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Abstract

The concept of the Skolem labelled graph was introduced by Mendelsohn
and Shalaby, (Discrete Math. 97(1991), 301-317).

Translating into a graph theoretical context an idea introduced by
Baker, Kergin and Bonato, (Ars Combin. 63(2002), 97-107), we prove
the necessary and sufficient conditions for maximum (hooked) Skolem
labelling P,0P; Cartesian products. We also provide an algorithm used
to generate Skolem labellings of trees as well as data generated using this
algorithm.

1 Introduction

While studying Steiner triple systems in 1957, Thoralf Skolem had the idea to dis-
tribute the numbers 1,2, ...,2n into n distinct pairs (a;, b;) such that b; — a; = ¢ for
each 7 € {1,2,...,n} [13]. Such a distribution is now known as a Skolem sequence
of order n. Readers may wish to consult [4, 5, 8, 13] for the historical introduction
and initial development of the subject.

The concept of applying a Skolem sequence to the labelling of a graph was intro-
duced in 1990 by Mendelsohn and Shalaby in [6]. Since then, other papers have
documented the Skolem labelling of windmills [7] and introduced the concept of the
Skolem array [1], equivalent to the Skolem labelling of a ladder graph.

We expand on the results dealing with Skolem arrays by translating them into a graph
theoretical context, and generalise the necessary and sufficient existence conditions to
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the case of generalised grid graphs. We also present an algorithm used for determining
whether a particular tree can be Skolem labelled, as well as data pertaining to the
number of Skolem labellable trees up to 20 vertices.

2 Preliminaries

A Skolem sequence of order n is a distribution of the numbers 1,2,...,2n into n
distinct pairs (a;,b;) such that b; — a; = @ for each i € {1,2,...,n} and a hooked
Skolem sequence of order n is a distribution of the numbers 1,2,...,2n — 1,2n +1

into n distinct pairs (a;, b;) such that b; — a; = ¢ for each i € {1,2,...,n}. These
formulations are equivalent to sequences consisting of two copies of each of the num-
bers 1 through n inclusive arranged such that if s; and s; are respectively the first
and second occurrences of the number % in the sequence, then j —i = k.

In the case of the hooked Skolem sequence under the second (and more common)
formulation, the penultimate position in the sequence is left unfilled—this position
is called the hook and is often denoted by an “x”. The sequence 1,1,3,4,2,3,2,4 is
a Skolem sequence of order 4 and the sequence 3,1,1,3,2,%,2 is a hooked Skolem
sequence of order 3. There are now many variants on the Skolem sequence, denoted
Skolem-type sequences. These are not relevant to the discussion at hand; some useful
papers in this direction are [2, 3, 11, 12]. It is well-known that a Skolem sequence of
order n exists if and only if n = 0,1 (mod 4), and that a hooked Skolem sequence of
order n exists if and only if n = 2,3 (mod 4).

All graphs are assumed to be simple and undirected throughout. If w and v are
vertices of a graph G, then the distance between them (the length of a minimal
u,v-path) is denoted dg(u,v) or d(u,v). The eccentricity of a vertex is the maximal
distance between it and all other vertices in the graph, and the diameter of a graph
is the maximal vertex eccentricity. The Cartesian product of two graphs GG; and Gy,
denoted G10G,, is the graph having vertex set V(G;) x V(G2) in which vertices
(u1,u2) and (v1,ve) are adjacent in G;0G, if and only if either u; = v; and us is
adjacent to vy in G, or us = vy and wu; is adjacent to v; in G;. The path on n
vertices is referred to as P,.

Introduced by Mendelsohn and Shalaby in [6], a d-Skolem labelled graph, by a slight
abuse of notation, is a triple (G, £, d) that satisfies the following four conditions:

(i) G=(V,E) is a graph (on 2n vertices),
(i) £:V = {d,d+1,...,d+n— 1} is a surjective vertex-labelling function,

(iii) for each i € {d,d+1,...,d 4+ n — 1}, there exist exactly two vertices u,v € V
having dg(u,v) = d + ¢ and labels £(u) = L(v) = d + 1, and,

(iv) if G' = (V,E') and E' G E, then (G', L, d) violates condition (ii).
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Item (iv) is simply the requirement that each edge of G must lie on a labelling path,
that is, a path between a pair of similarly labelled vertices. The element d is called
the defect of the labelling. We have need only for the case that d = 1, though for the
sake of completeness, we include the general form in the following definitions. New
definitions are displayed in block form.

