH(x5, x7) hold, because of ai ∈ OutH(xi)∩AH(x6, x7) for all i ∈
{4, 5}. Hence, a is contained in the l-cycle CH := x1a1x2a2x3a3x4a4x6a6x5a5x7a7x1

in H .
If I1 	= I \ {x6x7}, then (∗) implies I1 = {x1x2, x2x3, x3x4, x4x5, x7x1} and

I2 = {x5x6, x6x7}. Since ∅ 	= RDa(xixi+1) ⊆ AH(xi, xi+1) ∩ OutH(xi) for all i ∈
{1, . . . , 4, 7}, we can choose arcs ai ∈ RDa(xixi+1) ⊆ AH(xi, xi+1) ∩ OutH(xi) for all
i ∈ {1, . . . , 4, 7}. Since |AH(x6, x7)| ≥ 5 and a7 ∈ OutH(x7), we have {a1, . . . , a4, b} =
AH(x6, x7) and

⋃
vw∈I AH(v, w) = {a1, . . . , a4, b, a7}, for an arc b 	= a7, since other-

wise, |⋃vw∈I AH(v, w)| ≥ |I| would hold. Hence, we have

|AH(x5, x4) \ {a1 . . . , a4, b, a7}| ≥
(
n− 2

k − 2

)
− |AH(x4, x5) ∪ {a1 . . . , a4, b, a7}|

≥ 4

and analogously, |AH(x4, x3) \ {a1 . . . , a4, b, a7}| ≥ 4. Thus, we may choose an arc
a5 ∈ AH(x5, x4) \ {a1, . . . , a4, b, a7} and an arc ã4 ∈ AH(x4, x3) \ {a1, . . . , a5, b, a7}.
If a3 ∈ AH(x5, x6), then a3 ∈ AH(x3, x5) as well as a4 ∈ AH(x4, x6) holds, since
ai ∈ OutH(xi) ∩ AH(xi+2, xi+3) for all i ∈ {3, 4}. Thus,

CH := x1a1x2a2x3a3x5a5x4a4x6bx7a7x1

is an l-cycle in H that contains a. If a3 /∈ AH(x5, x6), then we have a2 ∈ AH(x5, x6),
since otherwise, |{a1, . . . , a4, a7} ∪ AH(x5, x6)| ≥ 7 would hold. Because of ai ∈
OutH(xi) ∩ AH(xi+3, xi+4) for all i ∈ {2, 3}, we therefore have a2 ∈ AH(x2, x5) and
a3 ∈ AH(x3, x6). Thus, the l-cycle CH := x1a1x2a2x5a5x4ã4x3a3x6bx7a7x1 in H
contains a.
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Lemma 3.4. Let H = (V,AH) be a strong 4-hypertournament on 6 vertices. Then
H contains a vertex, whose all out-arcs are pancyclic.

We omit our proof of Lemma 3.4, since it is structurally similar to the proof of
Lemma 3.3 and consists mainly of a case by case analysis, which is about as long as
all previous proofs combined.

We merge Lemmas 3.2, 3.3 and 3.4 to the following theorem, which constitutes
a generalization of Theorem 1.10 for hypertournaments.

Theorem 1.15. Let H be a strong k-hypertournament on n ≥ k + 2 ≥ 5 vertices.
Then H contains a vertex, whose all out-arcs are pancyclic.
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