Total domination and total domination subdivision numbers

O. FAVARON

L.R.I., Bât. 490 Université Paris-Sud 91405 Orsay cedex France of@lri.fr

H. KARAMI

Department of Mathematics Sharif University of Technology P.O. Box 11365-9415 Tehran I.R. Iran

S.M. Sheikholeslami*

Department of Mathematics
Azarbaijan University of Tarbiat Moallem
Tabriz
I.R. Iran
s.m.sheikholeslami@azaruniv.edu

Abstract

A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number $\gamma_t(G)$ is the minimum cardinality of a total dominating set of G. The total domination subdivision number $sd_{\gamma_t}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. We show that $sd_{\gamma_t}(G) \leq n - \gamma_t(G) + 1$ for any graph G of order $n \geq 3$ and that $sd_{\gamma_t}(G) \leq n - \gamma_t(G)$ except if $G \simeq P_3$, C_3 , K_4 , P_6 or C_6 .

^{*} Corresponding author

1 Introduction

Let G = (V(G), E(G)) be a graph of order n with no isolated vertex. The neighborhood of a vertex u is denoted by $N_G(u)$ and its degree $|N_G(u)|$ by $d_G(u)$ (briefly N(u) and d(u) when no ambiguity on the graph is possible). To work on the total domination, we must suppose the minimum degree δ of G is positive. We use [7] for terminology and notation which are not defined here.

A set S of vertices of G is a total dominating set if it is a dominating set of G with no isolated vertex, in other words if N(S) = V. The minimum cardinality of a total dominating set, denoted by $\gamma_t(G)$, is called the total domination number of G and a $\gamma_t(G)$ -set is a total dominating set of G with cardinality $\gamma_t(G)$. When an edge uv of G is subdivided by inserting a vertex x between u and v, the total domination number cannot decrease. The total domination subdivision number $sd_{\gamma_t}(G)$ is the minimum number of edges of G that must be subdivided in order to increase the total domination number. Similar definitions exist for the domination number $\gamma(G)$ and the domination subdivision number $sd_{\gamma_t}(G)$ and, when G is connected, for the connected domination number $\gamma_c(G)$ and the connected domination subdivision number $sd_{\gamma_c}(G)$. The first of them was introduced for the usual domination number in Velammal's thesis [6].

It is rather difficult to construct graphs with large value of $sd_{\gamma}(G)$, $sd_{\gamma_t}(G)$ or $sd_{\gamma_c}(G)$ and the first conjecture on the subject was that $sd_{\gamma}(G) \leq 3$ for every G [6]. However it is now known that the three parameters can be arbitrary large and that there exist graphs of order n for which their order is logn (see [1] for sd_{γ_c} , [5] for sd_{γ_c} , [2] for sd_{γ_c}). It is also difficult to find general and good upper bounds on these parameters. Bhattacharya and Vijayakumar proved in [1] that if n is large enough, $sd_{\gamma}(G) \leq 4\sqrt{n}\ln n + 5$ and the authors of [4] asked if $sd_{\gamma_c}(G)$ is always at most n. Some bounds are given in terms of the corresponding domination parameters. For instance $sd_{\gamma}(G) \leq \gamma(G) + 1$ [1, 3] and $sd_{\gamma_c}(G) \leq n - \gamma_c(G) - 1$ with equality if and only if G is a path or a cycle [2].

Our purpose in this paper is to establish a bound of this type on $sd_{\gamma_t}(G)$. We prove that $sd_{\gamma_t}(G) \leq n - \gamma_t(G)$ (and thus $\leq n$) for every graph of order $n \geq 3$ without isolated vertex and different from P_3, C_3, K_4, P_6 and C_6 . We will use the following results on $sd_{\gamma_t}(G)$.

Theorem A [4] If G is a graph of order $n \geq 3$ and $\gamma_t(G) = 2$ then $1 \leq sd_{\gamma_t}(G) \leq 3$.