A graph with an odd number of vertices may form the base for a d-hooked Skolem
labelled graph; it is a triple (G, £, d) satistying condition (iv), as well as conditions

(i
(i

(i

G = (V,E) is a graph (on 2n + 1 vertices),
L:V = {0}u{d,d+1,...,d+n—1} is a surjective vertex-labelling function,

for w € V, if £(u) # 0 then condition (iii) applies,

)
)
)
(v) there exists exactly one v € V' such that £(v) = 0.

Note that, as d = 1, hooked Skolem labelled graphs have exactly one 0-labelled ver-
tex. Furthermore, all Skolem labelled graphs (resp. hooked Skolem labelled graphs)
have exactly 2n (resp. 2n + 1) vertices by conditions (i) and (ii) (resp. (i') and (ii))
and include each edge on a path between two similarly labelled vertices by condition
(iv). To describe the case where condition (iv) is not possible, we formulate

Definition 1. A weak d-(hooked) Skolem labelled graph is one which satisfies condi-
tions (i), (ii), and (iii) (resp. (i), (it’), (iil’), and (v)) of the (hooked) Skolem labelled
graph definition, as well as condition

(iv') there exists an edge e € E(G) whose removal does not affect the labelling.

We will refer, from time to time, to (hooked) Skolem labelled graphs as strong
(hooked) Skolem labelled graphs to differentiate them clearly from weak (hooked)
Skolem labelled graphs.

We expand the definitions above to graphs that do not permit (weak) (hooked)
Skolem labellings:

Definition 2. A mazimum d-hooked Skolem labelled graph is a triple (G, L, d) satis-
fying conditions
(i) G = (V,E) is a graph on either 2n or 2n + 1 vertices,

1" £:V —>{0}u{d,d+1,...,d+m— 1} is a surjective function, where m € N
is strictly smaller than n and the largest value possible given the surjectivity

of L,

(iii") for each i € {d,d+1,...,d+ m — 1}, there exist exactly two vertices u,v € V
having dg(u,v) = d + ¢ and labels L(u) = L(v) = d + 1,

(iv") if G' = (V,E') and E' G E then (G', L, d) violates (iii").
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There clearly exist at least two vertices u,v € V with £(u) = £(v) = 0in a maximum
hooked Skolem labelled graph by condition (ii”). An example of a maximum hooked
Skolem labelled tree is pictured below in Figure 1.

Figure 1: maximum hooked Skolem labelled 10-vertex tree

We also define, as above,

Definition 3. A weak mazimum d-hooked Skolem labelled graph is one which satisfies
condition (iv') of the definition of weak d-(hooked) Skolem labelled graphs as well
as conditions (i”), (ii”), and (iii”) of the definition of maximum d-hooked Skolem

labelled graphs.

We will occasionally refer to maximum hooked Skolem labelled graphs as strong
mazximum hooked Skolem labelled graphs to differentiate them from weak maximum
hooked Skolem labelled graphs. A weak maximum hooked Skolem labelled tree is
pictured below in Figure 2.

Figure 2: weak maximum hooked Skolem labelled 7-vertex tree

3 Skolem labelled P;O0P; grids

3.1 Reformulation and generalisation of the Skolem array problem

The concept of the Skolem array was introduced by Baker, Bonato, and Kergin in [1].
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Definition 4 [1]. A Skolem array of order n is a 2 x n array A in which the distance
between positions (a, b) and (¢, d) is defined to be |¢ —a|+ |d — b|, and in which each
i € {1,...,n} occurs in two positions which are distance 7 apart.

