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Abstract

Any finite group can be encoded as the automorphism group of an unla-
beled simple graph. Recently Hartke, Kolb, Nishikawa, and Stolee (2010)
demonstrated a construction that allows any ordered pair of finite groups
to be represented as the automorphism group of a graph and a vertex-
deleted subgraph. In this note, we describe a generalized scenario as a
game between a player and an adversary: an adversary provides a list
of finite groups and a number of rounds. The player constructs a graph
with automorphism group isomorphic to the first group. In the follow-
ing rounds, the adversary selects a group and the player deletes a vertex
such that the automorphism group of the corresponding vertex-deleted
subgraph is isomorphic to the selected group. We provide a construc-
tion that allows the player to appropriately respond to any sequence of
challenges from the adversary.

1 Introduction

Automorphisms of graphs are incredibly unstable. The slightest perturbation of the
graph can greatly change the automorphism group. In this note, we show there exist
graphs whose automorphism groups can change dramatically under certain sequences
of vertex deletions. We consider undirected, unlabeled, and simple graphs, denoted
F , G, or H, and finite groups, denoted Γ. The automorphism group of a graph G is
denoted Aut(G).

Frucht [3] proved that graphs have the ability to encode the structure of any finite
group.

Theorem 1 (Frucht [3]). Let Γ be a finite group. There exists a graph G with
Aut(G) ∼= Γ.
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Hartke, Kolb, Nishikawa, and Stolee [4] proved that any ordered pair of finite
groups can be represented by a graph and a vertex-deleted subgraph. Their work
was motivated by consequences to the Reconstruction Conjecture (see Bondy [2])
and isomorph-free generation (see McKay [5]).

Theorem 2 (Hartke, Kolb, Nishikawa, Stolee [4]). Let Γ0 and Γ1 be finite groups.
There exists a graph G and a vertex v ∈ V (G) such that Aut(G) ∼= Γ0 and Aut(G−
v) ∼= Γ1.

There are two natural extensions of this process to a sequence Γ0,Γ1, . . . ,Γk of
finite groups using two types of vertex deletions: single deletions or iterated deletions.

Question. Let Γ0,Γ1, . . . ,Γk be finite groups. Does there exist a graph G with ver-
tices v1, . . . , vk ∈ V (G) such that Aut(G) ∼= Γ0 and for all i ∈ {1, . . . , k},

1. (Single Deletions) Aut(G− vi) ∼= Γi?

2. (Iterated Deletions) Aut(G− v1 − · · · − vi) ∼= Γi?

In fact, both of these types of deletions can be combined in an even more general
situation, posed as the vertex deletion game between a player and an adversary:

The Vertex Deletion Game

Round 0:

Adversary: Selects finite groups Γ0, Γ1, . . . , Γk, and a number ` ≥ 1.

Player: Constructs a graph G0 with Aut(G0) ∼= Γ0.

Round j: (1 ≤ j ≤ `)

Adversary: Selects a group Γij ∈ {Γ1, . . . ,Γk}.
Player: Selects a vertex vj ∈ V (Gj−1), defines Gj = Gj−1−vj, and asserts
Aut(Gj) ∼= Γij .

Note that this game generalizes both single deletions (play the game with ` = 1)
and iterated deletions (play the game with ` = k, and the adversary selects Γij = Γj
for all j ∈ {1, . . . , k}). By carefully constructing G0, the player can survive ` rounds
against the adversary.

Theorem 3 (Adversarial Iterated Deletions). Suppose the adversary selects Γ0, Γ1,
. . . , Γk as finite groups and integer ` ≥ 1 in Round 0. The player can construct
a graph G0 with Aut(G0) ∼= Γ0 so that the assertions Aut(Gj) ∼= Γij hold for all `
remaining rounds.

