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Abstract

Let G be a connected graph. The eccentricity of a vertex v is defined as
the distance in G between v and a vertex farthest from v. The nonde-
creasing sequence of the eccentricities of the vertices of G is the eccentric
sequence of G. In this paper, we characterize eccentric sequences of max-
imal outerplanar graphs.

1 Overview

Let G be a connected graph. The eccentricity eccG(v) of a vertex v is defined as the
distance in G between v and a vertex farthest from v. The nondecreasing sequence
s1, s2, . . . , sn of the eccentricities of the vertices of G is the eccentric sequence of G.
Clearly, s1 is the radius of G, and sn is the diameter of G.

A sequence of integers is called eccentric if it is the eccentric sequence of some
graph. The problem of characterising all eccentric sequences appears very difficult.
Eccentric sequences were first considered by Lesniak [8]. She showed that in the
eccentric sequence of every graph each entry, except possibly the smallest, appears
at least twice, and she characterised sequences that are eccentric sequences of trees.
Lesniak further showed that a nondecreasing sequence S of positive integers con-
taining m distinct values is eccentric if and only if some subsequence of S with m
distinct values is eccentric. This result suggests the following definition: An eccentric
sequence is called minimal if it has no proper eccentric subsequence with the same
number of distinct eccentricities. Minimal eccentric sequences with two values, i.e.,
minimal eccentric sequences of the form ah, bk (i.e., a repeated h times and b repeated
k times) were considered by Hrnčiar and Monoszová [6]. They showed that there
are exactly seven minimal eccentric sequences of the form 4h, 5k, viz. 47, 52; 46, 54;
45, 56; 44, 58; 43, 59; 42, 512; and 4, 514. They conjectured that in general there exist
2a− 1 minimal eccentric sequences of the form ah, (a+ 1)k. Buckley [1] reports that
Nandakumar [9] determined all minimal eccentric sequences with least eccentricity 1
or 2. All 13 minimal eccentric sequences with least eccentricity 3 were determined by
Haviar, Hrnčiar and Monoszová [5]. To date no characterisation of minimal eccentric
sequences has been found.

A different approach to the problem of characterising eccentric sequences is to
consider a restriction to suitable graph classes. Lesniak’s characterisation of the ec-
centric sequences of trees [8] remains the only example for this approach. In this
paper, we present a characterisation of the eccentric sequences of maximal outerpla-
nar graphs.

The notation we use is as follows. G always denotes a maximal outerplanar graph
(MOP) of order at least 3 with vertex set V and edge set E. The number of vertices
of G is usually denoted by n. For a subset A ⊆ V we define NG(A) to be the set
of all vertices that are adjacent to some vertex in A, but are not themselves in A.
If A = {v}, then we write NG(v) for NG({v}). The distance between two vertices
u and v, i.e., the minimum number of edges on a (u, v)-path, is denoted by d(u, v).
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Figure 1: Four of the seven possible centers of a MOP.

The eccentricity of a vertex v, denoted by ecc(v), is the distance to a vertex farthest
away from v, and a vertex at distance ecc(v) from v is called an eccentric vertex of v.
For each v ∈ V we choose an eccentric vertex of v and denote it by v. The smallest
and largest eccentricity of the vertices of G are the radius and the diameter of G,
denoted by rad(G) and diam(G), respectively. The nondecreasing sequence of the
eccentricities of the vertices of G is the eccentric sequence of G. For a nonnegative
integer i we define ei to be the number of vertices of eccentricity i in G. Clearly the
eccentric sequence determines the ei (rad(G) ≤ i ≤ diam(G)) and vice versa. So for
a characterisation of eccentric sequences it suffices to characterise the sequence of
the ei.

A centre vertex of G is a vertex of minimum eccentricity. The centre of G,
denoted by C, is the set of all centre vertices. The centre subgraph of G is the
subgraph induced by C.

It is a well-known fact that every graph is the centre subgraph of some graph.
However, Proskurowski [11] showed that the centre of a MOP is always isomorphic
to one of seven graphs. We denote by Kn the complete graph on n vertices.

Theorem 1. [11] Let G be a MOP. Then the centre of G is isomorphic to one of
the following seven graphs: K1, K2, K3, G4, G5, G6, H6, where G4, G5, G6, and H6

are shown in Figure 1.

The present authors showed in [4] that in a 2-connected chordal graph every
eccentricity strictly between the radius and the diameter occurs at least four times.
Since every MOP is 2-connected and chordal, we have the following theorem which
we will use extensively.