Theorem B [4] If G is a graph of order $n \geq 3$ and $\gamma_t(G) = 3$ then $1 \leq sd_{\gamma_t}(G) \leq 3$.

Theorem C [5] For any connected graph G with adjacent vertices u and v, each of degree at least two,

$$sd_{\gamma_t}(G) \le d(u) + d(v) - |N(u) \cap N(v)| - 1 = |N(u) \cup N(v)| - 1.$$

2 An upper bound for total domination subdivision number

In this section we first prove for every connected graph G of order $n \geq 3$, $sd_{\gamma_t}(G) \leq n - \gamma_t(G) + 1$ and then we characterize the graphs achieving this bound. We start with the following lemma that will be used in the proof of Theorem 3.

Lemma 1 Let G be obtained from any graph H on l vertices w_1, \ldots, w_l by adding 2l+3 new vertices u, v, v', y_i, z_i for $1 \le i \le l$ and the edges $uv, vv', uw_i, w_iy_i, y_iz_i$ for $1 \le i \le l$. Then $sd_{\gamma_i}(G) \le \max\{3, l+1\}$.

Proof. Clearly $\gamma_t(G) = 2l + 2$. If H is not empty, let, say, $w_1w_2 \in E(H)$ and let G' be obtained from G by subdividing the edges w_1w_2 and y_iz_i for $1 \le i \le l$ and adding l+1 new vertices respectively called a, b_1, \ldots, b_l . Every total dominating set of G' contains at least two vertices in $\{u, v, v'\}$ and in each set $\{y_i, b_i, z_i\}$ with $1 \le i \le l$ and one vertex in $\{w_1, a, w_2\}$. Hence $\gamma_t(G') \ge 2l + 3 > \gamma_t(G)$ and $sd_{\gamma_t}(G) \le l + 1$.

If H is empty, let G' be obtained from G by subdividing the edges w_1y_1, y_1z_1 and vv' and adding three new vertices respectively called a, b, c. Every total dominating set of G' contains at least two vertices in each set $\{v, c, v'\}$, $\{y_1, b, z_1\}$, $\{w_i, y_i, z_i\}$ for $2 \le i \le l$, and one vertex in $\{u, w_1, a\}$. Hence $\gamma_t(G') \ge 2l + 3 > \gamma_t(G)$ and $sd_{\gamma_t}(G) \le 3$.

Theorem 1 For every connected graph G of order $n \geq 3$, $sd_{\gamma_t}(G) \leq n - \gamma_t(G) + 1$.

Proof. If G is a star, then $\gamma_t(G) = 2$ and $sd_{\gamma_t}(G) = 2 \leq n - \gamma_t(G) + 1$. Otherwise, let u and v be two adjacent vertices of G of degree at least two, and let $X = V(G) \setminus (N(u) \cup N(v))$. Let x_1, \ldots, x_k be the K_1 -components, if any, of the subgraph G[X] induced by X in G and for each vertex x_i , let $w_i \in N(x_i)$. Then $\{w_1, \ldots, w_k\} \cup \{X \setminus \{x_1, \ldots, x_k\}\} \cup \{u, v\}$ is a total dominating set of G with at most |X| + 2 elements. Hence $\gamma_t(G) \leq |X| + 2$. From this inequality and by Theorem C we have

$$sd_{\gamma_t}(G) \le |N(u) \cup N(v)| - 1 = |V(G) \setminus X| - 1 = n - |X| - 1 \le n - \gamma_t(G) + 1.$$
 (1)

Now we characterize the graphs achieving this bound. We start with the particular case where $\gamma_t(G) = 2$ or 3.

Theorem 2 Let G be a graph of order $n \geq 3$ with $\delta \geq 1$ and $\gamma_t(G) = 2$ or 3. Then $sd_{\gamma_t}(G) = n - \gamma_t(G) + 1$ if and only if $G \simeq P_3$, C_3 , or K_4 .

