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Abstract

We enumerate three specific permutation classes defined by two forbidden
patterns of length four. The techniques involve inflations of geometric
grid classes.

1 Introduction

Classes of permutations are sets that are closed downwards under taking subpermu-
tations. They are often presented as sets C that avoid a given set B of permutations
(i.e. the members of C have no subpermutation in the set B). We express this by
the notation C = Av(B). We may take B to be an antichain (a set of pairwise
incomparable permutations), in which case we say that B is the basis of C.

Much of the inspiration for the early work on permutation classes was driven
by the enumeration problem: given C = Av(B), how many permutations of each
length does C contain? The answer to such a question could be a formula giving this
number |Cn| in terms of the length, n, a generating function

∑ |Cn|xn or simply an
asymptotic result about the behaviour of |Cn| as n → ∞.

Recently, Albert, Atkinson, Bouvel, Ruškuc, and Vatter [4] have developed the
theory of geometric grid classes, and Albert, Ruškuc, and Vatter [8] have continued
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this exploration by investigating the theory of inflations of such classes. Our aim in
this paper is to:

• demonstrate the effectiveness of this approach, and

• illustrate how one might implement these techniques in a “real world” setting,
bypassing what would otherwise be thorny theoretical issues.

It should be noted that this presentation is historically backward; the results of this
paper preceded and inspired the two more theoretical papers cited above.

In this work, our examples are exclusively classes with two basis elements of length
four, which we call 2 × 4 classes. It must be admitted that the attention paid to 2
× 4 classes is not entirely in proportion to their intrinsic importance. Nevertheless,
these classes represent a significant dataset which seems to contain some difficult
enumerative problems. Thus they pose a good challenge for new approaches to the
enumeration of restricted permutations.

There are 56 essentially different (i.e. inequivalent under symmetries) 2 × 4
classes. Some of these classes nevertheless share the same enumeration (a phe-
nomenon called Wilf-equivalence), so the 2 × 4 classes have only 38 different enu-
merations [10, 16, 17, 18, 19]. This paper brings the number of 2 × 4 Wilf classes
which have been enumerated to 24 (see Wikipedia [23], which contains a list of such
enumerations).

A central part of our approach depends on analysing the simple permutations
in a class. An interval in the permutation π is a set of contiguous indices I =
{a, a+1, . . . , b} such that the set {π(i) : i ∈ I} is also contiguous. Every permutation
π of length n has trivial intervals of lengths 0, 1, and n, and other intervals are called
proper. A permutation with no proper intervals is called simple. Another way to
think about simple permutations arises repeatedly throughout our arguments. Any
subset p1, . . . of entries of the permutation π defines a minimal axes-parallel rectangle
(or simply, box ), whose left edge slices through the leftmost of these entries, top edge
slices through the greatest of these entries, and so on. A simple permutation is one in
which the box defined by any proper subset of two or more of its entries is separated
by an entry outside the box, by which we mean that this entry lies either

• vertically amongst these entries but to the left (or right) of all of them (vertical
separation), or

• horizontally amongst these entries but above (or below) all of them (horizontal
separation).

Simple permutations are precisely those that do not arise from a non-trivial in-
flation, in the following sense. Given a permutation σ of length m and nonempty
permutations α1, . . . , αm, the inflation of σ by α1, . . . , αm, denoted σ[α1, . . . , αm], is
the permutation of length |α1|+ · · ·+ |αm| obtained by replacing each entry σ(i) by
an interval that is order isomorphic to αi in such a way that the intervals are order
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isomorphic to σ. For example,

2413[1, 132, 321, 12] = 4 798 321 56.

We give two particular types of inflations special terminology and notation. The
inflation 12[α1, α2] is called a (direct) sum and denoted by α1⊕α2. A permutation is
sum decomposable if it can be expressed as a nontrivial sum, and sum indecomposable
otherwise. The inflation 21[α1, α2] is called a skew sum, similarly denoted α1 � α2,
and accompanied by analogous terms skew decomposable and skew indecomposable.
We extend the notion of direct and skew sum to classes, defining

C ⊕ D = {π ⊕ σ : π ∈ C and σ ∈ D},
with an analogous definition for C � D.

The precise connection between simple permutations and inflations is furnished
by the following result.

Lemma 1.1 (Albert and Atkinson [3]). For every nontrivial permutation π there is
a unique simple permutation σ of length at least two such that π = σ[α1, α2, . . . , αm].
Furthermore, except when σ = 12 or σ = 21, the intervals of π that correspond to
α1, α2, . . . , αm are uniquely determined. In the case that σ = 12 (respectively σ = 21),
the intervals are unique so long as we require the first of the two intervals to be sum
(respectively skew) indecomposable.

One of the first general enumeration results is the following from [3]:

Theorem 1.2. If the class C contains only finitely many simple permutations, then
C has an algebraic generating function.