Theorem 2. ([4]) Let G be a MOP with radius r, diameter d. Then ei ≥ 4 for
i ∈ {r + 1, r + 2, . . . , d− 1}.
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If G is a MOP of order at most 5, then G is one of the graphs K1, K2, K3, G4,
and G5, and so a sequence of at most five integers is the eccentric sequence of a MOP
if and only if it is the eccentric sequence of one of these five graphs. We may thus
restrict our attention to MOPs of order at least 6. Our main result is the following
theorem:

Theorem 3. Let S : s1, s2, . . . , sn be a nondecreasing sequence of positive integers,
where n ≥ 6, and, for i ≥ 1, let ei be the number of entries of S with value exactly i.
Let r = s1 and d = sn. Then S is the eccentric sequence of some MOP if and only
if ed ≥ 2, ei ≥ 4 for all i with r < i < d, and one of the following holds:

(1) n ≥ 6r − 6, r ≥ 2, d = 2r − 2, er = 6, ei ≥ 6 for all i with r < i < d, and
ed ≥ 3,

(2) r ≥ 3, d = 2r − 1, and er = 6,

(3) r ≥ 2, d = 2r − 1, and er = 5,

(4) r ≥ 2, d = 2r − 1, and er = 4,

(5) n ≥ 4r − 1, d = 2r − 1, and er = 3,

(6) r ≥ 2, d = 2r, and er = 2,

(7) n ≥ 4r + 1, d = 2r, and er = 1.

The rest of the paper is the proof of the seven cases in Theorem 3: In Section
2, we prove the necessity — that the eccentric sequence of a MOP of order at least
6 always satisfies the conditions of Theorem 3 — while in Section 3, we prove the
sufficiency by showing how to construct MOPs satisfying these conditions.

2 Necessary Conditions

We denote the set of all centre vertices of a given MOP by C, and the individual
vertices of C are v1, v2, . . . , v|C|, where the vertices are labeled as shown in Figure 1.
Subscripts will always be taken modulo |C|.

Now let G be a MOP with |C| ≥ 3. Consider a component H of G−C. Since G
is outerplanar, there are adjacent vertices vi, vj of C such that NG(V (H)) ⊂ {vi, vj}.
Moreover, vivj is on the boundary of the unbounded face of G[C] and thus of the form
vivi+1, and there is no further component H ′ of G−C with NG(V (H ′)) = {vi, vi+1}.
We denote the set of vertices V (H)∪{vi, vi+1} by Ui. Hence each vertex of G−C is
in exactly one Ui. We will frequently use the fact that a path in G joining a vertex in
Ui and a vertex in Uj always contains a vertex in {vi, vi+1} and a vertex in {vj, vj+1}.

In Lemmas 1 to 7 we prove the necessity of each of the seven conditions stated
in Theorem 3.

Lemma 1. Let G be a MOP of diameter d and radius r whose centre is isomorphic
to H6. Then d = 2r − 2 and
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(i) er = 6,

(ii) ei ≥ 6 for r < i < d,

(iii) ed ≥ 3,

(iv) n ≥ 6r − 6.

Proof. Claim 1: d(v, C) ≤ r − 2 for all vertices v.

Let v ∈ V be an arbitrary vertex. Without loss of generality we assume that v is in
U1. Then every (v, v5)-path passes through {v1, v2}, hence

r ≥ d(v, v5) ≥ d(v, {v1, v2}) + d({v1, v2}, v5) = d(v, C) + 2,

which yields Claim 1.

Claim 2: Let i ∈ {1, 3, 5}. Then vi+3 ∈ Ui−1 ∪ Ui and d(vi+3, vi) = r − 2, and
d(vi+3, vj) = r − 1 for j ∈ {i− 1, i + 1}.
We show the statement for i = 1, the other statements are proved analogously.
Consider vertex v4. Since the vertices v2, v3, v4, v5, v6 are within distance 1 of v4, it
follows from Claim 1 and the triangle inequality that every vertex in H2∪H3∪H4∪H5

is within distance r − 1 of v4; hence, v4 is in H6 ∪H1.

We may assume that v4 ∈ U1; the case v4 ∈ U6 is analogous. Then every (v4, v4)-
path goes through {v1, v2}. Since v2 is adjacent to v4, it follows that d(v4, v2) ≥ r−1.
In conjunction with Claim 1 this implies that d(v1, v4) = r− 2 and d(v2, v4) = r− 1.
Clearly we have also d(v6, v4) = r − 1.

Claim 3: d = 2r − 2 and ed ≥ 3.

By Claim 1, every vertex is within distance r− 2 of its nearest vertex in C, and any
two vertices in C are at most distance 2 apart; hence, d ≤ 2(r − 2) + 2 = 2r − 2. It
follows from Claim 2 that d(v4, v6) = d(v6, v2) = d(v2, v4) = 2r−2. Hence d = 2r−2
and ed ≥ 3.
We now prove that for any j with r < j < d we have ej ≥ 6. Since the eccentricities
of adjacent vertices differ by at most 1, the vertices of eccentricity j that belong to
Ui−1 ∪ Ui separate C and vi+3 for i ∈ {1, 3, 5}. Since G is 2-connected, Ui−1 ∪ Ui

contains at least two vertices of eccentricity j in G. Hence G contains at least six
vertices of eccentricity j.

Claim 4: n ≥ 6r − 6.