Instead of using the vertex deletion game, there is an equivalent statement of the
previous theorem using a sequence of alternating quantifiers.
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Theorem 4 (Adversarial Iterated Deletions; alternate form). For all numbers k,
` ≥ 1 and finite groups Γ0, Γ1, . . . , Γk, there exists a graph G0 such that Aut(G0) ∼=
Γ0 and

∀i1 ∃v1 ∀i2 ∃v2 · · · ∀i` ∃v` ∀j, Aut(G0 − v1 − · · · − vj) ∼= Γij ,

where the domain of j is {1, . . . , `}, the domain of each ij is {1, . . . , k}, and the
domain of each vj is V (G0) \ {v1, . . . , vj−1}.

A group is trivial if it consists only of the identity element. For a graph G and
vertex v ∈ V (G), the stabilizer of v in G, denoted StabG(v), is the subgroup of
Aut(G) given by permutations τ where τ(v) = v.

2 Results

Our starting point is the following lemma from [4].

Lemma 5 (Hartke, Kolb, Nishikawa, Stolee [4, Lemma 2.2]). For any finite group Γ,
there is a connected graph G and a vertex v ∈ V (G) where Aut(G) ∼= Γ and StabG(v)
is trivial.

The construction for Lemma 5 from [4] uses the Cayley graph for Γ and replaces
labeled, directed edges with undirected gadgets. This results with G having maxi-
mum degree 2|Γ| and |V (G)| ≥ 5|Γ|. This specific construction contains no vertices
in G of degree |V (G)| − 1, which we will use in the following lemma.

We now describe a gadget which will be used to build the full construction for
Theorem 3.

Lemma 6. Let Γ be a finite group. There exists a graph H and two vertices x, y ∈
V (H) so that Aut(H) is trivial, H−x is connected, Aut(H−x) ∼= Γ, and StabH−x(y)
is trivial.

Proof. By Lemma 5, there exists a connected graph G and a vertex y ∈ V (G) so
that Aut(G) ∼= Γ and StabG(y) is trivial. Let n = |V (G)| and order the vertices of
G as V (G) = {v1, . . . , vn} and v1 = y.

Let H be a graph with vertex set V (H) = {v1, . . . , vn} ∪ {u1, . . . , un} ∪ {x, z, w}.
The graph H has an edge vivj if and only if that edge is present in G. For every
j ∈ {1, . . . , n}, the pair ujvj is an edge. The vertex z is adjacent to all vertices vj
for j ∈ {1, . . . , n}. The vertex x is adjacent to z, all vertices vj for j ∈ {1, . . . , n}
and adjacent to the vertices ui for i ∈ {2, . . . , n}. Finally, the vertex w is adjacent
only to x and z.

The only vertex of degree 1 in H is u1, so every automorphism of H stabilizes
u1 and thus also stabilizes v1. All vertices v1, . . . , vn have degree at least three and
degree at most n + 1. The vertex x is the only vertex of degree 2n + 1, so every
automorphism of H stabilizes x. The vertex z is the only vertex of degree n + 2,
so every automorphism of H stabilizes z and hence also stabilizes w. Other than
w, the vertices u2, . . . , un are the only vertices of degree 2, so every automorphism
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set-wise stabilizes {u2, . . . , un}. This implies that every automorphism of H set-
wise stabilizes {v1, . . . , vn} and hence restricting an automorphism of H to V (G)
induces an automorphism of G. However, every automorphism point-wise stabilizes
v1. Since v1 = y and StabG(y) is trivial, every automorphism of H must point-wise
stabilize V (G). Thus the vertices u1, . . . , un are also point-wise stabilized and the
automorphism group of H is trivial.

Now consider H ′ = H − x. The vertex z is the only vertex of degree n + 1, so
every automorphism of H ′ stabilizes z and w. Other than w, the only other vertices
of degree 1 are u1, . . . , un, and since w is the only one of these that is adjacent
to the stabilized z, every automorphism of H ′ set-wise stabilizes w and therefore
set-wise stabilizes {u1, . . . , un}. Since the vertices u1, . . . , un are adjacent only to
vertices in V (G), every automorphism of H ′ set-wise stabilizes V (G). Hence, every
automorphism of H ′ restricted to V (G) is an automorphism of G. Observe that
every automorphism σ ∈ Aut(G) extends to an automorphism of H by assigning
σ(ui) = uj whenever σ(vi) = vj. Thus, Aut(H − x) ∼= Aut(G) ∼= Γ.