Proof. If $\gamma_t(G) = 2$ and $sd_{\gamma_t}(G) = n - \gamma_t(G) + 1 = n - 1$, then $n \le 4$ by Theorem A. When n = 3, then G is necessarily isomorphic to P_3 or C_3 and for these two graphs, $sd_{\gamma_t}(G) = 2 = n - \gamma_t(G) + 1$. When n = 4, then G is connected and isomorphic to P_4 , C_4 , $K_{1,3}$, $K_{1,3} + e$, K_4 or $K_4 - e$. Since $sd_{\gamma_t}(P_4) = sd_{\gamma_t}(C_4) = 1 < n - \gamma_t(G) + 1$,

 $sd_{\gamma_t}(K_{1,3}) = sd_{\gamma_t}(K_{1,3} + e) = sd_{\gamma_t}(K_4 - e) = 2 < n - \gamma_t(G) + 1$ and $sd_{\gamma_t}(K_4) = 3 = n - \gamma_t(G) + 1$, $G \simeq K_4$.

If $\gamma_t(G) = 3$ and $sd_{\gamma_t}(G) = n - \gamma_t(G) + 1 = n - 2$, then $n \leq 5$ by Theorem B. The only graphs with $\delta \geq 1$, $n \leq 5$ and $\gamma_t(G) = 3$ are P_5 and C_5 which both satisfy $sd_{\gamma_t}(G) = 1 < n - \gamma_t(G) + 1$. This completes the proof.

Theorem 3 Let G be a connected graph of order $n \geq 3$ with $\gamma_t(G) \geq 4$. Then $sd_{\gamma_*}(G) = n - \gamma_t(G) + 1$ if and only if $G \simeq P_6$ or C_6 .

Proof. If $G \simeq P_6$ or C_6 then $\gamma_t(G) = 4$ and since $\gamma_t(P_8) = \gamma_t(C_8) = 4$ and $\gamma_t(P_9) = \gamma_t(C_9) = 5$, $sd_{\gamma_t}(G) = 3 = n - \gamma_t(G) + 1$.

Suppose now that $sd_{\gamma_t}(G) = n - \gamma_t(G) + 1$. Since $\gamma_t(G) \geq 4$, G is not a star. Let u and v be any two adjacent vertices such that $\min\{d(u), d(v)\} \geq 2$. With the notation of Theorem 1, equality in (1) implies that $\gamma_t(G) = |X| + 2$ and $sd_{\gamma_t}(G) = n - |X| - 1 = |N(u) \cup N(v)| - 1$. In particular, $|N(u) \cup N(v)|$ does not depend on the choice of the pair $\{u, v\}$ of adjacent vertices of degree at least two.

Claim 1 Every connected component of G[X] has order 1 or 2.

Proof of Claim 1. If G_1 is a component of G[X] of order at least 3, then $\gamma_t(G_1) \leq |V(G_1)| - 1$. Let D_1 be a $\gamma_t(G_1)$ -set. Let x_1, \ldots, x_k be the K_1 -components, if any, of G[X] and for each vertex x_i , let $w_i \in N(x_i)$. Then $D_1 \cup (X \setminus (V(G_1) \cup \{x_1, \ldots, x_k\})) \cup \{w_1, \ldots, w_k\} \cup \{u, v\}$ is a total dominating set of G of order at most $|X| + 1 < \gamma_t(G)$, a contradiction. This proves the claim.

From now, we denote respectively by x_1, \ldots, x_{l_1} and $y_1 z_1, \ldots, y_{l_2} z_{l_2}$ the K_1 -components and the K_2 -components of G[X]. Since $|X| = \gamma_t(G) - 2 \ge 2$, the integers l_1 and l_2 satisfy $l_1 \ge 0$, $l_2 \ge 0$ and $l_1 + 2l_2 \ge 2$.

Claim 2 There are no two vertices in G[X] with a common neighbor in $N(u) \cup N(v)$.