Suppose without loss of generality that v4 ∈ U1. Then by Claim 2 and the fact that
G is 2-connected, there are internally disjoint v4− v1 and v4− v2 paths in U1 having
lengths at least r − 2 and r − 1, respectively. Thus U1 − {v1, v2} contains at least
1 +2r−5 vertices. Applying the same argument to v2 and v6, we get n ≥ 6r−6.

In what follows we make use of the following result, due to Chang:

Theorem 4. [3] If G is a chordal graph in which the diameter is twice the radius,
then the center of G is a clique.
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Lemma 2. Let G be a MOP of diameter d and radius r whose centre is isomorphic
to G6. Then r ≥ 3 and d = 2r − 1. Moreover

(i) er = 6,
(ii) ei ≥ 4 for r < i < d,
(iii) ed ≥ 2.

Proof. In view of Theorems 2 and 4, it suffices to show that r ≥ 3 and that d ≥ 2r−1.
The former follows from d(v3, v6) = 3.

Claim 1: (i) d(v, {v5, v1}) ≤ r − 2 for all v ∈ U5 ∪ U6,
(ii) d(v, {v2, v4}) ≤ r − 2 for all v ∈ U2 ∪ U3,
(iii) max(d(v, v1), d(v, v2)) ≤ r − 1 for all v ∈ U1,
(iv) max(d(v, v4), d(v, v5)) ≤ r − 1 for all v ∈ U4.

To prove (i) consider vertex v3. Since every path from a vertex v ∈ U5 ∪ U6 to v3
goes through {v1, v5}, and since d(v3, v1) = d(v3, v5) = 2, we have d(v, {v5, v1}) =
d(v, v3) − 2 ≤ r − 2, and (i) follows. Part (ii) is proved similarly by considering
vertex v6.
To prove (iii) let v be an arbitrary vertex in U1. Since d(v4, v) ≤ r, and every
(v, v4)-path goes through {v1, v2}, we have d(v2, v) ≤ r− 1. Similarly, every shortest
(v, v6)-path goes through {v1, v2}, so d(v1, v) ≤ r − 1, and (iii) follows. Similarly we
prove (iv).

Claim 2: d ≥ 2r − 1.

By Claim 1 every vertex in U2 ∪ U3 ∪ U4 ∪ U5 ∪ U6 is within distance r − 1 of v5,
so v5 ∈ U1. Clearly, d(v5, v1) ≥ r − 1 and d(v5, v2) ≥ r − 1. By Claim 1 we get
d(v5, v1) = d(v5, v2) = r − 1.
Similarly, v2 ∈ U4 and d(v2, v4) = d(v2, v5) = r − 1. From these statements we get
that

d(v5, v2) ≥ d(v5, {v1, v2}) + d({v1, v2}, {v4, v5}) + d({v4, v5}, v2)
= (r − 1) + 1 + (r − 1) = 2r − 1,

as desired.

Lemma 3. Let G be a MOP of diameter d and radius r whose centre is isomorphic
to G5. Then d = 2r − 1. Moreover,

(i) er = 5,
(ii) ei ≥ 4 for r < i < d,
(iii) ed ≥ 2.

Proof. In view of Theorems 2 and 4 it suffices to show that d ≥ 2r − 1.

Claim 1: (i) d(v, C) ≤ r − 2 for all v ∈ U5 ∪ U2,
(ii) d(v, v4) ≤ r − 1 for all v ∈ U3 ∪ U4,
(iii) max(d(v, v1), d(v, v2)) ≤ r − 1 for all v ∈ U1.

Parts (i) and (ii) are proved as above by using the fact that for v ∈ U5 (v ∈ U2,
v ∈ U3, v ∈ U4) the distance between v and v3 (v5, v1, v2) is not more than r. Part
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(iii) follows from the fact that d(v, v3) ≤ r and d(v, v5) ≤ r for all v ∈ U1.

Claim 2: (i) v4 ∈ U1 and d(v4, v1) = d(v4, v2) = r − 1.
(ii) We can choose v2 such that v2 ∈ U3 ∪ U4.
(iii) d(v2, v3) = d(v2, v4) = r−1 if v2 ∈ U3, and d(v2, v4) = d(v2, v5) = r−1 if v2 ∈ U4.

Consider vertex v4. It follows from Claim 1 that every vertex in U5 ∪U6 ∪U2 ∪U3 is
within distance r − 1 of v4, so v4 ∈ U1. Then d(v4, v1) ≥ r − 1 and d(v4, v2) ≥ r − 1,
and in conjunction with Claim 1 we get d(v4, v1) = d(v4, v2) = r − 1, and part (i)
follows.
To prove (ii) consider a common neighbour u of v1 and v2 in U1. Then ecc(u) = r+1
since u is not a centre vertex. It follows from Claim 1 that u /∈ U1 ∪ U2 ∪ U5, so
u ∈ U3 ∪ U4. Since d(v2, u) ≥ r, u is an eccentric vertex of v2.
Part (iii) is proved as above.