This theorem has since been generalised in two different directions. Brignall,
Huczynska, and Vatter [11] introduced the notion of “query-complete sets of proper-
ties” to show that if a class satisfies the hypotheses of Theorem 1.2, then such subsets
as the even permutations or the involutions in C have algebraic generating functions.
More relevant to our investigation, [8] significantly weakened the hypotheses of The-
orem 1.2, showing that its conclusion holds even when C contains infinitely many
simple permutations, so long as these simple permutations lie in a geometric grid
class, a notion introduced in Section 3. Before this, we consider an example which
gives the flavour of our approach without requiring much additional machinery.

2 Example #1: Avoiding 4213 and 3142

Before describing our first example we need to introduce a family of simple permu-
tations and quote a result. A parallel alternation is a permutation whose plot can be
divided into two parts, by a single horizontal or vertical line, so that the points on
either side of this line are both either increasing or decreasing and for every pair of
points from the same part there is a point from the other part which separates them,
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Figure 1: The four orientations of parallel alternations.

i.e., there is a point from the other part which lies either horizontally or vertically
between them. It is easy to see that a parallel alternation of length at least four is
simple if and only if its length is even and it does not begin or end with its greatest
or smallest entry. Thus there are precisely four simple parallel alternations of each
even length at least six, shown in Figure 1, and no simple parallel alternations of
odd length.

Schmerl and Trotter [21, Corollary 5.10] proved a result (in the more general
context of irreflexive binary relational structures) which in our context states that
every simple permutation of length n ≥ 5 which is not a parallel alternation contains
simple subpermutations of every length 5 ≤ m ≤ n. Therefore, in order to establish
that the the only simple permutations in C are parallel alternations, we just need to
check that it does not contain a simple permutation of length 5, i.e., that

C ⊆ Av(24153, 25314, 31524, 35142, 41352, 42513).

Clearly this holds for the class Av(4213, 3142), because 4213 is contained in 25314
and 42513 while 3142 is contained in 24153, 31524, 35142, and 41352. Moreover, it
is easily seen that Av(4213, 3142) can contain only parallel alternations oriented as
on the left of Figure 1, i.e., those of the form

246 · · · (2m)135 · · · (2m − 1).

With the simple permutations in this class characterised, we now describe the
allowed inflations. It is easy to see that π ⊕ σ ∈ Av(4213, 3142) for all π, σ ∈
Av(4213, 3142), or in other words, that the class is sum closed . Thus, letting f
denote the generating function for nonempty permutations in Av(4213, 3142) and
f⊕ denote the generating function for sum decomposable permutations, we see that
f⊕ = (f − f⊕) f , from which it follows that

f⊕ =
f 2

1 + f
.

For skew sums, we have that π�σ ∈ Av(4213, 3142) if and only if π ∈ Av(4213, 3142)
and σ ∈ Av(213). Letting

c =
1 − 2x −√

1 − 4x

2x
denote the generating function for the Catalan numbers (with constant term zero),
which is well-known as the generating function of nonempty permutations in Av(213),
we have f� = (f − f�) c, so

f� =
cf

1 + c
.
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Now we must count the inflations of the parallel alternations 246 · · · (2m)135 · · ·
(2m − 1) for m ≥ 2. This is relatively straightforward:

• the interval inflating 2m − 1 must avoid 213,

• all other intervals inflating odd entries must be increasing, and

• even entries may be inflated by any element of Av(4213, 3142).

This shows that the contribution of inflations of 246 · · · (2m)135 · · · (2m−1), for each
m ≥ 2, is

fm

(
x

1 − x

)m−1

c,

showing that

f = x + f⊕ + f� +
∞∑

m=2

fm

(
x

1 − x

)m−1

c = x +
f 2

1 + f
+

cf

1 + c
+

xcf 2

1 − x − xf
.

From this we obtain:

Theorem 2.1. The generating function f for Av(4213, 3142) satisfies

x3f 6 + (7x3 − 7x2 + 2x)f 5

+ (x4 + 14x3 − 21x2 + 10x − 1)f 4

+ (4x4 + 8x3 − 19x2 + 11x − 2)f 3

+ (6x4 − 5x3 − 2x2 + 2x)f 2

+ (4x4 − 7x3 + 4x2 − x)f
+ x4 − 2x3 + x2 = 0.

The first several terms of this sequence are

1, 2, 6, 22, 89, 379, 1664, 7460, 33977, 156727, 730619, 3436710, 16291842, 77758962,

sequence A165541 in the OEIS [1]. The discriminant of the polynomial defining the
generating function has a smallest positive root ρ ≈ 0.1895, which is therefore the
radius of convergence of the generating function and as Av(4213, 3142) is sum closed

(and hence the sequence fn is supermultiplicative) we can conclude that f
1/n
n →

1/ρ ≈ 5.2778. More detailed on the asymptotic behaviour of fn could be determined
by standard methods as found for instance in Flajolet and Sedgewick [13, Section
VII.7].