From this definition, Baker, Bonato, and Kergin proved, among other results, that a
Skolem array of order n exists if and only if n = 0,1 (mod 4) [1].

Due to the fact that distance in graphs corresponds to Baker, Bonato, and Kergin’s
concept of distance in Skolem arrays, it is clear that a 2 x n Skolem array is equivalent
to a Skolem labelled ladder graph of length n, which graph being the Cartesian
product P,0OP,. And it is only natural, after having reformulated the issue in a
graph theoretical context, to pose the following

Question. Is it possible to Skolem label the graph P,OP; for all s,t € N?

We use the term Skolem array throughout when referring to the subject matter
presented in [1], but will situate our results as dealing with the Skolem labelling
of grid graphs P,0PF,. In the following two subsections, we will first present the
necessary and sufficient conditions to the solution for the above problem (ignoring
whether the labelling is strong or weak), and second prove that all Skolem labelled
grid graphs P,0P, with s,t > 2 are weak.

3.2 Necessity and sufficiency

We begin with a lemma that parallels the idea of Skolem and hooked Skolem se-
quences, and provides the optimal (maximum) Skolem labellings for ladder graphs.
It should be noted that it is a triviality that the path P, = P,0OP, is Skolem la-
bellable if and only if ¢ = 0,1 (mod 4), and hooked Skolem labellable if and only if
t = 2,3 (mod 4)—this is simply the existence result for Skolem and hooked Skolem
sequences [4, 13].

Lemma 1. The ladder graph of length t, P,OP;, is Skolem labellable if and only if
t = 0,1 (mod 4). It is mazimum Skolem labellable with two hooks if and only if
t=2,3 (mod 4).

Proof. The case when ¢ = 0,1 (mod 4) was dealt with by Baker, Bonato, and
Kergin in [1]. When ¢ = 2,3 (mod 4), the necessity is clear. For the sufficiency,
there are two cases.

(i) t=2 (mod 4). The construction is:

t—1 [t—3 [t—5 [l 1 lt=5 [t-3 lt—1

t columns of vertices
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(ii) ¢t =3 (mod 4). The construction is:

t—1 t—3 t—5 .2 $  gt=5 -3 t—1

t—2 -4 [t—6 1 1 lt—4 -2 U«

t columns of vertices
O

Theorem 2. The grid graph PsOP3; has a hooked Skolem labelling and any other
grid graph P;OP; with s,t > 3 has a mazimum Skolem labelling with st —2s — 2t +4
hooks.

Proof. First of all, a hooked Skolem labelling for P3;0P; is displayed. Though this
is a graph theoretical result, for easy legibility, we borrow the table and cell method
of construction used by Baker, Bonato, and Kergin in [1]. Here is the labelling in
table format:

41111
21 %3
3124

It should be kept in mind that in the table above, and in each table below, each cell
represents a vertex in the corresponding grid graph and that, furthermore, horizon-
tally and vertically adjoining cells represent adjacent vertices.

Now for the general case. Both s and ¢ are assumed to be greater than 2 and at least
one is assumed to be greater than 3.

There are s -t vertices in a P;OP; grid. The maximum label value is s + ¢ — 2 since
the maximum length path has (s—1)+ (¢—1) = s+t —2 edges. Hence, the minimum
number of unlabelled vertices, or hooks, is

st—2(s+t—2)=st—2s—2t+4=(s—2)(t—2)

since each label is represented on two separate vertices. This conclusion is consistent,
as it is clear that for all values of s and ¢, the number of hooks will always be a positive
number strictly less than the total number of vertices.

We consider two cases for the construction: first, when exactly one of s and ¢ equals
3 and the other is greater than 3; second, when s and ¢ are both greater than 3.

1) Exactly one of s and ¢ equals 3 and the other is greater than 3.