Since the automorphisms of H − x correspond directly to automorphisms of G,
observe that StabH−x(y) is trivial.

We are now sufficiently prepared to prove the main theorem. The gadget from
Lemma 6 has two purposes:

1. “Reveal” symmetry: When x is deleted, the automorphism group Γ is revealed.

2. “Remove” symmetry: When y is stabilized within H − x, all non-trivial auto-
morphisms of H − x are removed.

Our construction for the graph G0 carefully places many copies of this gadget in
such a way that the player has access to a “revealing” vertex (x) that simultaneously
stabilizes the “removing” vertex (y) in the previous gadget. Therefore, we have
a sequence of deletions which remove all previous symmetry and reveal only the
requested symmetry.

Proof of Theorem 3. Note that the case k = ` = 1 holds by Theorem 2. Clearly, we
may assume that the groups Γ1, . . . ,Γk are distinct with respect to isomorphism.

By Lemma 6, for every i ∈ {0, 1, . . . , k} there is a graph Hi with vertices
xi, yi ∈ V (Hi) such that Aut(Hi) is trivial, Aut(Hi − xi) ∼= Γi, and StabHi−xi

(yi)
is trivial. For all i ∈ {0, . . . , k}, let Oi be the orbit of yi in Hi − xi. Since the
groups Γ1, . . . ,Γk are pairwise non-isomorphic, then by the construction of Lemma 6
the graphs H0, H1, . . . , Hk and H0−x0, . . . , Hk−xk are all pairwise non-isomorphic.
Also by the construction of Lemma 6, no graph Hi or Hi− xi has a dominating ver-
tex, and xi is a maximum-degree vertex of Hi. Hence for all i 6= j, if an isomorphism
φij : Hi → Hj exists, then φij sends xi to xj and hence φij induces an isomorphism
ψij : Hi − xi → Hj − xj. However, if Hi − xi ∼= Hj − xj then Γi ∼= Γj, which
contradicts our assumption that the groups are pairwise nonisomorphic. Therefore,
Hi 6∼= Hj and Hi − xi 6∼= Hj − xj for all i 6= j.
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We construct the graph G0 by building graphs F0, F1, . . . , F` iteratively. Let F0

be the graph given by taking H0− x0 and adding vertices a0, b0 where a0 is adjacent
to all vertices in H0 − x0 and b0 is adjacent to only a0. Let U0 = O0.

For all j ∈ {1, . . . , `}, we will build Fj by adding vertices and edges to Fj−1.
During the process, Fj−1 will remain an induced subgraph of Fj. For all vertices

v ∈ Uj−1 and i ∈ {1, . . . , k}, add a copy H
(j,v)
i of Hi to Fj−1 and add edges from v

to each vertex of H
(j,v)
i . Let x

(j,v)
i and y

(j,v)
i denote the copies of xi and yi in H

(j,v)
i .

Let O
(j,v)
i be the copy of Oi within H

(j,v)
i and define Uj = ∪v∈Uj−1

∪ki=1 O
(j,v)
i . Add

vertices aj, bj where aj is adjacent to all vertices in V (Fj) \ V (Fj−1) and the vertices
aj−1 and bj. Figure 1 shows a visualization of this construction.
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Figure 1: An example of the construction of Fj from Fj−1 where k = 3.

Let G0 be F`. Observe that the vertices a0, . . . , a` induce a path, and the vertices
b0, . . . , b` all have degree 1. The vertices b0, . . . , b` are the only vertices of degree 1,
so all automorphisms of G0 set-wise stabilize {b0, . . . , b`} and hence set-wise stabilize
{a0, . . . , a`}. Since all vertices in {a0, . . . , a`} have distinct degrees, these vertices
are point-wise stabilized by all automorphisms of G0. Therefore, every set V (Fj) \
V (Fj−1) is set-wise stabilized by every automorphism of G0. In particular, any
automorphisms of G0 must set-wise stabilize the set V (F0)− {a0, b0} which induces
a copy of H0 − x0.

