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Abstract

We study sorting machines consisting of a stack and a pop stack in series,
with or without a queue between them. While there are, a priori, four
such machines, only two are essentially different: a pop stack followed
directly by a stack, and a pop stack followed by a queue and then by
a stack. In the former case, we obtain complete answers for the basis
and enumeration of the sortable permutations. In the latter case, we
present a characterization in terms of divided permutations and several
conjectures.

1 Introduction

A stack is a last-in first-out sorting device with push and pop operations. In Volume
1 of The Art of Computer Programming [17, Section 2.2.1], Knuth showed that the
permutation 7 can be sorted (meaning that by applying push and pop operations to
the sequence of entries 7(1),...,7(n) one can output the sequence 1,...,n) if and
only if 7 avoids the permutation 231, i.e., if and only if there do not exist three indices
1 <y < ig < iy < nsuch that 7(iy), m(iz), 7(i3) are in the same relative order as
231. Shortly thereafter Tarjan [22], Even and Itai [16], Pratt [20], and Knuth himself
in Volume 3 [18, Section 5.2.4] studied networks with multiple stacks in series or in
parallel. The questions typically studied for such networks include:
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e Can the set of sortable permutations be characterized by a finite set of forbidden
patterns (e.g., {231} in the case of a single stack)?

e How many permutations of each length can be sorted?

For k > 2 stacks in series or in parallel the answer to the first question is no, due to
Murphy [19] and Tarjan [22], respectively. The exact enumeration question appears
to be much less tractable, and here only relatively crude bounds are known; see
Albert, Atkinson, and Linton [4]. For a general overview of stack sorting, we refer
the reader to Béna [13].

Given how difficult the two stacks in series problem appears to be, numerous
researchers have considered weaker machines. Atkinson, Murphy, and Ruskuc [9]
considered sorting with two increasing stacks in series, i.e., two stacks whose entries
must be in increasing order when read from top to bottom!. They characterized the
permutations this machine can sort with an infinite list of forbidden patterns, and also
found the enumeration of these permutations. (Interesting, these permutations are
in bijection with the 1342-avoiding permutations previously counted by Béna [12].)
Another weakening, sorting with a stack of depth 2 followed by a standard stack (of
infinite depth), was studied by Elder [15]. He characterized the sortable permutations
with a finite list of forbidden patterns, but did not enumerate these permutations.

The objects we study, pop stacks, were introduced by Avis and Newborn [11].
A pop stack is a handicapped form of a stack in which the only way to output an
entry in the stack is to pop the entire stack (in last-in first-out order as usual). Avis
and Newborn considered placing pop stacks in series, which by their interpretation
means that when the entire set of items currently in the ith pop stack is popped,
they are pushed immediately onto the (i + 1)st pop stack. They proved that the set
of permutations sortable by k pop stacks in series can be characterized by a finite
set of forbidden patterns and provided the enumeration of these permutations for
every k.

There is another way to view sorting with pop stacks in series, where one is allowed
to save the output of one pop stack and pass it into the next an entry at a time.
Serially linking pop stacks in this manner corresponds to placing a queue between
the pop stacks, and is much more powerful than the Avis-Newborn interpretation.
Atkinson and Stitt [10], who also gave a simpler derivation of Avis and Newborn’s
enumerative results using what is now known as the substitution decomposition,
found the (rational) generating function for the permutations that can be sorted by
a pop stack followed by a queue followed by another pop stack.

Here we consider sorting with a stack and a pop stack in series. A priori, there
are four different ways by which they may be connected:

!Even without this restriction, the final stack must be increasing if the sorting is to be successful.
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PS: A pop stack followed by a stack, connected in Avis and Newborn’s
manner.

PQS: A pop stack followed by a queue followed by a stack.

SP: A stack followed by a pop stack, connected in Avis and Newborn’s
manner.

SQP: A stack followed by a queue followed by a pop stack.