Proof of Claim 2. Let, to the contrary, a_1 and a_2 be two vertices of X with a common neighbor a in $N(u) \cup N(v)$. If a_1 and a_2 are K_1 -components of G[X], we can assume $a_1 = x_1$ and $a_2 = x_2$. If $l_1 \geq 3$, let $w_i \in N(x_i)$ for $3 \leq i \leq l_1$. Then $(X \setminus \{x_1, \ldots, x_{l_1}\}) \cup \{w_3, \ldots, w_{l_1}\} \cup \{a, u, v\}$ is a total dominating set for G of order at most |X|+1. If a_1 belongs to a K_2 -component of G[X], say $a_1 = y_1$, and a_2 is a K_1 -component of G[X], say $a_2 = x_1$, then $(X \setminus \{z_1, x_1, \ldots, x_{l_1}\}) \cup \{w_2, \ldots, w_{l_1}\} \cup \{a, u, v\}$, where $w_i \in N(x_i)$ for $1 \leq i \leq l_1$ if $1 \leq i \leq l_2$ is a total dominating set for $i \leq i \leq l_2$ and $i \leq i \leq l_2$ if $i \leq i \leq l_2$ for $i \leq i \leq l_2$ and $i \leq i \leq l_2$ for order at most $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for order at most $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for order at most $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for order at most $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for order at most $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for $i \leq i \leq l_2$ for order at most $i \leq i \leq l_2$ for $i \leq i \leq l_$

is a total dominating set of G[X] of order at most |X|+1. The four cases contradict the fact that $\gamma_t(G) = |X|+2$, which proves the claim.

In what follows, we choose the pair $\{u, v\}$ of adjacent vertices of degree at least two such that, if $\delta = 1$, then v has a neighbor v' of degree one. We consider two cases.

Case 1 There is a K_2 -component of G[X], say y_1z_1 , such that

$$\min\{d(y_1), d(z_1)\} \ge 2.$$

Since $|N(u) \cup N(v)|$ doest not depend on the choice of the pair of adjacent vertices of degree at least two, $N(y_1) \cup N(z_1) = N(u) \cup N(v)$, which implies $\delta \geq 2$ and $G[X] \simeq K_2$ by Claim 2. Hence $\gamma_t(G) = |X| + 2 = 4$ and $sd_{\gamma_t}(G) = n - 3$. Moreover the symmetry between the pairs $\{u, v\}$ and $\{y_1, z_1\}$ shows that u and v have no common neighbor. Therefore n = d(u) + d(v) + 2 and $sd_{\gamma_t}(G) = d(u) + d(v) - 1$. Without loss of generality we can assume $N(u) \cap N(y_1) \neq \emptyset$. Let $y \in N(u) \cap N(y_1)$. Since $\{u, y, y_1\}$ cannot be a total dominating set of G, v has a neighbor v_1 which is not adjacent to any of u, y, y_1 and $v_1 \in N(v) \cap N(z_1)$.