Without loss of generality, we need only provide a construction for the case
when s = 3 and ¢t > 3. We subdivide the PsOP; grid case into two subcases;
t=0 (mod 2) and t =1 (mod 2).
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(i) t=0 (mod 2). The construction is:

t+1 * t—4]---|2|%x|2]---|t—-06|t—4 t
t—1|t—=3|t—=5|---|1|1|3|---|t—=b|t—3|t—-1
t—2 t * IR * t—2|t+1

(i) t=1 (mod 2). The construction is:

t+1 * t—4|---|3|1|1|---|t—6|t—4 t
t—1t—=3|t=5|--|2|*%|2]|---|t=b|t=-3|t—-1
t—2 t * IR * t—2|t+1

2) Both s and ¢ are greater than 3.

We consider all combinations of even and odd values for s and ¢. The diagrams
representing the cases s and ¢ both even, s and ¢ both odd, and, without loss
of generality, s odd and ¢ even follow in the same format as those for s = 3
previously.

st—2 | stt—4 | t * R N R R S| t4+3 | * | s+t—5| s4t—3
t—1 t—3 | c|t—s4l|t—s—1 [ f3|1|1|""|t—s+3|t—s+5]|"""| t-3 t—1
t—2 t—4 || t—s |t—s—2 | |22 | t—sta | t—st6 || t—2 *
* M * M w | x| M M * M
* * * * s | % * * * t
* t+1 [t * * R S Y * * * t42
* t+3 [t * * R S Y * * * t+4
* st=7 (""" * * R S Y * * * s+t—6
* st=5]" " * * R S Y * * * s+t—4
* s4t—3 """ * * R B A B B * * e * s4t—2

Maximum Skolem labelled P;OF; grid, s,t =0 (mod 2)
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sht—2 | s+t—4 | T 41 * sl ]| e t t42 |t s+t—5 | s+t—3
t—1 t—3 |t c|t—s42| t—s || 2|x|2 tlt—st2 | t—sta || t-3 t—1
t—2 t—4 |t clt—stl|t—s—1|"""|1|1|3 tlt—s+3 |t—st5 || t—2 *
* * * * L N * * . * *
* t R * R I R * H t+1
* t+2 |t * R I L * H t+3
* t+4 |ttt * R I L * H t+5
o lstt=T || * R I L * H s+t—6
* s+t—5 | """ * * R B B B * * fet * s+t—4
* s+t—3 """ * * R B B B * * fet * s+t—2

Maximum Skolem labelled P,OPF; grid, s,t =1 (mod 2)

st—=2 | s+t—4 | * | t41 * LR N I N t t+2 [ | s+t—5 | s4t-3
t—1 t=3 |t ct—st2| t—s |"c 3|11 ft—st2|t—sta | | t-=3 t—1
t—2 t—4 | t—sgl |[t—s—1 | |2 % |2 [t—s43|t—s45 || t—2 *
* * M * w x| * M * M
* t e * * DR B S A B * * -t * t+1
* t42 |t * * R N N S * M * t+3
* t44 |t * * R N N R * * * t+5
* st—T | * * LR N I N * * * s4t—6
* st—5 | * * LR N I N * * * st—4
* s4t—3 | * * LR N I N * * * st—2

Maximum Skolem labelled P;OP,; grid, s =1 (mod 2), t =0 (mod 2)

O

We group the initial existence result for Skolem and hooked Skolem sequences,
Lemma 1, and Theorem 2 together to give the full set of necessary and sufficient
conditions as

Theorem 3. The generalised grid graph is (mazimum) (hooked) Skolem labellable
under the following conditions:

(1) the path P, = P,OP; is Skolem labellable if and only if t = 0,1 (mod 4) and
hooked Skolem labellable if and only if t = 2,3 (mod 4),

(i) the ladder graph P,OP; is Skolem labellable if and only if t

0,1 (mod 4) and
maximum Skolem labellable with two hooks if and only if t = 2

;3 (mod 4),

(iii) the grid graph P3OPs has a hooked Skolem labelling and any other grid graph
P,OP; with s,t > 3 has a mazimum Skolem labelling with st —2s — 2t +4 hooks.
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3.3 Weak grid graph Skolem labellings

We now prove two lemmata necessary to showing that when s,t > 2, any grid graph
P,OP, has only weak Skolem labellings! We first prove that any P,0OF; grid with a
hook on a corner or side vertex must have a weak labelling.

