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Abstract

A set S of vertices of a graph G = (V, E) without isolated vertex is a
total dominating set if every vertex of V(G) is adjacent to some vertex
in S.The total domination number v(G) is the minimum cardinality of
a total dominating set of G. The total domination subdivision number
sd,, (@) is the minimum number of edges that must be subdivided (each
edge in G can be subdivided at most once) in order to increase the total
domination number. We show that sd,,(G) < n—~,(G)+1 for any graph
G of order n > 3 and that sd.,(G) < n—(G) except if G ~ P35, C3, Ky, Py

or 06'
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1 Introduction

Let G = (V(G), E(G)) be a graph of order n with no isolated vertex. The neigh-
borhood of a vertex u is denoted by Ng(u) and its degree |Ng(u)| by dg(u) (briefly
N(u) and d(u) when no ambiguity on the graph is possible). To work on the total
domination, we must suppose the minimum degree ¢ of G is positive. We use [7] for
terminology and notation which are not defined here.

A set S of vertices of G is a total dominating set if it is a dominating set of G with
no isolated vertex, in other words if N(S) = V. The minimum cardinality of a total
dominating set, denoted by v(G), is called the total domination number of G and
a v (G)-set is a total dominating set of G with cardinality v(G). When an edge
uv of G is subdivided by inserting a vertex x between u and v, the total domina-
tion number cannot decrease. The total domination subdivision number sd.,(G) is
the minimum number of edges of G that must be subdivided in order to increase
the total domination number. Similar definitions exist for the domination number
7(G) and the domination subdivision number sd,(G) and, when G is connected, for
the connected domination number v.(G) and the connected domination subdivision
number sd,, (G). The first of them was introduced for the usual domination number
in Velammal’s thesis [6].

It is rather difficult to construct graphs with large value of sd,(G), sd.,(G) or sd, (G)
and the first conjecture on the subject was that sd,(G) < 3 for every G [6]. However
it is now known that the three parameters can be arbitrary large and that there
exist graphs of order n for which their order is logn (see [1] for sd,, [5] for sd,,,
[2] for sd, ). It is also difficult to find general and good upper bounds on these
parameters. Bhattacharya and Vijayakumar proved in [1] that if n is large enough,
sd,(G) < 4y/nlon + 5 and the authors of [4] asked if sd,,(G) is always at most n.
Some bounds are given in terms of the corresponding domination parameters. For
instance sd,(G) < v(G)+ 1 [1, 3] and sd,, (G) < n —7.(G) — 1 with equality if and
only if G is a path or a cycle [2].

Our purpose in this paper is to establish a bound of this type on sd,,(G). We prove
that sd,,(G) < n— v(G) (and thus < n) for every graph of order n > 3 without
isolated vertex and different from P, Cs, Ky, Ps and Cs. We will use the following
results on sd,, (G).

Theorem A [4] If G is a graph of order n > 3 and v,(G) = 2 then 1 < sd,,(G) < 3.
Theorem B [4] If G is a graph of order n > 3 and v,(G) = 3 then 1 < sd,,(G) < 3.

Theorem C [5] For any connected graph G with adjacent vertices u and v, each of
degree at least two,

5d,, (@) < d(u) 4+ d(v) = |[N(u) N N(v)] =1 =|N(u) UN(v)| - 1.
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2 An upper bound for total domination subdivision number

In this section we first prove for every connected graph G of order n > 3, sd.,(G) <
n —1(G) + 1 and then we characterize the graphs achieving this bound. We start
with the following lemma that will be used in the proof of Theorem 3.

Lemma 1 Let G be obtained from any graph H on [ vertices wy, . ..,w; by adding
21 + 3 new wvertices u,v,v',y;, z; for 1 <1 <1 and the edges uwv,vv', uw;, w;y;, yiz; for
1<i< 1. Then sd,(G) < max{3,] +1}.

Proof. Clearly 1(G) = 20 + 2. If H is not empty, let, say, wyws € E(H) and let G’
be obtained from G by subdividing the edges w;w, and y;2; for 1 < ¢ < [ and adding
I + 1 new vertices respectively called a, by, ...,b. Every total dominating set of G’
contains at least two vertices in {u, v,v'} and in each set {y;, b;,2;} with 1 < i <1
and one vertex in {wi, a,w.}. Hence 14(G’) > 21 + 3 > %(G) and sd,,(G) <1+ 1.