This is not the only 2 × 4 class to which such elementary techniques apply. For
example:

• Av(4213, 1342) contains precisely two simple permutations of each length n ≥
4, both of which are wedge simple permutations oriented as the first two permu-
tations shown in Figure 2. This family of simple permutations is well enough
behaved that we could enumerate the class, but this has already been done
by Kremer and Shiu [18] and can now be performed automatically using the
Maple package FinLabel described in Vatter [22].

http://www.research.att.com/projects/OEIS?Anum=A165541
http://www.research.att.com/~njas/sequences/
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Figure 2: Examples of wedge simple permutations.

• Av(4213, 3124) contains precisely two simple permutations of each length n ≥
4, oriented as the rightmost two permutations shown in Figure 2. This class
was enumerated by Bóna [10].

3 Grid Classes and Regular Languages

Given a permutation π of length n and sets X, Y ⊆ [n], we write π(X × Y ) for the
permutation that is order isomorphic to the subsequence of π with indices from X
and values in Y . For example, 286435179([4, 9] × [5, 9]) consists of the subsequence
of entries in indices 4 through 9 which have values between 5 and 9; in this case the
subsequence is 579, so 286435179([4, 9]× [5, 9]) = 123.

Suppose that M is a t × u matrix1with entries from {0,±1}. A gridded permu-
tation is a permutation π equipped with row and column divisions denoted respec-
tively by 1 = c1 ≤ · · · ≤ ct+1 = n + 1 and 1 = r1 ≤ · · · ≤ ru+1 = n + 1 (where
n is the length of π). This gridded permutation (or simply, gridding of π) is com-
patible with the matrix M (in which case we sometimes call it an M-gridding of
π) if π([ck, ck+1) × [r�, r�+1)) is increasing whenever Mk,� = 1, decreasing whenever
Mk,� = −1, and empty whenever Mk,� = 0. The (monotone) grid class of M , written
Grid(M), consists of all permutations which possess a gridding compatible with M .
Figure 3 shows an example.

As illustrated by Murphy and Vatter [20], monotone grid classes can display
chaotic and unstructured behaviour. However, it has recently been shown that these
classes contain subclasses with especially amenable structure. To define these sub-
classes, consider the point set in R

2 (called the standard figure of the 0/±1 matrix
M) consisting of cells Ckl whose contents are:

• the line segment from (k − 1, � − 1) to (k, �) if Mk,� = 1 or

• the line segment from (k − 1, �) to (k, � − 1) if Mk,� = −1 or

• empty if Mkl = 0.

The geometric grid class of M , denoted by Geom(M), is then the set of all permu-
tations that can be drawn on this figure in the following manner. Choose n points

1Note that in order for the cells of the matrix M to be compatible with plots of permutations,
we use Cartesian coordinates for our matrices, indexing them first by column, from left to right
starting with 1, and then by row, from bottom to top.
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Figure 3: The permutation 286435179 lies in the grid class of the matrix

M =
( −1 1

1 −1

)
,

as the gridding on the left demonstrates. The figure in the center shows that
the permutation 17645328 lies in Geom(M). Finally, the figure on the right
shows that 2413 does not lie in the geometric grid class of M (although it does
lie in Grid(M)): traveling clockwise from 2, we see that 4 must lie closer to
the centre than 2, 3 must lie closer to the centre than 4, but then 1 must lie
closer to the centre than 3 but further from the centre than 2.

in the figure, no two on a common horizontal or vertical line. Then label the points
from 1 to n from bottom to top and record these labels reading left to right. The
centre pane of Figure 3 shows a permutation from a geometric grid class, while the
right pane demonstrates that 2413 is not in this geometric grid class.

It sometimes happens that Grid(M) = Geom(M); to characterise this phe-
nomenon, we need to introduce a graph. The row-column graph of a t×u matrix M
is the bipartite graph on the vertices x1, . . . , xt, y1, . . . , yu where xk is adjacent to y�

if and only if Mk,� 
= 0. Albert, Atkinson, Bouvel, Ruškuc, and Vatter [4, Theorem
3.2] showed that Grid(M) = Geom(M) if and only if the row-column graph of M is
a forest (in this case we say that M is a forest). As it happens, all gridding matrices
encountered in this paper are forests.

Geometric grid classes are especially tractable because their elements can be
encoded by words over a finite alphabet, and for the rest of this section we describe
this encoding and its properties. We say that a 0/±1 matrix M of size t × u is a
partial multiplication matrix if there exist column and row signs

f1, . . . , ft, g1, . . . , gu ∈ {1,−1}

such that every entry Mk,� is equal to either fkg� or 0. It is not hard to prove that
every geometric grid class is equal to Geom(M) for a partial multiplication matrix
M , and this is especially trivial for forests.

The column and row signs essentially specify an order in which the monotone
entries in a cell of a gridded permutation should be read. Cells corresponding to
Mk� = fkg� are read from left to right (respectively right to left) if fk = 1 (respectively
fk = −1) and bottom to top (respectively top to bottom) if g� = 1 (respectively
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g� = −1). These directions are sometimes marked on our diagrams. The base point
of a cell is the corner from which its reading begins.