Lemma 4. For s,t > 2, any mazimum Skolem labelling of P;OP, with a hook on a
corner or side vertex is weak.

Proof. Suppose, to the contrary, that there exists a strongly labelled grid P,OF;
having a hook, without loss of generality, on its right side. We will show that one
of the horizontal edges connecting the side vertices to the rest of the grid does not
lie on a labelling path. This edge may therefore be removed without affecting the
labelling.

As labelling paths must be of minimal length and there are s vertices on the right
side of the grid, there can be at most s labelling paths which enter the right side
of the grid on one of the s horizontal edges joining the side to the rest of the grid.
Each of these labelling paths must have as one endpoint one of the s vertices on the
right side. But there are only s — 1 labelled vertices on the side, and hence only s —1
labelling paths for these vertices. Hence, one of the s horizontal edges connecting
the side to the rest of the grid does not lie on a labelling path and may be removed
without affecting the labelling, thus yielding a contradiction. a

With this lemma, we can now prove that all Skolem labelled ladder graphs are weak.

Theorem 5. All (hooked) Skolem labelled ladder graphs P,OP; are weak (hooked)
Skolem labelled.

Proof. We consider cases.

(1) t=2,3 (mod 4).
Any labelling requires at least two hooks by Lemma 1. Since each vertex in
the graph is a side or corner vertex, the labelling is weak by Lemma 4.

(i) t=0,1 (mod 4).
The maximum label in a P,OF; ladder graph when ¢ = 0,1 (mod 4) is ¢ since
there is 1 vertical edge in each column of the graph, and ¢ — 1 horizontal edges
in each row of the graph.

There are only four possible ways to place the ¢t and ¢ — 1 labels; notably, the
position shown below in Figure 3 and its three images following vertical or
horizontal reflection, or 180° rotation. We need only discuss the case depicted
in Figure 3. Note that the top-right vertex has no label in the diagram but
that any label other than 1, ¢ — 1, or ¢ may be placed there.

L1t was proved in Theorem 12 in [6] that all (hooked) Skolem labelled paths have strong labellings.



110 A.J. GRAHAM, D.A. PIKE AND N. SHALABY

t — . at—=1 o

t—1 — . = t
(&

t columns of vertices

Figure 3: Possible position of ¢ and ¢ — 1 labels

If the labelling path from the right-hand ¢ label begins horizontally, moving
left, then the label in the top-right position has two possibilities for its labelling
path. One of these will form part of the labelling path for the top-right vertex,
but there is no way for another labelling path to use the other edge. This would
create a weak labelling.

Hence, the labelling path emanating from the right-hand ¢ label must use the
right-most vertical edge of the graph and then travel left along the upper hor-
izontal edges of the graph. Because of this, the path reaches the left-hand ¢
label on a horizontal edge; there is no way that the path can use the left-most
vertical edge of the graph, i.e., the edge joining the left-hand ¢ and ¢ — 1 labels.

The only other labelling path that may use this left-most vertical edge is the
path between the two ¢ — 1 labelled vertices. To create a strong labelling, this
is necessary. However, if the labelling path between the two ¢ — 1 labelled
vertices uses that edge, it begins from the left-hand ¢ — 1 labelled vertex and
proceeds upwards to the top-left vertex of the graph and then right along the
upper horizontal edges of the graph. However, this leaves the left-most bottom
horizontal edge e unlabelled, as the only two labelling paths which may use the
edge are the paths joining the ¢t — 1 and ¢ labelled vertices, and from above,
these paths do not use it.

Hence, no P,0P, ladder graph may be strong Skolem labelled. 0

We can now prove that there can be no strong Skolem labelling of a P;0 P, grid graph
with s,t > 2.

Theorem 6. There exists no strong Skolem or strong mazimum Skolem labelled
P,OP, grid graph for s,t > 2.

Proof. We assume s,t > 2 by Theorem 5.