Claim 3 $|N(u) \cup N(v) \setminus \{u, v\}| = 2$

Proof of Claim 3. Let $Y = (N(u) \cup N(v)) \setminus \{u, v\}$ and suppose, to the contrary, |Y| > 2. Without loss of generality we can assume $d(v) \geq d(u) \geq 2$ and thus $d(v) \geq 3$. Let $N(v) \setminus \{u\} = \{v_1, v_2, \dots, v_m\}$ with $m \geq 2$. Let G' be obtain from G by subdividing the d(v) + 1 edges $uv, y_1z_1, vv_1, \ldots, vv_m$ and adding new vertices respectively called a, b, t_1, \ldots, t_m . Let $Y_1 = \{a, t_1, \ldots, t_m\}, Y_2 = \{y_1, b, z_1\},$ and let D be a $\gamma_t(G')$ -set. We can remark that either $|D \cap Y_2| \geq 2$, or $|D \cap Y_2| = 1$ and $|D \cap Y| \ge 2$ (by Claim 2). Assume that |D| = 4. If $v \in D$ then $|D \cap (\{v\} \cup Y_1)| \ge 2$. Hence $|D \cap (\{v\} \cup Y_1)| = 2$ and $|D \cap (Y \cup Y_2)| = 2$. By the previous remark, $|D \cap Y_2| = 2$ and $|D \cap Y| = 0$. Since $D \cap Y = \emptyset$, D must contain a to dominate u. Thus $t_1 \notin D$ and since $D \cap (Y \cup Y_2) = \{b, y_1\}$ or $\{b, z_1\}$, either y or v_1 is not dominated by D, a contradiction. Therefore $v \notin D$ and D contains at least m+2 vertices in $Y_1 \cup \{u\} \cup Y$ (because the vertex dominating v cannot be isolated), and at least one in Y_2 . This contradicts $m \geq 2$ and |D| = 4. Hence $\gamma_t(G') \geq 5 > \gamma_t(G)$ and $sd_{\gamma_t}(G) \leq d(v) + 1$. Since $sd_{\gamma_t}(G) = d(u) + d(v) - 1$, necessarily d(u) = 2. Exchanging the pairs u, v and u, y, we see that, since $|N(u) \cup N(v)| = |N(u) \cup N(y)|$ and v_1 and z_1 do not belong to $N(u) \cup N(y)$, y must be adjacent to every v_i with $2 \le i \le m$. If one of these vertices v_i , say v_2 , is adjacent to z_1 , then $\{y, v_2, z_1\}$ is a total dominating set of G. Otherwise, y_1 is adjacent to v_2, \ldots, v_m and $\{y_1, v_2, v\}$ is a total dominating set of G. Both cases contradict $\gamma_t(G) = 4$, which proves that |Y| = 2 and completes the proof of Claim 3.

Claims 2 and 3 show that in Case 1, $G \simeq C_6$.

Case 2 Every K_2 -component $y_i z_i$ of G[X] has a vertex of degree 1, say $d(z_i) = 1$, for $1 \le i \le l_2$.

Subcase 1 $l_1 \geq 2$. Let $w_i \in N(x_i)$ for i=1,2. Let G' be obtain from G by subdividing the three edges x_1w_1, x_2w_2, uv and adding the new vertices t_1, t_2, a , respectively. Let D be a $\gamma_t(G')$ -set. Obviously $|D \cap N[y_i]| \geq 2$ for $1 \leq i \leq l_2$ (if $l_2 \geq 1$), $|D \cap N[x_j]| \geq 1$ for $3 \leq j \leq l_1$ (if $l_1 \geq 3$), $|D \cap (N_G[x_k] \cup \{t_k\})| \geq 2$ for k=1,2 and $|D \cap \{u,v,a\}| \geq 1$. Therefore $|D| \geq 2l_2 + l_1 + 2 + 1 = |X| + 3$ and thus, $\gamma_t(G') \geq \gamma_t(G) + 1$. Hence $sd_{\gamma_t}(G) = |N(u) \cup N(v)| - 1 \leq 3$ and we must have $|(N(u) \cup N(v)) \setminus \{u,v\}| = 2$, $l_2 = 0$, $l_1 = 2$ and $d(x_1) = d(x_2) = 1$. Let without loss of generality $uw_1 \in E(G)$. Since $\gamma_t(G) \geq 4$, $uw_2 \notin E(G)$, and so $vw_2 \in E(G)$, and $w_1v, w_1w_2 \notin E(G)$. This implies $G \simeq P_6$.