To describe the encoding of Geom(M) we introduce a cell alphabet Σ associated
to M which consists of a unique letter akl for each nonempty cell Ckl of the standard
figure of M . Then, to every word w = w1 · · ·wn ∈ Σ∗ we associate a permutation
ϕ(w). First we choose arbitrary distances

0 < d1 < · · · < dn < 1.

For each 1 ≤ i ≤ n, we choose a point pi corresponding to wi in the following manner.
Let wi = ak�; the point pi is chosen from the line segment in cell Ck,�, at infinity-norm
distance di from the base point of this cell. Finally, ϕ(w) denotes the permutation
defined by the set {p1, . . . , pn} of points. It can be seen that ϕ does not depend on
the particular choice of d1, . . . , dn, and thus ϕ : Σ∗ → Geom(M) is a well-defined
mapping.

The mapping ϕ is many-to-one, and so for enumerative applications we must
restrict its domain to a set L ⊆ Σ∗ on which ϕ is injective. We seek to choose
L to be a regular language. The regular languages are those that can be obtained
from the empty language and the singleton languages using the operations of union,
concatenation, and Kleene star (where K∗ is the set of all concatenations of 0 or
more words from K). Alternatively, regular languages can also be characterised as
those accepted by deterministic finite state automata. From this latter viewpoint it
follows (e.g., by the transfer matrix method) that regular languages have rational
generating functions (either when enumerated by length, or with a separate variable
xa for each a ∈ Σ). We refer readers to [13, Section I.4 and Appendix A.7] for more
information on regular languages.

The following theorem from [4] demonstrates the connection between subclasses
of geometric grid classes and regular languages. Essentially, it says that all such
classes are extremely well behaved.

Theorem 3.1. Suppose that C ⊆ Geom(M) is a permutation class and M is a partial
multiplication matrix with cell alphabet Σ. Then the following hold:

(i) C is partially well-ordered.

(ii) C is finitely based.

(iii) There is a regular language L ⊆ Σ∗ such that the mapping ϕ : L → C is a
bijection.

(iv) There is a regular language LS, contained in the regular language L from (iii),
such that the mapping ϕ is a bijection between LS and the simple permutations
in C.

Note that the proof of Theorem 3.1 is nonconstructive, so while we use the en-
coding ϕ throughout this work, we construct the regular languages we use from first
principles.
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Albert, Atkinson, and Brignall [5, 6] demonstrate four concrete examples of using
these techniques to enumerate 2 × 4 classes.

The examples considered in this paper are inflations of geometric grid classes.
The theoretical issues of such classes were studied by Albert, Ruškuc, and Vatter [8],
who proved that every subclass of 〈Geom(M)〉 has an algebraic generating function
(essentially by showing that it is in bijection with a context-free language). From
this perspective, Section 2 considers the case of a class contained in 〈Geom( 1 1 )〉,
while the next two sections consider classes whose simple permutations are contained
in more complicated geometric grid classes.

4 Example #2: Avoiding 4312 and 3142

We begin our next example with a characterisation of its simple permutations.

Proposition 4.1. The simple permutations of Av(4312, 3142) and Geom
(

0 1 1
1 0 −1

)

coincide.

Proof. First observe that

Grid
(

0 1 1
1 0 −1

)
= Geom

(
0 1 1
1 0 −1

)
⊆ Av(4312, 3142),

so it suffices to prove that the simple permutations in Av(4312, 3142) are contained
in this grid class. Specifically, we will show that in any simple permutation of
Av(4312, 3142) the entries that follow the maximum make up a “wedge permuta-
tion” oriented as < (which is equivalent to avoiding both 132 and 312), and those
preceding the maximum form an increasing sequence.

So, let a simple permutation π ∈ Av(4312, 3142) be given. Because π avoids 4312
there can be no 312 pattern after its maximum so, for the sake of contradiction,
assume that there is a 132 pattern. Specifically, choose such a pattern acb where a
is as low as possible, and c is as high as possible (for the chosen a). This yields the
situation depicted on the left in Figure 4. Now, in order that the cell bounded by
{b, c} not form an interval, there must be some entry d in the cell immediately to
its left. Taking the leftmost such entry yields the diagram on the right in Figure 4.
In this diagram we see that the entries of π lying in the box bounded by {b, c, d}
(including those three entries) form a proper interval, contradicting the simplicity of
π.