It remains to show that G0 satisfies the conditions of Theorem 3 by providing a
strategy for the player to respond to the adversary’s challenges. Informally, in the
jth round the player will delete a vertex from the jth layer (i.e. V (Fj) \ V (Fj−1)),
and this vertex will depend on the jth group, Γij , and the previous vertex-deletions.
The previous vertex-deletion removed a copy of the vertex xij−1

from a copy of Hij−1

(or j = 1, i0 = 0, and x0 was never included in G0). To “remove” the symmetry
found in this copy of Hij−1

, we aim to stabilize its copy of yij−1
. We delete the

vertex xij from the copy of Hij in the neighborhood of this copy of yij−1
, which

distinguishes it from all other vertices in Uj−1 and hence the symmetry in Hij−1
−xij−1
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is no longer available. Instead, we have removed xij from a copy of Hij , revealing
Aut(Hij − xij ) ∼= Γij . Thus, the automorphisms allowed within Fj are exactly those
in this copy of Hij − xij , and all vertices in F` \ Fj have their motion determined by
the action in Fj.

Back to the formal proof, we first show that we can localize our study of the
automorphisms of G0 −X for certain sets of vertices X.

Claim 7. Fix j ∈ {0, . . . , `} and X = {v1, . . . , vj} where vj′ ∈ V (Fj′) \ (V (Fj′−1) ∪
Uj′ ∪ {aj′ , bj′}) for all j′ ∈ {1, . . . , j}. Then Aut(G0 −X) ∼= Aut(Fj −X).

Proof of Claim 7: Observe that the vertices b0, . . . , b` remain the only vertices in
G0 − X of degree 1, and the vertices a0, . . . , a` continue to have distinct degrees.
Thus, the vertices a0, . . . , a` are point-wise stabilized by Aut(G0−X) and hence the
sets V (Fi) \ V (Fi−1) are set-wise stabilized by Aut(G0 − X). Specifically, the sets
V (F`′+1) \ V (F`′) are set-wise stabilized by Aut(G0 −X) for all `′ ∈ {j, . . . , ` − 1}.
This implies that every automorphism in Aut(F`′+1 − X) is also an automorphism
of Aut(F`′ −X) when restricted to V (F`′ −X).

We will show that this map from Aut(F`′+1 −X) to Aut(F`′ −X) is a bijection
for all `′ ∈ {j, . . . , ` − 1}, implying there is natural bijection between Aut(F` − X)

and Aut(Fj−X). Every vertex u ∈ V (F`′+1−X)\V (F`′) is contained in H
(`′+1,v)
i for

some vertex v ∈ U`′ and i ∈ {1, . . . , k}. Since X ⊂ V (Fj) and ` ≥ j, it follows that

V (H
(`′+1,v)
i )∩X = ∅. Therefore, the subgraph H

(`′+1,v)
i is a copy of Hi in G0−X, and

has no non-trivial automorphisms by Lemma 6. Therefore, for every automorphism
σ of F`′−X, there is exactly one isomorphism of F`′+1−X that extends σ and maps

V (H
(`′+1,v)
i ) to V (H

(`′+1,σ(v))
i ). Hence, the action of an automorphism on each vertex

u ∈ V (F`′+1 −X) \ V (F`′) is determined exactly by the action of the automorphism
on the vertices within V (F`′ −X). Hence, the restriction map from Aut(F`′+1 −X)
to Aut(F`′ −X) is a bijection, proving the claim.

When X = ∅, the automorphism group of the subgraph F0 determines the auto-
morphism group of G0 −X. Since F0 − {a0, b0} ∼= H0 − x0, we have Aut(G0) ∼= Γ0.

For a list Γi1 , . . . ,Γi` of groups selected from {Γ1, . . . ,Γk}, define the vertices
v1, . . . , v` and u0, u1, . . . , u` where u0 = y0 and for j ∈ {1, . . . , `},

vj = x
(j,uj−1)
ij

, uj = y
(j,uj−1)
ij

.