Claim 3: d ≥ 2r − 1.

We may assume that v2 ∈ U4. By Claim 2 we have

d(v2, v4) ≥ d(v2, {v4, v5}) + 1 + d({v1, v2}, v4) ≥ 2r − 1,

as desired.

Lemma 4. Let G be a MOP of diameter d and radius r whose centre is isomorphic
to G4. Then d = 2r − 1. Moreover,

(i) er = 4,
(ii) ei ≥ 4 for r < i < d,
(iii) ed ≥ 2.

Proof. In view of Theorems 2 and 4, it suffices to show that d ≥ 2r − 1.

Claim 1: (i) d(v, v1) ≤ r − 1 for all v ∈ U4 ∪ U1,
(ii) d(v, v3) ≤ r − 1 for all v ∈ U2 ∪ U3,

Parts (i) and (ii) are proved as above by using the fact that for v ∈ U4 (v ∈ U1,
v ∈ U2, v ∈ U3) the distance between v and v2 (v4, v4, v2) is not more than r. This
also implies the following.

Claim 2: (i) v1 ∈ U2 ∪ U3 and d(v1, v3) = r − 1.
(ii) If v1 ∈ U2 (v1 ∈ U3) then d(v1, v2) ≥ r − 1 (d(v1, v4) ≥ r − 1).

Claim 3: d ≥ 2r − 1.

We may assume that v1 ∈ U2. Then U2 contains a common neighbour w of v2 and
v3. Since ecc(w) = r+1, it follows from Claim 1 that every vertex in U2 has distance
at most r from w; so w /∈ U2. Hence every (w, v1)-path passes through {v2, v3}. Now
d(w, {v2, v3}) ≥ ecc(w)− 1 = r, and in conjunction with Claim 1 we get

d(w, v1) ≥ d(w, {v2, v3}) + d({v2, v3}, v1) ≥ r + (r − 1) = 2r − 1,

as desired.
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Lemma 5. Let G be a MOP of order n, diameter d and radius r whose centre is
isomorphic to K3. Then d = 2r − 1. Moreover

(i) er = 3,
(ii) ei ≥ 4 for r < i < d,
(iii) n ≥ 4r − 1.

Proof. In view of Theorem 2 it suffices to show that n ≥ 4r − 1 and d = 2r − 1. If
r = 1, then since no outerplanar graph contains K4 as a subgraph, we must have
G = K3. If r ≥ 2, then C = K3 is a proper subgraph of G and we may then assume
that |U1| > 2. We claim that |U2| > 2 or |U3| > 2; if this is not the case, then since v1
and v2 have a neighbour x1 ∈ U1, we have e(x1) ≤ e(v3), a contradiction. We hence
assume that |U2| > 2. Since for every vertex y ∈ U1, we have d(x1, y) ≤ d(v3, y) ≤ r,
we must (without loss of generality) have x1 ∈ U2. Furthermore, every x1 − x1 path
contains v1 or v2; since d(v1, x1), d(v2, x1) ≤ r, this implies that d(x1, x1) = r + 1. In
fact, since every v1−x1 path contains v2 or v3 and v2 is adjacent to v3, we must have
d(v2, x1) = r. Since d(v1, x1) ≤ r, this then implies that d(v3, x1) = r − 1. Since G
is 2-connected, there are internally disjoint x1 − v2 and x1 − v3 paths, which implies
that U2 − {v2, v3} contains at least 1 + r − 2 + r − 1 = 2r − 2 vertices. A similar
argument proves that U1 − {v1, v2} contains at least 2r − 2 vertices. Hence G has
order at least 3 + 2(2r − 2) = 4r − 1.

Finally, every vertex of G is distance at most r − 1 from C, so d ≤ 2r − 1.
Let x2 be a common neighbour of v2 and v3 in U2. Then x2 ∈ U1 or x2 ∈ U3. If
x2 ∈ U1, then a similar argument to the preceding shows that d(v2, x2) = r and
d(v1, x2) = r − 1, which implies that d(x2, x2) = 2r − 1. The case when x2 ∈ U3 is
handled similarly.

Lemma 6. Let G be a MOP of diameter d and radius r whose centre is isomorphic
to K2. Then d = 2r. Moreover,

(i) er = 2,
(ii) ei ≥ 4 for r < i < d,
(iii) ed ≥ 2.

Proof. In view of Theorem 2 it suffices to show that d = 2r.

Claim 1: G− C has exactly two components.

It suffices to show that edge v1v2 is not on the boundary of the unbounded face.
Suppose it is. Then v1 and v2 have a common neighbour v. Now for every vertex
w of G there exist paths of length at most r from w to v1 and to v2. Using these
paths it is easy to construct a w− v path of length at most r for every w ∈ V , which
contradicts the fact that v is not a centre vertex of G.

Claim 2: d = 2r.