We can now argue in a similar fashion that the entries preceding the maximum
entry of π form an increasing sequence, i.e., that there cannot be a 21 pattern before
the maximum entry of π. Suppose to the contrary that there were one, and choose
such a pattern ba where b is as high as possible, and a is as low as possible (for the
chosen b). Now the cell defined by {a, b} must be split either to the left or to the
right. The picture on the left of Figure 5 shows that {a, b} cannot be split solely to
the right, as then taking c to be the rightmost such separator we see that {a, b, c}
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a

c

b a

d

c

b

Figure 4: The illustration that a simple permutation of Av(4312, 3142) can
have no 132 pattern after its maximum. Dark grey regions cannot be occu-
pied due to the avoidance conditions, lighter regions because of choices made
when the entries were selected (topmost, leftmost, etc.). These and all similar
diagrams were produced using PermLab [2], which was also employed as an
exploratory tool in generating the case-based proofs that they support.

b

a

c

d

b

a

c d

b

a

c

Figure 5: The illustration that a simple permutation of Av(4312, 3142) can
have no 21 pattern before its maximum. In these pictures, the hatched regions
cannot be occupied both by the avoidance conditions and the choices made
when the entries were selected.

would lie in a proper interval. Similarly, {a, b} cannot be split solely to the left.
Thus {a, b} must be split on both the left and the right. Now, taking c to be the
rightmost separator and d the leftmost separator, we have two cases, depicted in the
centre and right of Figure 5. In both cases it is clear that {a, b, c, d} is contained in
a proper interval, and this contradiction completes the proof.

We now consider the encoding ϕ over the cell alphabet Σ = {a, b, c, d} as indicated
in Figure 6, which also shows an example of ϕ. This mapping is not injective on Σ∗

for the following two reasons.

(G1) The same gridded permutation may be the image of multiple words (in our
example, this occurs because the pairs {a, b}, {a, d}, and {b, c} “commute”, i.e.,
they may be interchanged without affecting the gridded permutation obtained).
A method to handle this issue in general (by appealing to the theory of “trace
monoids”) is presented in [4, Section 7].

(G2) A given permutation may have several different M-griddings. A (nonconstruc-
tive) method to handle this issue in general is presented in [4, Section 8].
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a

b

c

d

Figure 6: The word acadcdb is mapped by ϕ to the simple permutation
2473516.

In the class we are considering, Av(4312, 3142), it is possible to deal with the issues
concretely.

First we address (G1). For any particular gridded permutation, we prefer the
lexicographically minimal word encoding it. For example, suppose that a word con-
tained a factor of the form {b, d}+a (here the + superscript signifies that this portion
of the word contains at least one letter). We could then replace this factor by a factor
of the form a{b, d}+ and obtain a lexicographically lesser word which is mapped to
the same permutation. Therefore we forbid factors of the form {b, d}+a. The other
factor we need to forbid is ca∗b (which could be replaced by a factor of the form
bca∗).

Now we address (G2), which requires us to choose a preferred (geometric) M-
gridding for every permutation in Geom(M). Among all M-griddings of a permu-
tation, we prefer the one that has the most entries in the first column, then the
most entries in the second column, and then the most entries in the first row. Thus
in terms of column divisions 1 = c1 ≤ c2 ≤ c3 ≤ c4 = n + 1 and row divisions
1 = r1 ≤ r2 ≤ r3 = n + 1, we seek to maximise c2, then c3, and then r2. The words
which correspond to such griddings can now be characterised as those which do not
begin with a∗d, b, {a, c}∗b, or d and are not of the form c{a, c, d}∗.

With this language we may enumerate the grid class itself2, but we are interested
instead in the simple permutations. The additional rules for the words encoding
simple permutations of length at least four are:

• To prevent intervals solely contained within an individual cell, we prohibit
repetitions aa, bb, cc, or dd as factors.

• To prevent intervals of the form shown in the first pane of Figure 7, we forbid

2This grid class (which, because it can be viewed as a “juxtaposition” in the sense of Atkinson [9],
can be shown to have basis {2143, 3142, 4132, 4312}) has the generating function

1 − 6x + 11x2 − 5x3

(1 − x)(1 − 3x)(1 − 3x + x2)
.
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a

b

c

d

a

b

c

d

Figure 7: The shaded areas represent possible intervals in elements of the
geometric grid class.

words beginning with {c, d}2.

• To prevent intervals of the form shown in the second pane of Figure 7, we forbid
words of the form {a, b, c, d}∗{a, c, d}+.

With these restrictions, we can then use the automata package [12] for GAP [14] to
count the simple permutations of this grid class3. For future reference, we record
that the multivariate generating function for these words of length at least four which
begin with a is

s(xa, xb, xc, xd) =
xaxbxcxd

1 − xaxc − xbxd − xcxd − xaxcxd − xbxcxd
,

while the words of length at least four which begin with c have multivariate generat-
ing function xcs(xa, xb, xc, xd). Note that our rules preclude words encoding simple
permutations from beginning with b or d.