Observe that the definition of vj and uj depends only on uj−1 and Γij , so this defini-
tion does not violate any of the quantifiers in the statement of Theorem 4. Thus, the
vertices v1, . . . , v` are valid selections of vertex-deletions for the player in response to
the adversary selecting Γi1 , . . . ,Γi` in order.

By induction on j, we verify that Aut(G0−v1−· · ·−vj) ∼= Γij . We will require the
stronger induction hypothesis that all automorphisms of Fj−v1−· · ·−vj point-wise

stabilize all vertices except those in H
(j,uj−1)
ij

− vj.
Let j ∈ {1, . . . , `}. By Claim 7, Aut(G0− v1−· · ·− vj) ∼= Aut(Fj− v1−· · ·− vj).

Since b0, . . . , bj are the only vertices of degree 1, and they are only adjacent to
a0, . . . , aj (which have different degrees), the vertices a0, . . . , aj and b0, . . . , bj are
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Figure 2: An example sequence of deletions with k = 3 where the adversary selects Γ2,
Γ1, Γ3, we define v1 = x

(1,u0)
2 , u1 = y

(1,v1)
2 , v2 = x

(2,u1)
1 , u2 = y

(2,u1)
1 , v3 = x

(3,u2)
3 , u3 =

y
(3,u2)
3 , and the player deletes v1, v2, v3.

point-wise stabilized by Aut(Fj − v1− · · · − vj). Thus, V (Fj−1) is set-wise stabilized
by Aut(Fj − v1− · · ·− vj). By induction (or that F0−{a0, b0} ∼= H0−x0 in the case
j = 1), Aut(Fj−1 − v1 − · · · − vj−1) ∼= Γij−1

and all vertices in Fj−1 are point-wise

stabilized by Aut(Fj−1−v1−· · ·−vj−1) except those in H
(j−1,uj−2)
ij−1

−vj−1 (for the case

j = 1, use H0−x0 instead of H
(j−1,uj−2)
ij−1

−vj−1). Observe that uj−1 is the copy of yij−1

in H
(j−1,uj−2)
ij−1

. Since deleting vj from Fj−v1−· · ·−vj creates a copy of Hij−xij in the
neighborhood of uj−1, the vertex uj−1 is distinguished from the other vertices in Uj−1.
Thus, uj−1 is stabilized by all automorphisms in Aut(Fj−v1−· · ·−vj). This implies
that the automorphisms in Aut(Fj − v1 − · · · − vj) point-wise stabilize all vertices

in Fj−1. Finally, all vertices in V (Fj) \ V (Fj−1) are either contained in H
(j,uj−1)
ij

− vj
(in which case the automorphisms are given by Aut(Hij −xij )) or are contained in a
copy of Hi for some i ∈ {1, . . . , k} and Hi has no nontrivial automorphisms. Thus,

all vertices of Fj−v1−· · ·−vj are point-wise stabilized except those in H
(j,uj−1)
ij

−vj.
Finally,

Aut(G0 − v1 − · · · − vj) ∼= Aut(Fj − v1 − · · · − vj) ∼= Aut(H
(j,uj−1)
ij

− vj) ∼= Γij .

The construction given in the above proof requires a large number of vertices
and vertices of high degree. The gadget given by Lemma 6 can be built using
O(|Γ| log2

2 |Γ| log2 log2 |Γ|) vertices: the construction of Lemma 5 from [4] has order
O(|Γ|4), but can be replaced by a construction of Sabidussi [6] with
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O(|Γ| log2 |Γ| log2 log2 |Γ|) vertices, then carefully applying the construction of
Lemma 6 to Sabidussi’s construction increases the number of vertices by a multi-
plicative factor of O(log2 |Γ|). However, Babai [1] proved that for every finite group
Γ there is a graph G with Aut(G) ∼= Γ and |V (G)| ≤ 3|Γ|. Can graphs with O(|Γ|)
vertices be used to satisfy Lemma 6? Also, the constructions used here contain ver-
tices of high degree. Does there exist a constant D so that Theorem 3 is satisfied
with the maximum degree of G0 at most D?
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