Clearly, d ≤ 2r. The graph G−C has two components H and H ′ with vertex sets U
and U ′, respectively. Then H contains a common neighbour v of v1 and v2. Clearly,
ecc(v) = d(v, v) = r + 1. We show that

v ∈ U ′ and d(v, C) = r.
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Suppose to the contrary that v /∈ U ′. Then d(v1, v) = d(v2, v) = r, and so there exist
a (v1, v)-path P1 and a (v2, v)-path P2, both of length r. If v is on P1 or P2 then
d(v, v) ≤ r, a contradiction; hence v is on neither path. But then the union of P1

and P2, together with the edge v1v2 contains a cycle through v1 and v2 so that v is
on the inside of this cycle. This contradicts the outerplanarity of G, and so v ∈ U ′.
Now let u be a common neighbour of v1 and v2 in H ′. With a similar argument we
show that u ∈ U and d(u,C) = r. Since u and v are not in the same component of
G− C, every (u, v)-path goes through C. Hence

d(u, v) ≥ d(u,C) + d(C, v) = 2r,

and so d = 2r as desired.

Lemma 7. Let G be a MOP of diameter d and radius r whose centre is isomorphic
to K1. Then d = 2r. Moreover,

(i) er = 1,
(ii) ei ≥ 4 for r < i < d,
(iii) ed ≥ 2,
(iv) n ≥ 4r + 1.

Proof. In view of Theorem 2 it suffices to show that d = 2r and that n ≥ 4r + 1.

Let w1, w2, . . . , wk be the neighbours of v1 in clockwise order, and such that v1w1 and
v1wk are the edges incident with v1 that lie on the unique hamiltonian cycle of G.
Since G is maximal outerplanar, the edges w1w2, w2w3, . . . , wk−1wk are present in G.
Similar to the notation used above, we denote by Ui the set of vertices in the com-
ponent of G− {v1, w1, w2, . . . , wk} adjacent to {wi, wi+1}, together with {wi, wi+1}.
Claim 1: d(w, {wi, wi+1}) ≤ r − 1 for all w ∈ Ui, 1 ≤ i ≤ k.

The proof is as above.

Claim 2: d = 2r.

Since d ≤ 2r, it suffices to show that there exists a pair of vertices at distance
at least 2r. First assume that there exists a set Ui containing a vertex u with
max{d(u,wi), d(u,wi+1)} = r. Without loss of generality let d(u,wi) = r. Then
d(u,wi+1) = r − 1 by Claim 1. We claim that d(u,wi+1) = 2r. A shortest (u,wi+1)-
path contains wi or wi+1. If it contains wi+1, then

d(u,wi+1) = d(u,wi+1) + d(wi+1, wi+1) = (r − 1) + (r + 1) = 2r,

and if it contains wi then d(u,wi+1) = d(u,wi) + d(wi, wi+1) ≥ r+ r = 2r, so in both
cases we conclude that d(u,wi+1) ≥ 2r, as desired.
Hence we may assume that, for all i ∈ {1, 2, . . . , k} and for all u ∈ Ui, we have
d(u,wi) ≤ r − 1 and d(u,wi+1) ≤ r − 1. Fix an eccentric vertex v1 of the centre
vertex v1. Let v1 ∈ Uj, say. Then d(v1, wj) = d(v1, wj+1) = r − 1. If now there
is a vertex w which is a common eccentric vertex of wj and of wj+1, then w /∈ Uj

and so, by ecc(wj) = ecc(wj+1) = r + 1, we have d(v1, w) ≥ d(v1, {wj, wj+1}) +
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d({wj, wj+1}, w) = (r−1)+(r+1) = 2r, as desired. Hence we may assume that there
is no common eccentric vertex of wj and wj+1. Then d(wj, wj+1) = d(wj+1, wj) = r,
and so wj is on some shortest (wj+1, wj+1)-path Pj+1, and wj+1 is on some shortest
(wj, wj)-path Pj. Clearly, Pj+1 and Pj do not pass through v1. We conclude that wj ∈
Uj+1∪Uj+2, and similarly that wj+1 ∈ Uj−1∪Uj−2. Now wj+1 /∈ Uj−1 since otherwise,
if wj+1 ∈ Uj−1, we would obtain the contradiction d(wj+1, wj+1) = d(wj+1, wj) +
d(wj, wj+1) ≤ (r − 1) + 1 = r. Therefore we have wj+1 ∈ Uj−2, and similarly
wj ∈ Uj+2. This implies that there is a shortest (wj+1 − wj)-path that contains v1.
Since d(v1, wj+1) = d(v1, wj) = r, we conclude that d(wj+1, wj) = r + r = 2r, as
desired.

Claim 3: n ≥ 4r + 1.