If H is empty, let G’ be obtained from G by subdividing the edges wyy;,y;21 and
vv’ and adding three new vertices respectively called a, b, c. Every total dominating
set of G’ contains at least two vertices in each set {v,c,v'}, {y1,b, 21}, {wi, v, 2}
for 2 < i < [, and one vertex in {u,w,a}. Hence 3(G') > 2l + 3 > 7(G) and
sd, (G) < 3.

Theorem 1 For every connected graph G of order n > 3, sd,,(G) <n —v(G)+ 1.

Proof. If G is a star, then v(G) = 2 and sd.,(G) = 2 < n — 3(G) + 1. Otherwise,
let v and v be two adjacent vertices of G of degree at least two, and let X =
V(G)\ (N(u) UN(v)). Let 1, ...,z be the K;-components, if any, of the subgraph
G[X] induced by X in G and for each vertex x;, let w; € N(z;). Then {wy,...,wp}U
(X\{z1,...,z1})U{u, v} is a total dominating set of G with at most |X|+2 elements.
Hence v(G) < |X| + 2. From this inequality and by Theorem C we have

sdy,(G) < IN(w) UN(0)] =1 = [V(G)\ X| =1 =n— |X|-1<n-7(G)+1. (1)

Now we characterize the graphs achieving this bound. We start with the particular
case where 7,(G) = 2 or 3.

Theorem 2 Let G be a graph of order n > 3 with 6 > 1 and v(G) =2 or 3. Then
$dy(G) =n —1(G) + 1 if and only if G ~ P3,Cs, or Ky.

Proof. If v(G) =2 and sd,,(G) =n—v(G)+1=n—1, then n < 4 by Theorem A.
When n = 3, then G is necessarily isomorphic to P; or C3 and for these two graphs,
5d,(G) =2 =n —v(G) + 1. When n = 4, then G is connected and isomorphic to
Py, Cy, K13, K13+ e, Ky or Ky —e. Since sdy,(Py) = 5d,,(Cs) =1 <n—7(G)+1,
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sdy, (K1 3) = sd,, (K13 +e) =sd,,(Ky —e) =2 <n—v(G)+1 and sd,, (K;) =3 =
n—7(G)+1, G~ K.

If v%(G) =3 and sd,,(G) =n —7(G)+1=mn—2, then n <5 by Theorem B. The
only graphs with 6 > 1, n < 5 and 7(G) = 3 are P; and Cs which both satisfy
sdy,(G) =1 <n —v(G) + 1. This completes the proof.

Theorem 3 Let G be a connected graph of order n > 3 with v(G) > 4. Then
sdy,(G) =n —1(G) +1 if and only if G ~ Fs or Cs.

Proof. If G ~ P; or Cg then 1(G) = 4 and since 1(Ps) = 1(Cs) = 4 and
Y(Py) = 7(Cy) =5 , 5d,(G) = 3 =n — %(G) + 1.

Suppose now that sd,,(G) = n — % (G) + 1. Since v(G) > 4, G is not a star. Let
w and v be any two adjacent vertices such that min{d(u),d(v)} > 2. With the
notation of Theorem 1, equality in (1) implies that v(G) = |X| + 2 and sd.,(G) =
n—|X|—1=|N(u) U N(v)| — 1. In particular, |N(u) U N(v)| does not depend on
the choice of the pair {u,v} of adjacent vertices of degree at least two.

Claim 1 Every connected component of G[X] has order 1 or 2.

Proof of Claim 1. If Gy is a component of G[X] of order at least 3, then v:(G;) <
|V(G1)| = 1. Let Dy be a v(G1)-set. Let zy, ...,z be the Kj-components, if any, of
G[X] and for each vertex z;, let w; € N(z;). Then DyU(X\(V(G1)U{z1, ..., 24}))U
{wy, ..., wx}U{u,v} is a total dominating set of G of order at most | X|+1 < (G),
a contradiction. This proves the claim.

From now, we denote respectively by xi,...,2;, and y121,. .., Y, 2, the K;-compon-
ents and the K,-components of G[X]. Since |X| = 1(G) — 2 > 2, the integers [; and
l2 satisfy ll Z 07 l2 Z 0 and ll + 2[2 Z 2.