Now we characterise the inflations. Because 3142 is simple, it will not occur
when inflating a 3142-avoiding permutation by 3142-avoiding intervals, so we need
only avoid 4312. Since the class is sum closed, we have that f⊕ = f 2/(1 + f), as
in Section 2. The skew decomposable permutations are a bit more complicated, but
divide into a union:

(Av(21) � Av(312)) ∪ (Av ��(4312, 3142)� Av(12)) ,

where Av ��(4312, 3142) denotes the set of skew indecomposable permutations in this
class. As the intersection of these two is simply Av(21) � Av(12), f� = mc + (f −
f�)m − m2, where

m =
x

1 − x

denotes the generating function for the nonempty decreasing (or, increasing) permu-
tations. Solving this shows

f� =
m(f + c − m)

1 + m
.

3These simple permutations have the generating function

x + x2 − 4x3 − 3x4

(1 + x)(1 − 2x)
,

showing that for n ≥ 3 the simple permutations in this class are counting by the Jacobsthal numbers
(A001045 in the OEIS [1]).

http://www.research.att.com/projects/OEIS?Anum=A001045
http://www.research.att.com/~njas/sequences/
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Inflations of simple permutation of length at least four are a bit more complicated,
as there are several cases. In all such inflations, each entry which corresponds to a b
may only be inflated by an increasing permutation (but may be inflated by any such
permutation), while each entry which corresponds to a d may only be inflated by
a 312-avoiding permutation (but may be inflated by any such permutation). If the
word begins with a c, then it follows that the entry corresponding to the first c may be
inflated by any permutation in Av(312), while each subsequent entry corresponding
to a c may only be inflated by a decreasing permutation. Otherwise, it follows
from our rules that the word must begin with an a, and there are two cases. If
the entry corresponding to the first a is inflated by a permutation containing a
descent, then each entry corresponding to a c must be inflated with a decreasing
permutation. Otherwise, if the entry corresponding to the first a is inflated by an
increasing permutation, then the entry corresponding to the first c must be inflated by
a permutation from Av(312), while each subsequent entry corresponding to a c must
be inflated by a decreasing permutation. From our multivariate generating function
for these simple permutations, it follows that the contribution of their inflations is

(
f − m

f
+

c

f
+

c

m

)
s(f, m, m, c) =

cm2(c − m + f + cf)

1 − 2cm − cm2 − mf − cmf
.

Combining this with the generating functions for f⊕ and f� and solving for f yields
the generating function for the class (or, rather, its minimal polynomial).

Theorem 4.2. The generating function f for Av(4312, 3142) satisfies

(x3 − 2x2 + x)f 4 + (4x3 − 9x2 + 6x − 1)f 3

+ (6x3 − 12x2 + 7x − 1)f 2

+ (4x3 − 5x2 + x)f
+ x3 = 0.

The first several terms of this sequence are

1, 2, 6, 22, 88, 367, 1568, 6810, 29943, 132958, 595227, 2683373, 12170778, 55499358,

sequence A165538 in the OEIS [1]. Though the form of the equation for f is com-
plicated, the close link with the Catalan numbers which can be seen in the previous
development is enough to ensure that the radius of convergence is quite simple, ex-
actly 1/5, and in particular f

1/n
n → 5.

5 Example #3: Avoiding 4231 and 3124

Before our final example we review a well-studied class. A permutation is layered if
it is the direct sum of decreasing permutations (these decreasing permutations are
called the layers). The class of layered permutations has the basis {312, 231}. To
restrict the number of layers, we merely need to add an additional restriction, of the
form 12 · · ·k.

http://www.research.att.com/projects/OEIS?Anum=A165538
http://www.research.att.com/~njas/sequences/
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Proposition 5.1. The simple permutations of Av(4231, 3124) and

Geom
(

0 1 −1
1 −1 0

)
coincide.

Proof. First, it is straightforward to observe that

Geom
(

0 1 −1
1 −1 0

)
= Grid

(
0 1 −1
1 −1 0

)
⊆ Av(4231, 3124),

so it suffices to prove that the simple permutations of Av(4231, 3124) are contained
in this grid class.

Consider a simple permutation π ∈ Av(4231, 3124) of length n. We analyse the
entries of π to the left of n and to the right of n separately, beginning with the entries
on the right.

Claim 5.1.a. The entries to the right of n form a layered permutation with at most
two layers.

Proof of Claim 5.1.a. By the 4231-avoidance of π the entries to the right of n avoid
231, so to show that they are layered it suffices to show that they also avoid 312.
Suppose otherwise. Among all occurrences of 312 choose one, cab, in which the ‘1’
and ‘2’ are as close together in position as possible (they will in fact be adjacent).
Since π is simple, {a, b} cannot be an interval and thus (because they are adjacent)
must be separated vertically. We claim that there is at least one such separator to
the left of n. Let x denote an arbitrary separator of {a, b}. We see that x cannot lie
horizontally between n and c by 4231-avoidance. If x were to lie horizontally between
c and a, then {x, a} cannot be separated horizontally anywhere, nor vertically to the
right of n, owing to the avoidance conditions, so must be separated vertically to
the left of n. This separator therefore separates {a, b} vertically to the left of n, as
desired. The only other case is if x lies to the right of b. In this case choose x to
be the bottommost such separator. Then {b, x} must be separated. This can only
occur to the left of n (giving the separator we desire) or to the right of x. In this
latter case it is easy to see that the region which consists of those points from b to
the right and which are also vertically between x and b (which contains b, x, and
this new separator) can only be separated to the left of n, again giving the separator
we desired. Therefore in all cases we may assume that there is an entry, x, to the
left of n which vertically separates a and b. This situation is depicted on the left of
Figure 8.