Clearly the permutations sortable by PS are a subset of those sortable by PQS.
In the next section, we prove that SP and SQP are equivalent, and that PQS is a
symmetry of these two machines. Then, in Section 3 we characterize and enumerate
the permutations sortable by PS. In Section 4 we consider the class PQS, but are
able to establish few concrete results.

It will be helpful to give names to the operations involved in these sorting ma-
chines. Given a system of two stacks (of any type) in series, we refer to moving an
entry from the input to the first stack as an input, moving an entry from the first
stack to the second stack as a transfer, and moving an entry from the second stack
to the output as an output. When there is a queue between the two stacks, we use
the term transfer to describe both moving an entry from the first stack to the queue
and moving it from the queue to the second stack.

We conclude the introduction with a bit of terminology which will be useful. A
permutation class is a downset of permutations under the containment order. Every
permutation class can be specified by the set of minimal permutations which are
not in the class, which we call its basis. Finally, for a set B of permutations, we
denote by Av(B) the class of permutations which do not contain any element of B.
For example, Knuth’s result says that the stack-sortable permutations are precisely
Av(231), i.e., that they have the singleton basis {231}. Given any naturally defined
sorting machine, the set of sortable permutations forms a class (a subpermutation
of a sortable permutation can be sorted by ignoring the operations corresponding to
absent entries)?.

Finally, it is frequently helpful to remember that the permutation containment
order has eight symmetries which form the dihedral group of the square. These are
generated by two symmetries inverse and reverse, defined, respectively, by

") =

(1) = w(n+1—1i),

for all 7. We will also make use of the complement symmetry, defined by
() = n+1—mn(i),

also for all 4.

2The exception that proves this rule is West’s notion of 2-stack-sortability [24], which has an
unusual defect due to restrictions on how the machine can use its two stacks. For example, this
machine can sort 35241, but not its subpermutation 3241.
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2 The Equivalence of PQS, SP, & SQP

We begin with the easier equivalence, between the machines SP and SQP.

Proposition 2.1. The machines SP and SQP are equivalent.

Proof. More generally, adding a queue after a normal stack never alters the sorting
capabilities of a permutation machine. The machine SM (a stack followed by M)
can sort the entries of 7 if and only if M can sort 7(iy), ..., 7(i,) where iy -- -, is a
permutation which can be generated by a stack starting with the identity permutation
as input. Clearly, the same is true for the machine SQM, because the queue cannot
alter the order in which entries pass through it, and consequently through M. (While
it is not important to this proof, note that a stack can reorder the entries of 7 as
7(i1), ..., m(iy) if and only if 4; - - - 4, avoids 23171 = 312.) O

Now we show that the permutations sortable by PQS and SQP are symmetries
of each other. To do so we consider a construction due to Atkinson (see [7], for
example). The two-stack dual of the permutation 7 of length n is defined by

7Td — ((ﬂ_r)—l)r :

or more concretely by

for all 7.

Proposition 2.2. The permutation m can be sorted by two stacks in series if and
only if the permutation ™ can be sorted by two stacks in series.

Proof. Consider any sequence of inputs, transfers, and outputs which sorts the per-
mutation m. We think of these operations as generating 12---n from the input .
By performing these operations in reverse, we obtain a procedure to generate 7"
from n ---21 — in this new procedure, the last entry popped from the second stack
becomes the first entry pushed onto the first stack. By applying (77)~! to the input
symbols, we obtain a procedure to generate the identity from n---21 o (7")7} i.e.,
sort the two-stack dual of 7. O