Claim 2  There are no two vertices in G[X] with a common neighbor in N(u) U
N(v).

Proof of Claim 2.  Let, to the contrary, a; and as be two vertices of X with a
common neighbor a in N(u) U N(v). If a; and ay are K;-components of G[X], we
can assume a; = x1 and ay = xo. If I; > 3, let w; € N(z;) for 3 <4 < ;. Then
(X\{z1,..., 2, })U{ws, ..., w, }U{a,u, v} is a total dominating set for G of order at
most | X|+ 1. If a; belongs to a Ky-component of G[X], say a; = y1, and ay is a K-
component of G[X], say as = x1, then (X\{z1,21,..., 2 })U{ws, ..., w, }U{a,u, v},
where w; € N(z;) for 2 < ¢ <y if [; > 2, is a total dominating set for G of order at
most |X|+1. If a; and a» belong to the same K,-component of G[X], say a; = y; and
as = z1, then (X \ {y1, 21,21, ...,z }) U{wy,...,w;, } U{a,u,v}, where w; € N(z;)
for 1 <14 <1y, is a total dominating set of G[X] of order at most |X| 4 1. Finally if
a; and ay belong to different Ky-components of G[X], say a; = y; and ag = ys, then
(X \{z1, 22,21, .., 2, }) U{wy, ..., w, U {a,u, v}, where w; € N(z;) for 1 <i <1,
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is a total dominating set of G[X] of order at most |X|+ 1. The four cases contradict
the fact that v(G) = |X| 4 2, which proves the claim.

In what follows, we choose the pair {u,v} of adjacent vertices of degree at least two
such that, if 6 = 1, then v has a neighbor v’ of degree one. We consider two cases.

Case 1  There is a Ky-component of G[X], say y12z1, such that
min{d(ys), (1)} > 2.

Since |N(u) U N(v)| doest not depend on the choice of the pair of adjacent vertices
of degree at least two, N(y1) U N(z1) = N(u) U N(v), which implies § > 2 and
G[X] ~ K, by Claim 2. Hence (G) = |X|+ 2 =4 and sd,,(G) = n — 3. Moreover
the symmetry between the pairs {u,v} and {yi, 21} shows that v and v have no
common neighbor. Therefore n = d(u) + d(v) + 2 and sd,,(G) = d(u) + d(v) — 1.
Without loss of generality we can assume N(u) N N(y1) # 0. Let y € N(u) N N(y1).
Since {u,y,y:1} cannot be a total dominating set of G, v has a neighbor v; which is
not adjacent to any of u,y,y; and v; € N(v) N N(z1).

Claim 3 |[N(u)UN(v)\ {u,v}| =2

Proof of Claim 3.  Let Y = (N(u)U N(v)) \ {u,v} and suppose, to the contrary,
|Y| > 2. Without loss of generality we can assume d(v) > d(u)(> 2) and thus
d(v) > 3. Let N(v) \ {u} = {v1,vs,...,v} with m > 2. Let G’ be obtain from
G by subdividing the d(v) + 1 edges uv,y121,vv1, ..., 00, and adding new vertices
respectively called a,b,t1,...,tm. Let Y1 = {a,t1,...,tn}, Yo = {y1,b, 21}, and let
D be a v(G')-set. We can remark that either [DNY3| > 2, or [DN Y3 = 1 and
|[DNY| > 2 (by Claim 2). Assume that |D| =4. If v € D then |DN ({v} UY})| > 2.
Hence |DN({v}UY7)| = 2 and |DN(YUY3)| = 2. By the previous remark, [DNY5| = 2
and |DNY| =0. Since DNY = 0, D must contain a to dominate u. Thus t; ¢ D
and since DN (Y UY3) = {b,y1} or {b, 21}, either y or vy is not dominated by D, a
contradiction. Therefore v ¢ D and D contains at least m +2 vertices in Y1 U{u}UY
(because the vertex dominating v cannot be isolated), and at least one in Y5. This
contradicts m > 2 and |D| = 4. Hence 1(G") > 5 > (@) and sd.,(G) < d(v) + 1.
Since sd.,,(G) = d(u) + d(v) — 1, necessarily d(u) = 2. Exchanging the pairs u,v and
u,y, we see that, since |[N(u) U N(v)| = |N(u) U N(y)| and v; and z; do not belong
to N(u) U N(y), y must be adjacent to every v; with 2 < 4 < m. If one of these
vertices v;, say ve, is adjacent to 21, then {y,vs, 21} is a total dominating set of G.
Otherwise, y; is adjacent to va, ..., v, and {y1, ve, v} is a total dominating set of G.
Both cases contradict v,(G) = 4, which proves that |Y| = 2 and completes the proof
of Claim 3.