Now consider {n, c}. From Figure 8, we see that these entries can only possibly
be separated vertically by an entry to the left of n and to the right of x. Choose the
leftmost such separator and label it v. We now have the situation depicted in the
centre of Figure 8. However, it is now clear that the entries {c, n, v} lie in a proper
interval, contradicting the simplicity of π. This contradiction shows that the entries
to the right of n must form a layered permutation.

Having established that these entries are layered, it is easy to see that there are
at most two layers. Otherwise the entries to the right of n would contain a copy of
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x

n

c

a

b

x

v

n

c

a

b

Figure 8: The end games in the proof of Claim 5.1.a.

y

x

n

a

y z

x

n

a

Figure 9: The end games in the proof of Claim 5.1.b.

123. The ‘2’ and ‘3’ in this copy of 123 must be separated by an entry to the left of
n (because the entries to the right of n form a layered permutation), but this would
create a copy of 3124. This contradiction completes the proof of Claim 5.1.a. �
Claim 5.1.b. The entries to the left of n and above π(n) are increasing.

Proof of Claim 5.1.b. Let a = π(n) and suppose to the contrary that the entries to
the left of n and above a contain an inversion. Choose such an inversion yx with y as
far left as possible and x as close to y as possible. This gives the situation depicted
on the left of Figure 9. As can be seen in this diagram, {x, y} could only possibly
be separated horizontally. Let z denote a topmost such separator. This gives the
situation depicted on the right of Figure 9. However, as this diagram indicates, y
and z now belong to a proper interval, contradicting the simplicity of π. �

Claim 5.1.c. Let c denote the leftmost entry of π greater than π(n) (note that c
may equal n). The entries to the left of c (which lie below π(n) by Claim 5.1.b) are
increasing.

Proof of Claim 5.1.c. The proof follows well-travelled lines. Suppose to the contrary
that there is an inversion among these entries, and choose one such ba where b is as
far left as possible, and a is as small as possible. The cell bounded by {a, b} can only
be split above, and we may choose a split point d which is as large as possible. Now
the box bounded by {a, b, d} defines a proper interval, a contradiction. �
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Figure 10: Final considerations in the proof of Proposition 5.1.

We are now in position to complete the proof of the proposition, after a brief
recap of the structure we have established. Let b = π(n), let c denote the leftmost
entry which is greater than b (note that c = n is a possibility), and finally let a
denote the bottommost entry which lies horizontally between c and n (such an entry
need not exist, but this does not affect the argument). We then have the situation
depicted on the left of Figure 10.

The first three labeled regions are further restricted as follows:

• R1 must be increasing by Claim 5.1.c.

• R2 must be increasing by Claim 5.1.b.

• R3 must be decreasing because π avoids 3124.

Next we claim that R4 and R5 are both empty. First suppose to the contrary that
R4 is nonempty, and take x to be the topmost entry in this region. We then have
the situation depicted in the centre of Figure 10, which shows that {b, x} can only
be separated by an entry in R5. Let y denote the bottommost such separator. It
can then be seen that there is no way to separate {b, x, y}. Showing that R5 is
empty is very similar. Suppose to the contrary that this region is nonempty and let
x denote the bottommost entry in the region. It can be seen that there are two ways
to separate {b, x}: vertically with an entry in R5 or horizontally with an entry in R4.
In each case, though, these new entries cannot be separated from either b or x.

Finally, regions R6 and R7 must both be decreasing because π avoids 4231 and
3124 respectively. Then Claim 5.1.a shows that regions R5 and R6 must together
form a layered permutation with at most two layers. The structure of π is now
displayed on the right of Figure 10, which shows that π does indeed lie in the grid
class desired, completing the proof.

Having restricted our attention to this (geometric) grid class, we now seek to place
it in bijection with a regular language, following points (G1) and (G2) of Section 4.
The first is the easiest to deal with since we need only forbid factors of the forms
{c, d}+a and d+b.

To handle (G2), we use the same preference for M-griddings as in Section 4:
among all M-griddings of a permutation, we prefer the one that has the most entries
in the first column, then the most entries in the second column, and then the most
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a b

c d

Figure 11: A choice of cell alphabet and row and column signs for the geometric
grid class of interest.

a b

c d

a b

c d

a b

c d

Figure 12: The shaded areas represent possible intervals in elements of the
geometric grid class.

entries in the first row. The words that correspond to these preferred griddings are
those which do not begin with b or a∗c, do not end with d, and are not of the forms
d{a, b}∗ or a∗{c, d}+.