We now consider the analogue of the proof of Proposition 2.2 for the machine PQS.
The first step, of viewing the machine working backwards, requires us to introduce a
push stack, that is a stack which can be pushed to only when empty, but can accept
any length of segment pushed to it, and then can output entries one at a time.
Denoting a push stack by P', we see from following the proof of Proposition 2.2 that
if the machine PQS can sort 7 then the machine SQP’ can generate 7" from n - - - 21.
By applying (7F)~! to the input symbols, we see that SQP’ can sort 7¢. We now
argue that SQP' = SQP. In sorting a permutation with SQP’, we can assume that
all entries of the input are passed through the stack and placed in the queue before
the push stack performs any operations. Once the push stack begins operating, it
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Figure 1: Sorting the permutation 24513 with the PS machine.

will then take initial segments of the entries from the queue, but then must output
them all (exactly like a pop stack) before accepting any more input. Therefore, when
operated in this manner, the push stack is functionally equivalent to a pop stack.
This shows that if 7 can be sorted by PQS then 74 can be sorted by SQP. The other
direction follows in the same manner, establishing the following result.

Proposition 2.3. The permutation © can be sorted by PQS if and only if 74 can be
sorted by SQP = SP.

3 Without a Queue Between — PS

We begin by finding three permutations that the PS machine cannot sort. We will

later show that these are the only minimal permutations which cannot be sorted
by PS.

Proposition 3.1. The permutations 2431, 3142, and 3241 are not PS-sortable.

Proof. The proof consists of three separate case analyses. As the cases are similar,
we give the details for the first only. The other two follow from the work of Smith [21]
mentioned in the conclusion or can be viewed as exercises for the reader.

Consider attempting to sort the permutation 2431 with PS. First the 2 must be
pushed into the pop stack. Suppose the 2 is not transferred to the next stack before
the 4 enters the pop stack. If the entries of the pop stack ever contain an increase
when read from top to bottom, then the sorting will clearly fail, so the 4 and thus
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Figure 2: An inflation of 2413, a sum, and a skew sum.

also (by the pop property) the 2 must be transferred to the stack at this point.
However, at that point there would be no way to output the 1 before the 3 is forced
to be transferred to the stack above the 2.

Alternatively, if the 2 is transferred from the pop stack to the stack before the 4
enters the pop stack, again there is no way to output the 1 before the 3 and 4 are
transferred to the stack above the 2. O

Thus the PS-sortable permutations are a subclass of Av(2431,3142). The struc-
ture of the reverse-complement of this class, Av(3142,4213), was described by Albert,
Atkinson, and Vatter [6]. This structural description rests on the notion of simple
permutations; the only intervals that are mapped to intervals by such permutations
are singletons and their entire domains. For example, 31542 is not simple because it
maps {3,4} to {4,5}, but 25314 is simple. Simple permutations are precisely those
that do not arise from a non-trivial inflation, in the following sense. Given a per-
mutation ¢ of length m and nonempty permutations aq, ..., a,,, the inflation of o
by a1, ..., Qy, denoted olaq, ..., a,], is the permutation of length |aq| 4 -+ + |y,
obtained by replacing each entry (i) by an interval that is order isomorphic to «a;
in such a way that the intervals themselves are order isomorphic to . For example,

2413[1,132, 321, 12] = 4 798 321 56.

In particular, the inflation 12[av, ] is called a (direct) sum and denoted by oy @ as.
A permutation is sum decomposable if it can be expressed as a nontrivial sum, and
sum indecomposable otherwise. A sum decomposable permutation can always be
expressed as oy @ as where oy is sum indecomposable. The inflation 21[ay, o] is
similarly called a skew sum and denoted oy © ai; we define the terms skew decom-
posable and skew indecomposable analogously.

Every permutation 7 is the inflation of a unique simple permutation, called its
simple quotient. If the quotient has length greater than 2 then the intervals inflating
the quotient are uniquely determined by 7 (as Albert and Atkinson [5]). If the
quotient has length 2 (i.e., 7 is sum or skew decomposable), then we can enforce
uniqueness by insisting that the first interval be sum or skew indecomposable.