Note that the maximum path length in a P,0F,; grid is s + ¢ — 2 and that there are
st — 2s — 2t + 4 hooks in the grid. To have a strong labelling, none of these hooks
may sit on a side or corner vertex of the graph by Lemma 4. Note that there are
(s—2)-(t—2) = st —2s — 2t + 4 central (that is, non-side or corner) vertices in
a P,0P, grid; exactly the number of hooks. Hence, every central vertex of the grid
must be used by a hook for the grid to have a strong labelling.
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This forces all labels to sit on the outside vertices of the graph and those vertices
only. Specifically, the two 1s must sit on outside vertices of the grid.

Without loss of generality, suppose the two 1-labelled vertices are on the right side
of the grid, so that there are s horizontal edges joining the vertices of the right side
to the rest of the grid. For the labelling to be strong, each of these horizontal edges
must lie on a labelling path having one endpoint among the s vertices of the right
side.

However, the 1-labelled vertices have one edge joining them and so their labelling
path uses none of these horizontal edges joining the right side to the rest of the
graph. Hence, at most s — 2 of the horizontal edges connecting the right side to the
rest of the graph are used by labelling paths. Since two edges have not been used by
labelling paths, the labelling must be weak. O

4 New data

In [6] it was shown that any tree can be embedded in a Skolem labelled tree with
O(v) vertices and any graph can be embedded in a Skolem labelled graph with O(v?)
vertices. We note that this graph is also a tree-like graph (with long branches to
accommodate the Skolem labels). These embedding results demonstrate the impor-
tance of Skolem labellings of trees for generating Skolem labellings of other graphs.
For this reason, an exhaustive study of the Skolem labellings for trees of small order
was undertaken.

There were two major steps in the gathering of the data to generate Skolem, hooked
Skolem, or maximum Skolem labellings for trees of small orders. From a given file
of all trees of order n, an initial C program generated all possible trees of order n + 1
using a leaf-adding function. To remove excess isomorphic copies arising from this
process, these trees were then parsed after having been assigned canonical labellings
using an implementation of Brendan McKay’s NAUTY program.

A second C program, using Algorithm 1 shown below, then attempted to either
Skolem or hooked Skolem, and if necessary, maximum Skolem label each tree using
an exhaustive backtrack approach. Each tree’s candidacy was considered first for

n

(hooked) Skolem labelling with largest label size equal to LEJ ; if this failed, maximum
Skolem labellings were attempted using decreasing maximum labels L%J — 1 80 as to

generate the maximum Skolem labelling with largest possible labels.

At each labelling level, the diameter of the tree was first checked; if it was strictly
smaller than the largest label, then the tree could not be labelled at that level. If
the diameter was at least equal to the largest label, the parity? of the tree would be
checked if the tree was of even order.

*The Skolem parity of a vertex u in a tree T = (V, E) is the modulus two sum > . d(u,v)
(mod 2) of the distances between u and all other vertices v € V. If |V| is even, the parity is
independent of u and is denoted the Skolem parity of the tree [7].
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Algorithm 1.

Given: Tree T, V(T) = {1,2,...,n}, LABEL = |%], LABELLED = false.

All vertices are given an initial label value of 0 since hooks
will be labelled with a O.

for ((u =1,...,n) and (LABELLED == false))
if ((eccentricity of u > LABEL) and (u is unlabelled))
for ((v = 1,...,n) and (LABELLED == false))
if ((d(u,v) == LABEL) and (v is unlabelled))
{
assign LABEL to u and v
if (LABEL == 1)
{
LABELLED = true
output the labelling
}
else
recurse with LABEL = LABEL - 1
unlabel u and v
}
return (LABELLED)

Algorithm 1: Tree Skolem labelling algorithm

Any tree of order n = 2k with even parity and k£ = 0,3 (mod 4) was still potentially
Skolem labellable, as was any tree of order n = 2k with odd parity and k& = 1,2
(mod 4) [7]. If this was the case, then a standard backtrack labelling attempt would
start. If the labelling attempt failed, the labelling level would decrease by one, and
the process would repeat.