Let x and y be vertices of G with d(x, y) = d = 2r. Since G is 2-connected, there are
internally disjoint x − y paths P1 and P2, each of length at least 2r, which implies
that n ≥ 4r. Suppose that n = 4r. Then P1 ∪ P2 is the unique hamilton cycle of
G, and both P1 and P2 are x − y geodesics of length 2r. Suppose without loss of
generality that v1 ∈ V (P1); then d(v1, x) = d(v1, y) = r. If deg v1 = 2, then since G
is a MOP, the two neighbours of v1 on P1 are adjacent, contradicting the fact that
P1 is a geodesic. For the same reason, the vertex v1 cannot be adjacent to three
vertices of P1. It follows that v1 is adjacent to a vertex z of P2 − {x, y}. The vertex
z is distance at most r away from every vertex of P1−{x, y}. Since ecc(z) > ecc(v1),
it follows that z ∈ V (P2), which implies, without loss of generality, that z = x. Let
z′ be the neighbour of z on P2 that lies between z and x. If z′ is adjacent to v1, then
we obtain ecc(z′) = r, a contradiction. On the other hand if z′ is not adjacent to
v1, then since G is a MOP, the vertex z must be adjacent to the neighbour of v1 on
P1 that lies between v1 and x. But then d(z, x) ≤ r, a contradiction. It follows that
n ≥ 4r + 1.

3 Constructions

We now prove the sufficiency of Theorem 3 by showing, for every sequence S sat-
isfying one of the conditions (1)–(7) of Theorem 3, how to construct a MOP with
eccentric sequence S.

3.1 Cases 2, 3, 4, and 6

We make use of the following gadget in our construction. Let m ≥ 1 and let a0 =
2, a1, . . . , am be a sequence of integers with as ≥ 2 for all s ∈ {1, . . . ,m − 1} and
am ≥ 1. We define a graph P (2, a1, . . . , am) of order

∑m
s=0 as as follows.

The vertex set is {xs,t : 0 ≤ s ≤ m and 1 ≤ t ≤ as }. The edge set consists of



D
RA
FT

P. DANKELMANN ET AL. /AUSTRALAS. J. COMBIN. 58 (3) (2014), 376–391 386

(i) all edges of the form xs,txs,t+1, where 0 ≤ s ≤ m and 1 ≤ t ≤ as − 1;
(ii) all edges of the form xs,2xs+1,t, where 0 ≤ s ≤ m− 2 and 1 ≤ t ≤ as+1;

(iii) all edges of the form xm−1,1xm,t, where 1 ≤ t ≤ am;
(iv) all edges of the form xs,1xs+1,1, where 0 ≤ s ≤ m− 2; and
(v) the edge xm−1,2xm,1.

x0,1

x0,2

x1,1 x2,1 xm−1,1

x1,2

x1,3

x1,4

x2,2 xm−1,2

xm−1,3
xm−1,4

xm−1,am−1x1,a1

x2,3

x2,4

x2,a2

xm,2

xm,1

xm,3

xm,4

xm,am

Figure 2: The construction of P (2, a1, . . . , am)

Lemma 8. Let W = P (2, a1, . . . , am). Then
(a) W is a MOP;
(b) if m ≥ 2, then d(x0,2, xs,t) = s for all 1 ≤ s ≤ m and 1 ≤ t ≤ as; and
(c) if m ≥ 2, then d(x0,1, xm,t) = m for all 1 ≤ t ≤ am.

Proof. (a) We can think of building W as follows. Start with two adjacent vertices,
and repeatedly add a path L, joining everything on L to some vertex y and joining
one end of L to one neighbor of y. This graph is a MOP at each stage.

(b) Easy by induction on s.

(c) Easily checked.

We now present the constructions.

Case 2: r ≥ 3, d = 2r − 1, er = 6, ei ≥ 4 for all i with r < i < d, and ed ≥ 2.

Let as = 2 for 1 ≤ s ≤ r−2 and let ar−1 = 1. For 1 ≤ s ≤ r−1, let bs = er+s−as.
Let WA = P (2, a1, . . . , ar−1) and WB = P (2, b1, . . . , br−1). We denote the vertices of
WA by xA

s,t and the vertices of WB by xB
s,t. Let G(S) be the graph constructed from

G6 (which, as before, has vertex set {v1, v2, . . . , v6}), WA, and WB, by identifying
v1 = xA

0,2, v2 = xA
0,1, v4 = xB

0,2, and v5 = xB
0,1. The construction is illustrated in

Figure 3.
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v1 = xA
0,2

v2 = xA
0,1

v3

v4 = xB
0,2

v5 = xB
0,1

v6

WA

WB

Figure 3: The construction for Case 2.

Clearly, G(S) is a MOP. Since r ≥ 3, by Lemma 8, both v1 and v2 are within
distance r − 1 of every vertex of WA, and both v4 and v5 are within distance r −
1 of every vertex of WB. Hence, every vertex of G6 has eccentricity at most r.
Furthermore, d(v1, x

B
r−1,1) = d(v2, x

B
r−1,1) = d(v3, x

B
r−1,1) = r, and d(v4, x

A
r−1,1) =

d(v5, x
A
r−1,1) = d(v6, x

A
r−1,1) = r; so every vertex of G6 has eccentricity r. Consider

now a vertex xA
s,t; then xA

s,t is distance s from v2, which implies that e(xA
s,t) ≤ r + s.