A permutation class is sum closed if it contains the sum of any two of its members.
Clearly the PS-sortable permutations form a sum closed class because if PS can sort
7 and o then it can sort 7 @ o (simply sort the interval corresponding to 7, then sort
the interval corresponding to o).
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Proposition 3.2 (Albert, Atkinson, and Vatter [6]). The simple permutations in
Av(2431,3142) are 1 (trivially), 12, 21, and the parallel alternations of the form

246---(2m)135---(2m — 1)
form > 2.

We aim to produce a structural description of Av(2431,3142,3241) which will
allow us to show that every permutation in the class is PS-sortable. Because each of
these basis elements is sum indecomposable, this class is sum closed (as is the class
of PS-sortable permutations). For skew sums 7 & o, notice that to avoid 2431 and
3241, = must avoid 132 and 213, but there are no further restrictions (except that
o must lie in the larger class, obviously). The class Av(132,213) is easily seen to be
the reverse layered permutations, i.e., those of the form

11O Sin

where each ¢q, ..., t,, is increasing.

It remains to consider inflations of parallel alternations of the form 246 - - - (2m)
135---(2m—1). In order to avoid 3241, all even entries in such a parallel alternation
except the greatest may only be inflated by increasing intervals. Furthermore, in
order to avoid 2431, the greatest even entry also may only be inflated by an increasing
interval. Inflations of the odd entries, however, have no further restrictions. We have
therefore obtained the following structural decomposition of this class.

Proposition 3.3. The class Av(2431,3142,3241) consists precisely of the trivial
permutation 1 and all permutations of the form

(a) T ® o where m,0 € Av(2431,3142,3241),
(b) m & o where m € Av(132,213) and o € Av(2431,3142,3241), and

(¢) inflations of parallel alternations 246 - - - (2m)135---(2m — 1) for m > 2 where
the even entries are inflated by increasing intervals and the odd entries are
inflated by intervals in Av(2431,3142,3241).

We now describe how to sort all of the permutations in Av(2431, 3142, 3241),
verifying that this is indeed the class of PS-sortable permutations.

Theorem 3.4. The PS-sortable permutations are precisely Av(2431,3142,3241).

Proof. Choose an arbitrary = € Av(2431, 3142, 3241). Using induction on the length
of 7, we show that 7 is PS-sortable. The base case is trivial, as PS can sort 1.
If m = o0 & 7 for shorter permutations o and 7 in this class, then we are done by
induction. If 7 is skew decomposable, then we know from Proposition 3.3 that

T=016 1,0
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for increasing permutations ¢y, . .., ¢, and an arbitrary o € Av(2431,3142,3241). To
sort permutations of this form, we push each ¢4, in turn, onto the pop stack and
then pop it into the stack. After having performed this operation on ¢, ..., t,,, we
are left with their entries sitting in increasing order in the stack, and thus can (by
induction) sort and output the entries of o and then output the entries of ¢, ..., tp,.

Finally suppose 7 is of the form (c) in Proposition 3.3, so
T =246---(2m)135---(2m — D)[t1, ...y tmy 015« -+, O]

where ¢1, ..., Ly, are increasing and o4, ..., 0, € Av(2431,3142,3241). To sort these
permutations, we first push all entries of ¢1, ..., t,, onto the pop stack and then pop
them all into the stack. This leaves the entries of ¢1, ..., t,, in increasing order on the
stack. We then sort and output the entries of oy (which can be done by induction),
then output the entries of ¢1, then sort and output the entries of o5, then output the
entries of ¢5, and so on. O

Proposition 3.3 also leads almost immediately to the enumeration of this class.

Theorem 3.5. The PS-sortable permutations are enumerated by the generating func-
tion
1 —3x +22% — V1 — 6z + Sa?
20(2 — x) ’
sequence A033321 in the OELS [23].

Proof. Let f denote the generating function for the PS-sortable permutations and
fa (resp., fo) denote the generating function for the sum (resp., skew) decomposable
PS-sortable permutations.