Subcase 2 $l_1=1$ or 0. Since $l_1+2l_2\geq 2$, G[X] has at least one K_2 -component and by the choice of the pair u,v, the vertex v has a neighbor v' of degree one. For $1\leq i\leq l_2$, let $t_i\in N(y_i)\setminus\{z_i\}$. When $l_1=1$, let x be the unique K_1 -component of G[X] and let $w\in N(x)$. Let G' be the graph obtained from G by subdividing the edges $uv,vv',\ y_iz_i$ for $1\leq i\leq l_2$, and xw when $l_1=1$ and adding l_2+l_1+2 vertices respectively called a,a',b_1,\ldots,b_{l_2} and c. Every total dominating set D of G' contains at least two vertices in each set $\{y_i,b_i,z_i\}$. Moreover D contains at least three vertices in $N_G[u]\cup N_G[v]\cup\{a,a'\}$ if $l_1=0$, or two vertices in $\{v,a',v'\}$ and two vertices in $N_G[x]\cup\{c\}$ if $l_1=1$. Therefore $\gamma_t(G')\geq 2l_2+3+l_1=|X|+3>\gamma_t(G)$ and $sd_{\gamma_t}(G)=n-|X|-1\leq l_2+l_1+2$. Hence $n\leq |X|+(l_1+l_2)+3$. This implies by Claim 2 that $d(y_i)=2$ for $1\leq i\leq l_2$ and, if $l_1=1$, d(x)=1. Then $n=3l_2+2l_1+3$, $\gamma_t(G)=2l_2+l_1+2$ and $sd_{\gamma_t}(G)=l_2+l_1+2$.

If $l_1=1$, then w is not adjacent to v, for otherwise $\{v,w,t_1,y_1,\ldots,t_{l_2},y_{l_2}\}$ is a total dominating set of G of order $2l_2+2<\gamma_t(G)$, and is thus adjacent to u. Let G' be obtained from G by subdividing the edges wx and y_iz_i for $1\leq i\leq l_2$ and adding l_2+1 new vertices $c,z_1',z_2',\ldots,z_{l_2}'$. Every total dominating set D of G' contains at least two vertices in each set $\{x,c,w\}$, $\{z_i,z_i',y_i\}$ for $1\leq i\leq l_2$, and N[v]. Hence $\gamma_t(G')\geq 2l_2+4>\gamma_t(G)$ and $sd_{\gamma_t}(G)\leq l_2+1$, a contradiction.

Thus $l_1=0$, $\gamma_t(G)=2l_2+2$ and $sd_{\gamma_t}(G)=l_2+2$. If v is adjacent to one t_i , say to t_1 , then $\{v,t_1,y_1,t_2,y_2,\ldots,t_{l_2},y_{l_2}\}$ is a total dominating set of G of order $2l_2+1<\gamma_t(G)$, a contradiction. Hence $vt_i\notin E(G)$ for $1\leq i\leq l_2$ and all the vertices t_i are adjacent to u. The graph G is the graph described in Lemma 1 and satisfies $sd_{\gamma_t}(G)=l_2+2\leq \max\{3,l_2+1\}$. Therefore $l_2=1$ and $G\simeq P_6$, which completes the proof.

The following corollary is an immediate consequence of Theorems 1, 2 and 3.

Corollary 1 If G is a connected graph of order $n \geq 3$ different from P_3 , C_3 , K_4 , P_6 , C_6 , then $sd_{\gamma_t}(G) \leq n - \gamma_t(G)$.

References

[1] A. Bhattacharya and G.R. Vijayakumar, Effect of edge-subdivision on vertex-domination in a graph, *Discuss. Math. Graph Theory* **22** (2002), 335–347.

- [2] O. Favaron, H. Karami and S.M. Sheikholeslalmi, Connected domination subdivision numbers of graphs, *Utilitas Math.* (to appear).
- [3] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, J. Knisely and L.C. van der Merwe, Domination subdivision numbers, *Discuss. Math. Graph Theory* 21 (2001), 239–253.
- [4] T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, Total domination subdivision numbers, J. Combin. Math. Combin. Comput. 44 (2003), 115–128.
- [5] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision numbers of graphs, *Discuss. Math. Graph Theory* **24** (2004), 457–467.
- [6] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).
- [7] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.

(Received 20 May 2006)