Claims 2 and 3 show that in Case 1, G ~ (.

Case 2 Every K,-component y;z; of G[X] has a vertex of degree 1, say d(z;) = 1,
for 1< i< ly.
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Subcase 1 I3 > 2. Let w; € N(x;) for i = 1,2. Let G’ be obtain from G
by subdividing the three edges xjw;, xows, uv and adding the new vertices ti, s, a,
respectively. Let D be a 7,(G')-set. Obviously |[D N Ny]| > 2 for 1 < i < Iy (if
b> 1), [DAN[)l > 1for3< ) < b (4 > 3), [DN (Nafe] U {ted)] > 2 for
E=1,2 and |DN{u,v,a}| > 1. Therefore |D| > 2l +1; +2+ 1 = |X|+ 3 and
thus, 1,(G') > 1(G) + 1. Hence sd,,(G) = [N(u) UN(v)| — 1 < 3 and we must have
[((N(u) UN(v)) \ {w,v}| =2, 1, =0, =2 and d(z;) = d(z2) = 1. Let without loss
of generality uw; € E(G). Since v(G) > 4, uvwy ¢ E(G), and so vws € E(G), and
wyv, wiwy € E(G). This implies G ~ Fs.

Subcase 2 l; =1 or 0. Since l; + 2ly > 2, G[X] has at least one K,-component
and by the choice of the pair u,v, the vertex v has a neighbor v’ of degree one. For
1<i<ly lett; € N(y;) \ {z:}. When l; = 1, let x be the unique K;-component
of G[X] and let w € N(z). Let G' be the graph obtained from G by subdividing
the edges uv,vv', y;z; for 1 < i < Iy, and xw when [; = 1 and adding Iy + [; + 2
vertices respectively called a,d’,by,...,b, and c. Every total dominating set D of
G’ contains at least two vertices in each set {y;, b;, z;}. Moreover D contains at least
three vertices in Ng[u]U Ng[v]U{a,a’} if [; = 0, or two vertices in {v,a’,v'} and two
vertices in Ng[z] U {c} if [; = 1. Therefore v,(G') > 2l, +3+ 1, = | X| + 3 > 1(G)
and sd,,(G) =n—|X|—1<lh+1;+2. Hence n < |X|+(l; +13)+3. This implies by
Claim 2 that d(y;) =2 for 1 <i < lyand, if [; = 1, d(z) = 1. Then n = 3ly+2[; +3,
W (G) =2+ 1, + 2 and sd.,(G) =1, + 11 + 2.

If I, = 1, then w is not adjacent to v, for otherwise {v,w,t1,y1,...,t,, Y, } is & total
dominating set of G of order 2l, + 2 < v(G), and is thus adjacent to u. Let G’ be
obtained from G by subdividing the edges wx and y;z; for 1 < i < [y and adding
Iy + 1 new vertices c, 2}, 2y,...,2,. Every total dominating set D of G’ contains at
least two vertices in each set {z,c,w}, {2z, 2},y;} for 1 < i <y, and N[v]. Hence
% (G') > 2l +4 > v(G) and sd,,(G) < Iy + 1, a contradiction.

Thus I} = 0, 1(G) = 2l + 2 and sd.,(G) = I, + 2. If v is adjacent to one ¢;,
say to t1, then {v,t1,y1,t2,y2,...,t, Y} 1s a total dominating set of G of order
2l,+1 < 1(G), a contradiction. Hence vt; ¢ E(G) for 1 < i < I, and all the vertices
t; are adjacent to u. The graph G is the graph described in Lemma 1 and satisfies
5d,,(G) = Iy + 2 < max{3,l; + 1}. Therefore l; = 1 and G ~ Fg, which completes
the proof.

The following corollary is an immediate consequence of Theorems 1, 2 and 3.

Corollary 1 If G is a connected graph of order n > 3 different from P3, C3, Ky,
Fs, Cs, then sd,(G) < n—v(G).
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