The sum indecomposable PS-sortable permutations are therefore counted by f —
fa. Because every sum decomposable permutation can be expressed uniquely as the
sum of a sum indecomposable permutation with an arbitrary permutation, we see

that fo = (f — fa)f. Solving this for fg yields

_
f®_1+f'

Now consider skew decomposable permutations. The reverse layered permuta-
tions contain a unique skew indecomposable permutation of each length (the in-
creasing permutation), so by Proposition 3.3, the contribution of skew decomposable
permutations is

zf

f@ = 1 —r :
Finally, the contribution of permutations of the form (c) in Proposition 3.3 is given

by . 2
> <112Cx) T Q —x)gf—)f’f —xf)

m>2
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Combining these quantities (and the contribution of the permutation 1) we have

f? xf (zf)?

f:$+1+f+1—a:+(1—:1:)(1—:1:—33]‘)’

and solving this for f completes the proof of the theorem. O

The generating function from Theorem 3.5 has arisen at least twice before in the
study of permutation patterns. The Theory of Computing Research Group at the
University of Otago [2] showed that it counts Av(2431,4231,4321), while Brignall,
Huczynska, and Vatter [14] showed that it enumerates Av(2143,2413,3142). None of
these three classes are symmetries of each other so this is an example of a nontrivial
“Wilf-equivalence”.

4 With a Queue Between — PQS

There is another way to characterize the permutations which are PS-sortable, which
we introduce now because we will use it to characterize the PQS-sortable permuta-
tions. A divided permutation is a permutation equipped with one or more dividers
|, i.e., mp|ma| - - - |m. We refer to my|ms| - - - |7 as a division of the concatenated per-
mutation w7y ---m, and we refer to each m; as a block of this division. We say
that the divided permutation o|os|- - -|os is contained in the divided permutation
m|ma| - - - |my if myme - - -y contains a subsequence order isomorphic to o0y -+ -0 in
which the entries corresponding to each o; come from the same block, and no other
entries of this subsequence come from that block. For example:

e 513]4|2 contains 32|1 because of the subsequence 532, but

e 32|1 is not contained in 51|34|2 despite the subsequence 532.

In particular, if o contains no dividers, then o is contained in 7y |ms|- - - |m if and
only if ¢ is contained in a single block m;. The notion of divided permutations is
due originally to Brignall, Huczynska, and Vatter [14], who used it to study cyclic
closures of permutation classes.

Given a set D of divided permutations, we are interested in those permutations
which can be divided to avoid all elements of D. Note that all such sets of permuta-
tions will form permutation classes.

Proposition 4.1. The permutation © can be sorted by PS if and only if divisions
can be added to m to obtain a divided permutation which avoids 21, 2|13, and 2|3|1.

Proof. We view the divisions as marking the moments when we transfer all contents
of the pop stack to the stack (with a final transfer occurring at the end of reading
the permutation). Thus if there is no such division of 7, in any sorting of this
permutation there will come a time when either:
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e the pop stack contains an increase when read from top to bottom (21),

e the stack contains an entry which lies between two entries of the pop stack in
value (2|13), or

e the stack contains a decrease when read from top to bottom (2|3|1).

Any of these three situations will cause the sorting to fail.

Conversely, suppose that divisions can be added to 7 to obtain a divided permu-
tation which avoids 21, 2|13, and 2|3|1. To show 7 is sortable, we need to show that
none of the transfers dictated by these divisions forces an inversion in the stack. We
know a set of entries moved by a single transfer will not form an inversion in the
stack since the divided permutation avoids 21. The only other way an inversion could
be forced within the stack is if there is an entry 2 that was previously transferred
to the stack, an entry 3 that is transferred to the stack later, and an entry 1 that
is transferred at the same time as or later than the 3 (and thus not allowing the 2
to be output before the 3 enters the stack). Notice these PS movements imply that
there is a 2|13, a 2|31 (which means there is a 21), or a 2|3|1. This shows that 7 is
sortable by PS. 0J

The analogue of Proposition 4.1 for the PQS machine is the following.