This language allows us to enumerate the grid class itself4, and now we restrict
to encoding the simple permutations.

• To prevent intervals contained within individual cells, we prohibit repetitions
aa, bb, cc, dd as factors.

• To prevent intervals of the form shown in the first pane of Figure 12, we insist
that the last a is followed by a b, i.e., we prohibit words which end in a{c, d}∗,

• To prevent intervals of the form shown in the second pane of Figure 12, we
require that there is a b after the last letter in {c, d}; by the previous two rules,
this means we need only prohibit words which end in cd or dc.

4The generating function for this grid class is

1 − 5x + 7x2 − x3

(1 − x)(1 − 2x)(1 − 3x)
,

(sequence A083323 in the OEIS [1]). Our computations suggest that the basis of this class is

{4312, 4231, 4123, 3124, 32541, 21534, 21435},

but we have not verified this with a formal proof.

http://www.research.att.com/projects/OEIS?Anum=A083323
http://www.research.att.com/~njas/sequences/
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• To prevent intervals of the form shown in the third pane of Figure 12, we
prohibit words which begin with two or more letters from {a, b, c}.

Finally, we exclude the word dcb, which is mapped by ϕ to the nonsimple permutation
312.

We can then compute (again using the automata package [12] for GAP [14]) that
the multivariate generating function (counting occurrences of each letter) for the
simple permutations in this geometric grid class is

s(xa, xb, xc, xd) =
xbxcxd(xa + xc + xaxb + xaxc + xbxc + xcxd + xaxbxc + xbxcxd)

1 − xaxb − xbxc − xcxd − xaxbxc − xbxcxd

.

It remains only to determine the allowed inflations. First, the sum decomposable
permutations all have unique representations in the form Av �⊕(312)⊕Av(4231, 3124),
where Av �⊕(312) denotes the sum indecomposable permutations in Av(312). As
Av �⊕(312) is well-known to be enumerated by the shifted Catalan numbers, we get

f⊕ = (xc + x)f.

The skew decomposable permutations are of the form Av(312) � Av(231, 3124),
and so (deviating slightly from our usual conventions) they all have a unique repre-
sentation of the form Av(312) � Av ��(231, 3124). The skew indecomposable permu-
tations in Av(231, 3124) are counted by the Fibonacci numbers of odd index (1, 1,
3, 8, 21, . . . ), giving that

f� =
x − 2x2 + x3

1 − 3x + x2
c.

We now come to inflations of simple permutations of length at least four. Each entry
corresponding to an a or c may be inflated by an arbitrary member of Av(312). Each
entry corresponding to a b or non-initial d may be inflated only by a decreasing in-
terval. Finally, the first entry corresponding to a d (and we see from the multivariate
generating function s that every word encoding simple permutations in this class
contains at least one d) may be inflated by an arbitrary member of Av(231, 3124), a
class counted by the Fibonacci numbers of even index (1, 2, 5, 13, 34, . . . ). Therefore,
the generating function we are interested in is given by

f = x + (xc + x)f +
x − 2x2 + x3

1 − 3x + x2
c +

s(c, m, c, m)

m

x − x2

1 − 3x + x2
.

As this equation is linear in f , it is trivial to obtain our final result.

Theorem 5.2. The generating function for Av(4231, 3124) is

1 − 8x + 20x2 − 20x3 + 10x4 − 2x5 − (1 − 4x + 2x2)
√

1 − 4x

2(1 − 3x + x2)(−1 + 5x − 4x2 + x3)
.

The first several terms of this sequence are

1, 2, 6, 22, 88, 363, 1508, 6255, 25842, 106327, 435965, 1782733, 7275351, 29648647,

sequence A165535 in the OEIS [1]. The radius of convergence is the smallest positive

root of the cubic factor in the denominator, approximately 0.2451, and hence f
1/n
n →

4.0796 . . .

http://www.research.att.com/projects/OEIS?Anum=A165535
http://www.research.att.com/~njas/sequences/
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6 Conclusion

It should be noted that the three examples presented in this paper are not the
only 2 × 4 classes which have been enumerated using these techniques. In [7], the
present authors used a precursor of this approach to enumerate Av(4231, 1324); in
the language of this paper, they proved that the simple permutations in this class
are contained in

Geom

⎛
⎝ 1 0 −1

0 • 0
−1 0 1

⎞
⎠.

(Here the • entry denotes a cell in the standard figure filled with a unique point; this
notion is formally defined in [4, Section 10].)

Finally, we point out that there may be other 2 × 4 classes to which these tech-
niques apply. While there is a decision procedure to determine whether a given class
lies in a monotone grid class (see Huczynska and Vatter [15]), there is no known
procedure to determine whether a given class lies in a geometric grid class (and in-
deed, there are indications that this question may be quite difficult). Needless to
say, deciding whether the simple permutations of a given class lie in a geometric grid
class is expected to be more difficult still.
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