We present a table containing labelling information for trees up to 20 vertices in the
Appendix. This table lists alongside the number of trees of each order the number of
(hooked) Skolem labellable trees, the number of strong and weak Skolem labellings,
and the number of strong and weak maximum Skolem labellings.

Note that there are many more weak hooked Skolem labellings for odd graphs than
for their even counterparts. This has to do with the fact that there is one more edge
on an odd tree than an even tree, when compared with the number of labels used,
hence more labelling possibilities.

Note also that there are more hooked Skolem labelled trees for odd orders than there
are Skolem labelled trees for the corresponding even orders. This also has to do with
the fact that it is easier to label a tree that has an extra vertex and edge. In fact,
the odd orders have more labelled trees than the even orders one greater than them,
which suggests that it is much easier to find hooked Skolem labellings on odd trees
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than it is to find Skolem labellings on even trees.

5 Conclusion

We group Theorems 3 and 6 together to produce the final

Theorem 7. The generalised grid graph is (weak) (mazimum) (hooked) Skolem la-
bellable under the following conditions:

(i) the path P, = P,OP, is strong Skolem labellable if and only if t = 0,1 (mod 4)
and strong hooked Skolem labellable if and only if t = 2,3 (mod 4),

(i) the ladder graph P,OP; is weak Skolem labellable if and only ift = 0,1 (mod 4)
and weak maximum Skolem labellable with two hooks if and only if t = 2,3
(mod 4),

(iii) the grid graph PsOP; is weak hooked Skolem labellable and any other grid graph
P,OP; with s,t > 3 is weak mazimum Skolem labellable with st — 2s — 2t + 4
hooks.

Two-dimensional grid graphs are the second class of graphs whose Skolem labelling
has been fully classified, after the windmills, which Mendelsohn and Shalaby com-
pleted in [7]. A simple generalisation of Theorem 7 would be to k-dimensional grids
P, 0P,,0.--0P,, . As such graphs would contain s;s -+ - s vertices, the minimum
number of unlabelled vertices, clearly a positive number, would be

5152"'5k+2k_2(51+32+"'+8k).

It may prove useful to incorporate the new ideas of weak and mazimum Skolem
labellings into the existing literature. In this vein, another obvious problem to tackle
would be expanding the windmill results. It would be then hoped that all new Skolem
labelling results could include, if possible, these concepts.

A major unresolved question is the missing necessary condition for Skolem labelling
trees. It is hoped that the data presented herein should help in the search for finding
such a necessary condition. At the moment, this is one of the main unsolved problems
in the area of Skolem labelled graphs.

Acknowledgement

The first author gratefully acknowledges the second and third authors’ direction and
guidance in their supervision of summer work.



114 A.J. GRAHAM, D.A. PIKE AND N. SHALABY

Appendix

Number of Skolem labellings® Maximum Skolem labellingsb
Number (hooked)
n || of trees| Skolem Total Total Total
labellable Total weak
L trees strong strong weak

2 1 1 1 1 —_ -
3 1 1 0 2 —_ -
4 2 1 3 0 0 3
5 3 3 0 18 - -
6 6 2 12 0 0 53
7 11 10 28 138 0 60
8 23 10 153 10 0 912
9 47 42 968 1876 0 1524
10 106 41 2 060 108 1190 23 050
11 235 193 22 795 29 893 276 70 742
12 551 174 34 062 1828 81 897 793 292
13 1301 978 618 798 639 180 82 129 3 043 643
14 3 159 848 730 187 43 744 3 401 517 27 663 559
15 7 741 5102 17 779445 16 018 981 7 438 391 151 125 635
16 19 320 4408 18 767 052 1153 094 158 281 229 1325 275 250
17 48 629 27 380 566 227 749 463 907 727 461 589 964 8 469 010 380
18 123 867 23 140 7 7 7 7
19 317 955 148 748 7 7 7 7
20 823 065 123 369 7 7 7 ?

2Total number of distinct (hooked) Skolem labellings of all (hooked) Skolem labellable trees for
each order.
®Total number of distinct maximum labellings for all trees which cannot be Skolem labelled.

Table 1: Skolem label data
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