Proposition 4.2. The permutation ™ can be sorted by PQS if and only if divisions
can be added to w to obtain a divided permutation which avoids 132, 2|13, 32|1, and
2|3]1.

Proof. A permutation can be sorted with a stack if and only if it avoids 231, so we
need to show that we can fill the queue between the pop stack and the stack with a
231-avoiding permutation if and only if 7 can be divided in the manner specified.

First suppose that 7 can be divided as m|ms| - - - |m so that this division avoids
the four divided permutations 132, 2|13, 32|1, and 2|3|1. Consider pushing each
element of 7 into the pop stack and then popping the entire pop stack into the
queue, then pushing each element of 7y onto the pop stack and then popping the
entire pop stack into the queue, and so on. This fills the queue with the permutation
mmy - - - ;. Now consider the four different ways this permutation could contain 231:
it all three entries are in 7; then m; contains 132, if the first entry is in 7] and the
other two are in 7} for i < j then m;|m; contains 2|13, if the first two entries are in 7}
and the last is in 7} for 4 < j then m;|m; contains 32|1, and finally, if all three entries
are in different blocks, then m|my| - - - |m contains 2|3|1. The other direction follows
immediately. O

The PS-sortable permutations can be characterized by a finite number of forbid-
den divided patterns (Proposition 4.1) and by a finite basis (Theorem 3.4). However,
it does not follow that every class defined by finitely many forbidden divided patterns
has a finite basis, as we show in the next section. Nor is it apparent how to convert
such a list of divided patterns into a basis. In the case of the PQS machine, we have
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not been able to verify that it is finitely based, although computations performed by
Michael Albert strongly suggest this to be the case.

Conjecture 4.3. The basis of the class of PQS-sorting permutations consists of 108
permutations, all of length at most 9.

The enumeration of this class is
1,2,6,24,120,685, 4148, 25661, 159829, 997870, . . .,

sequence A214611 in the OEIS [23].

5 Avoiding Divided Permutations in General

As remarked in the previous section, classes defined by avoiding finitely many divided
permutations need not be finitely based. Here we give an example. Our basis will
contain the infinite antichain of permutations referred to as U:

w = 2,3,51,6,7,4
u; = 2,3,5,1,7,4,8,9,6
us = 2,3,5,1,7,4,9,6,10,11,8

un = 2,3,5,1,7,4,9,6,11,8,...,2k + 3,2k, 2k + 4,2k + 5, 2k + 2.

Each member of U has precisely two copies of 2341: its first four entries, and the
first, second, third, and fifth entries from the right, and this observation can be used
to prove that U is indeed an antichain (see Atkinson, Murphy, and Ruskuc [8] for
such a proof). We call the first four entries in u; the head, the last five entries the
tail, and the entries between the midsection.

Proposition 5.1. FEvery member of the infinite antichain U is a basis element for
the permutation class defined by avoiding the divided permutations

(a) 2341.
(b) 234|1, 23]4|1, 2|34]1, 2|3]4|1,
(c) 314]2, 31|42, and 31|4]2.

Proof. Consider any member of the antichain U. In order to avoid 2341, the head —
2351 — must be divided. However, to avoid 234|1, 23|4|1, 2|34|1, and 2|3|4|1, this
division cannot occur between the 5 and the 1. Therefore there is a block containing
51. Now consider the four entries starting with 51, which in uy for £ > 2 consist of
5174. As these entries are order isomorphic to 3142 and the 51 block is not divided,
in order to avoid 314|2, 31|42, and 31|4|2, they cannot be divided. This propagates
throughout the midsection of wu;, and at the end of the process, we see that the
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entries 5,1,7,4,9,6,11,8,...,2k 4+ 1,2k — 2 all lie in the same block. Now consider
the tail. Because the entries 2k + 1,2k — 2,2k + 3, 2k are order isomorphic to 3142
and the 2k 4+ 1 and 2k — 2 are not divided, there cannot be a division between then.
The same argument shows that the entries 2k + 3, 2k, 2k + 5, 2k + 2 lie in the same
block. However, this implies that this block contains the entire tail, which is order
isomorphic to 2341.