Furthermore d(xA
s,t, x

B
r−1,1) = r + s, so e(xA

s,t) = r + s. Similarly, for every vertex xB
s,t

we have e(xB
s,t) = r+s. It follows that G(S) has eccentricity sequence S, as required.

Case 3: r ≥ 2, d = 2r − 1, er = 5, ei ≥ 4 for all i with r < i < d, and ed ≥ 2.

If r ≥ 3, then simply delete v3 from the construction for Case 2. If r = 2, then
one can similarly replicate the construction from Case 2 and again delete v3. This
is equivalent to taking G6 − {v3}, adding one vertex xA

1,1 adjacent to v1 and v2, and
adding a path LB of length ed−1 with v5 adjacent to every vertex on LB and with v4
adjacent to one end of LB. It is easily checked that G(S) has the desired properties.

Case 4: r ≥ 2, d = 2r − 1, er = 4, ei ≥ 4 for all i with r < i < d, and ed ≥ 2.

Delete v6 from the corresponding construction in Case 3.

Case 6: r ≥ 2, d = 2r, er = 2, ei ≥ 4 for r < i < d, and ed ≥ 2.

Let as = 2 for 1 ≤ s ≤ r−1 and let ar = 1. For 1 ≤ s ≤ r, let bs = er+s−as. Let
WA = P (2, a1, . . . , ar) and WB = P (2, b1, . . . , br). As before, we denote the vertices
of WA by xA

s,t and the vertices of WB by xB
s,t. Let G(S) be the graph constructed

from WA and WB by identifying xA
0,1 = xB

0,2 and xA
0,2 = xB

0,1. The construction is
illustrated in Figure 4.

3.2 Cases 1, 5 and 7

We make use of the following gadget in our construction. The fundamental difference
between this gadget and P above is that in P we have d(x0,t, xm,t′) = m for all
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xA
0,2 = xB

0,1

xA
0,1 = xB

0,2

xB
1,1 xB

2,1 xB
3,1xA

1,2

xA
1,1

xA
2,2

xA
2,1

xA
3,2

xA
3,1

xB
1,b1

xB
2,b2

xB
3,b3

xB
r−1,1

xB
r−1,2

xB
r,2

xB
r,1

xB
r,br

xB
r−1,br−1

xA
r−1,1

xA
r−1,2

xA
r,1

Figure 4: The construction for Case 6.

choices of t and t′ (provided m > 1), whereas we now construct a graph such that
d(x0,t, xm,t′) > m for some choice of t and t′.

Let m ≥ 1, and let a0 = 2, a1, . . . , am be a sequence of integers with as ≥ 2 for all
s ∈ {1, . . . ,m− 1} and am ≥ 1. We define a graph Q(2, a1, . . . , am) of order

∑m
s=0 as

as follows. The vertex set is {xs,t : 0 ≤ s ≤ m and 1 ≤ t ≤ as }. The edge set
consists of
(i) all edges of the form xs,txs,t+1, where 0 ≤ s ≤ m and 1 ≤ t ≤ as − 1;
(ii) all edges of the form xs,2xs+1,t, where 0 ≤ s ≤ m− 1 and 1 ≤ t ≤ as+1; and
(iii) for each s with 0 ≤ s ≤ m− 1, the edge xs,1xs+1,1 if as = 2, and the edge xs,3 to
xs+1,as+1 otherwise.

To illustrate the construction, the graph Q(2, 3, 2, 4, 2) is shown in Figure 5.

x0,1

x0,2

x1,1

x1,2

x1,3

x2,1

x2,2

x3,1

x3,2

x3,3

x3,4

x4,1

x4,2

Figure 5: The graph Q(2, 3, 2, 4, 2).

Lemma 9. Let W = Q(2, a1, . . . , am). Then
(a) W is a MOP;
(b) d(x0,2, xs,t) = s for all 1 ≤ s ≤ m and 1 ≤ t ≤ as; and
(c) if

∑m
s=1 as ≥ 2m, then d(x0,1, xm,am) = m + 1.
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Proof. The proofs of (a) and (b) are as in the proof of Lemma 8.

To prove (c), notice that since x0,1 and x0,2 are adjacent, it follows from part (b)
that d(x0,1, xm,am) ≤ m + 1. The condition

∑m
s=1 as ≥ 2m means that as > 2 for

some 1 ≤ s < m, or that am > 1. For each s, vertex xs,1 has at most one neighbor
of the form xs+1,t, namely t = 1. Thus, if am > 1 then we get the claimed distance.
Further, if any as > 2 for s < m, then xs,1 is not adjacent to xs+1,1.

We now prove the remaining cases for Theorem 3.

Case 1: n ≥ 6r − 6, r ≥ 2, d = 2r − 2, er = 6, ei ≥ 6 for all i with r < i < d,
and ed ≥ 3.