We must now argue that by removing any entry of an element of U we obtain
a permutation in the class, which follows from a case analysis. Typically, when an
entry is removed one would relabel the remaining entries so that they consist of the
numbers 1 through n — 1, but it is easier to make this argument without relabeling,
so, for example, if the 1 is removed, we talk about the permutation beginning with
235.

Suppose an entry of the head is removed. In this case, the remaining elements of
the head do not form a copy of 2341, so we are able to insert a division immediately
preceding the 1 (assuming the 1 was not removed), or immediately following the
5 (assuming the 5 was not removed). Because of this division, we can then insert
divisions between every two entries in the midsection. This then allows us to add
a division in the tail between 2k + 3 and 2k, and the resulting division avoids the
divided permutations desired. For example, if the 3 is removed from us; we have the
division

235|1]7|4]9]6|11]8]|13|1014 15 12.

Suppose now that an entry from the midsection is removed. In this case the
permutation splits into a direct sum of two shorter permutations, one consisting of
the head and forward midsection, and the other consisting of the rear midsection
and the tail. We can then add a division in the first sum component between the 2
and the 3. In the second component, we add divisions between all entries in the rear
midsection, and then between the 2k 4+ 3 and 2k in the tail. It is straight-forward
to check that the resulting division avoids the desired divided permutations. For
example, if the 9 is removed from us we have the division

21351749611 ]8]13|1014 15 12,
where forward and rear midsections are denoted by under- and over-lining, respec-
tively.
To complete the proof, suppose that an entry from the tail is removed. If this
entry is part of the copy of 2341, then we can simply add a division between the 2
and 3 at the beginning of the permutation. For example, if the 14 is removed from

us, we obtain
213517496118 13101415 12.

Otherwise, the entry 2k was removed. In this case, the 2k + 3 and 2k + 4 are not
involved in a copy of 3142, and so we can add a division between them, and also
between the 2 and the 3. For example, if the 10 is removed from us, we obtain

213517496118 13| 1014 15 12.
This final case completes the proof. O
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6 Concluding Remarks

Note that the pop stack can never contain a noninversion (when read from top to
bottom) in the PS machine. Thus PS sorting is a special case of sorting with a
decreasing stack followed by an increasing stack, the DI machine, which has been
studied by Smith [21]. However, there is no relation between Dl-sortable and PQS-
sortable permutations — 3142 can be sorted by PQS but not DI, while 465132 can
be sorted by DI but not PQS.

We have demonstrated with Proposition 5.1 that even though the PQS sortable
permutations can be characterized by finitely many divided patterns, this alone does
not imply that the class has a finite basis. However, there is another possible gener-
alization of this problem. Let us say that the permutation ¢ can be obtained from
7 by local reversals if 1 = mymy---m and o = 7wy ---m;. Thus the PQS-sortable
permutations are those that can be obtained by local reversals from the 231-avoiding
permutations.

Question 6.1. Let C be a permutation class and D the class of all permutations that
can be obtained by local reversals from members of C. If C is finitely based, must D
also be finitely based?

Our suspicion is that the answer to Question 6.1 is “no”. This suspicion is based
on an example found by the Theory of Computing Research Group at the University
of Otago [3]. They considered a machine denoted T, called a transposition switch.
Given a permutation 7, T returns the set of permutations which can be generated
from 7 by disjoint adjacent transpositions of entries of 7. This operation is then
extended to sets (and thus, classes) of permutations in the natural way. The Otago
group showed that while T*(Av(21)) is finitely based, T*(Av(21)) is infinitely based
for all £ > 5. Thus T does not preserve finite bases.
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