The graph is H6 if r = 2. So assume r ≥ 3. Then, one can construct three vectors
A = (2, a1, . . . , ar−2), B = (2, b1, . . . , br−2), and C = (2, c1, . . . , cr−2) satisfying the
following three conditions: (i) for all s ∈ {1, . . . , r − 2} we have as + bs + cs = er+s;
(ii) for all s ∈ {1, . . . , r − 3} we have as, bs, cs ≥ 2, and ar−2, br−2, cr−2 ≥ 1; and (iii)
each of

∑r−2
s=1 as,

∑r−2
s=1 bs and

∑r−2
s=1 cs is at least 2r − 4.

Let WA = Q(A), WB = Q(B), and WC = Q(C). We shall denote the vertices of
Wi by xi

s,t as before. Let G(S) be the graph constructed from H6 (which, as before,
has vertex set {v1, v2, . . . , v6}), WA, WB, and WC , by identifying v1 = xA

0,2, v2 = xA
0,1,

v3 = xB
0,2, v4 = xB

0,1, v5 = xC
0,2, v6 = xC

0,1 The construction is illustrated in Figure 6.

v1 = xA
0,2

v2 = xA
0,1

v3 = xB
0,2v4 = xB

0,1
v5 = xC

0,2

v6 = xC
0,1

WA

WB

WC

Figure 6: The construction for Case 1.

Clearly, G(S) is a MOP. Notice that v1, v3, and v5 are within distance r −
2 of every vertex in WA, WB, and WC , respectively; so every vertex in H6 has
eccentricity at most r. Furthermore, d(v1, x

B
r−2,1) = d(v3, x

C
r−2,1) = d(v5, x

A
r−2,1) = r.

By Lemma 9, d(v2, x
C
r−2,cr−2

) = d(v6, x
B
r−2,br−2

) = d(v4, x
A
r−2,ar−2

) = r; hence e(vi) =

r for all i ∈ {1, 2, . . . , 6}. Consider now a vertex xi
s,t in Wi with s ≥ 1. Then

xi
s,t is within distance s + 2 of every vertex in H6, which implies that e(xi

s,t) ≤
r + s. Furthermore d(xA

s,t, x
C
r−2,cr−2

) = d(xB
s,t, x

A
r−2,ar−2

) = d(xC
s,t, x

B
r−2,br−2

) = r + s.

Consequently, e(xi
s,t) = r + s. It follows that G(S) has eccentricity sequence S, as

required.

Case 5: n ≥ 4r − 1, d = 2r − 1, er = 3, ei ≥ 4 for all i with r < i < d, and
ed ≥ 2.
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If r = 1, then the graph is K3; so assume r ≥ 2. Then, one can construct
two vectors A = (2, a1, . . . , ar−1) and B = (2, b1, . . . , br−1), satisfying the following
three conditions: (i) for all s ∈ {1, . . . , r − 1} we have as + bs = er+s; (ii) for all
s ∈ {1, . . . , r− 2} we have as, bs ≥ 2, and, ar−1, br−1 ≥ 1; and (iii) both

∑r−1
s=1 as and∑r−1

s=1 bs are at least 2r − 2.

Let WA = Q(A) and WB = Q(B). Let G(S) be the graph constructed from K3

with vertex set {v1, v2, v3}, WA and WB, by identifying v1 = xA
0,2, v2 = xB

0,2, and
v3 = xA

0,1 = xB
0,1.

Lemma 9 shows that there is some vertex in both WA and WB at distance r
from v3. On the other hand, by Lemma 9, v1 can reach all vertices of WA in r − 1
steps, and similarly v2 in WB. It follows that v1, v2, and v3 all have eccentricity r.
From this it follows that all xs,t in both WA and WB have eccentricity r + s.

Case 7: n ≥ 4r + 1, d = 2r, er = 1, ei ≥ 4 for all i with r < i < d, and ed ≥ 2.

Then, one can construct two vectors A = (2, a1, . . . , ar), B = (2, b1, . . . , br),
satisfying the following three conditions: (i) for all s ∈ {1, . . . , r} we have as + bs =
er+s; (ii) for all s ∈ {1, . . . , r − 1} we have as, bs ≥ 2, and, ar, br ≥ 1; and (iii) both∑r

s=1 as and
∑r

s=1 bs are at least 2r.

Let WA = Q(A) and WB = Q(B). Let G(S) be the graph constructed from WA

and WB, by identifying xA
0,2 = xB

0,2 and adding one edge joining xA
0,1 to xB

0,1. The
justification is similar to that of Case 5.

4 Open questions

As has been noted previously, the general problem of characterizing the eccentric
sequences of graphs appears to be difficult. Proskurowski’s characterization of the
centers of MOPs [11] plays a central role in our characterization of eccentric sequences
of MOPs. Proskurowski has also characterized the centers of 2-trees [12], a class of
graphs which properly contains MOPs. It would be interesting to see whether a
characterization of eccentric sequences of 2-trees can be obtained via Proskurowksi’s
characterization of the centers of 2-trees.
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