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On certain group embeddings in cross-characteristic
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Abstract

We explore some geometry of three group embeddings in cross- charac-
teristic. The first embedding is Sz(8) < PQd(5). We found that this
embedding is associated with a cap in PG(7,5). The corresponding cap-
code is also determined. The second embedding is PSLy(13) < G4(4) and
we explore its action on quadrics of PG(5,4) invariant under PSpg(4).
The last embedding is PSLy(7) < A; < PSU;(25) which is associated
with a spread of the Hermitian curve #(2, 25).

1 Introduction

Let G be one of the finite classical groups acting on a vector space V over a finite
field F' of characteristic r. It has been shown by Aschbacher [1] that every subgroup
of G either lies in one of a family C;, i« = 1,...,8 of natural geometric subgroups
of G or has the form Ng(X), where X is a quasisimple subgroup of G and V is
an absolutely irreducible X-module realisable over no proper subfield of F. In the
latter case, the problem is that of deciding when Ng(X) is maximal. If Ng(X) lies
in no subgroup in C; but is not maximal in G then X must lie in a larger quasisimple
subgroup Y of G. This leads to the problem of determining all triples (X,Y,V) of
this kind. Let p be the characteristic of X. Much is known about the case p = r.
Here, it is assumed that p # 7, so that we are in the cross-characteristic case.

In this paper, we do not prove any maximality result, but we are mainly interested
in the geometry of two group embeddings in cross-characteristic. The first embedding
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is 5z(8) < PQI(5). We found that this embedding is associated with a cap in
PG(7,5). The corresponding cap-code is also determined. The second embedding is
PSLy(13) < G2(4) and we explore its action on quadrics of PG(5,4) invariant under

PSpe(4).

2 The embedding Sz(8) < PO (5)

The embedding Sz(8) < PQy (5) arises from the embedding of 2 - Sz(8) in PQF (5).
Notice that the double cover 25z(8) has a (p, 8)-representation only when p = 5 and
it is absolutely irreducible. The group Sz(8) is maximal in PQg (5), [4].

It follows from the ATLAS that the group 2.5z(8) may be generated by the maps
A and B which take (X, Xo, ..., Xs) (subscripts mod 7) to (X4, — X5, Xo, X1, — X,
Xoo, Xo, X3) and (Xeo, X1, Xo, X3, X4, z5, X6, Xo), respectively, together with the
map C : Xoy — 2Xu + Xo + X1 + Xo + X3 + Xa 4+ Xs + X, X; = Xoo — X4 —
Xzt + Xy +3X0 4+ 33Xy 4 +3X6 4.

Generating matrices for Sz(8) in its orthogonal representation are:

14321330
33014122
2323 2 31 2
Ml=| 0 2 4 3 4 3 2 4
1 2140 2 3 2
342 43031
21403122
4 022 212 4
and
334102 43
3142430 3
4 402 2212
M2=112 2140 2 3
042 43 4 3 2
23 2041 4 3
4 01 2 3 4 2 2
33232324

The absolutely irreducible subgroup 2.23%% : 7 of 2.52(8) (of index 65) is repre-
sented monomially. Thus there is a configuration of 65 coordinate frames preserved
by 2.52(8) (and also by Sz(8)), but not by PQy (5). These frames correspond to the
points of the Suzuki-Tits ovoid in PG(3,8). The frames of course are, the canon-
ical frame {< e; >, < €2 >, < €3 >, < €4 >, < €5 >, < €5 >, < €7 >, < eg >}
and its images. By direct computations, the Sz(8)-invariant quadric of PG(7,5) is
Q: X3+ X2+ X7+ X3+ X2+ X7+ X2+X3=0.
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From our previous discussion, Sz(8) has an orbit O of size 520 = 8 x 65 consisting
of 65 non-singular frames. A point of O corresponds to a secant section of the Suzuki-

Tits ovoid of PG(3,8).

The map (X,Y, Z) — (x,y, z) where,
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gives an isomorphism between the orthogonal representation of Sz(8) and the natural
GF(8)-representation. It turns out that (X2,Y) is the group 23 : 7, which fixes the
point (1,0,0,0,0,0,0,0) in the GF(5)-representation and the point (0,1,0,0) in the
natural representation.

It should be noted that the group 2 - Sz(8) is an exceptional cover, and may be
treated sporadically. Its 8-dimensional representation is exceptional in the sense that
it is not a 5-modular reduction of a characteristic zero representation of 2 - Sz(8).

We have the following proposition.

Proposition 2.1 The group Sz(8) in its orthogonal representation is the full stabi-
lizer in PQYE(5) of a set of 65 non-singular frames. The points of these frames are
permuted in a single orbit O and form a 520-cap of PG(7,5).

Proof. We need to prove the second part of the Proposition. Suppose there are
three collinear points X, X, X3 on O. Of course, they cannot be points of a frame
and they can lie on at most three frames. Notice that, the group Sz(8) is 2-transitive
on the 65 frames of O and transitive on O. It follows that we can choose a frame F
as the canonical frame {< e; >, < ey >, < e3 >, < ey >, < e5 >, < eg >, < e7 >, <
es >} and a frame F5 as the image of F; under M;. Direct and tedious calculations
show that in any case we get a contradiction. a

2.1 The code associated to O

A GF(g)-linear code C of length n, dimension % and minimum distance d is said to
be a g-ary [n, k, d]-code.

For given ¢,n and k the largest value of d for which a g-ary [n, k, d]-code exists
is denoted by d,(n, k). An extensive table of bounds on dy(n, k) is provided in [2,
Table I].

An n-cap of the (k — 1)-dimensional projective space PG(k — 1, ¢) over the finite
field GF(q) is a set of n points no three of which are collinear. A cap is complete if
it cannot be extended to a larger cap with addition of points.

In [12] a construction of linear codes arising from caps is described. More pre-
cisely, let K be an n-cap of PG(k — 1,¢) generating the whole space and let A be
the matrix whose columns are the homogeneous coordinate vectors of points of K.
The code C arising from K is the [n, k]-code with generator matrix A. Codes arising
from caps are called cap-codes.

For a cap-code given by an n-cap K of PG(k — 1,¢), any subspace of rank 1 of
the code corresponds to a hyperplane of PG(k — 1, ¢). The non-zero words of a rank
1 subspace have weight n — ¢ if and only if the corresponding hyperplane intersects
the cap K in exactly ¢ points.

Using the software package MAGMA [3], we found that the cap-code associated
with C' has length 520, dimension 8 and minimum distance 387 and information rate
1/65. The automorphism group of C'is 2 - Sz(8) - 2.
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3 The embedding PSLy(13) < G2(4)

Let PG(5,4) be the 5-dimensional projective space over GF(4) equipped with a sym-
plectic polarity A. Let G be the group PSps(4) of A. Although PSps(4) contains a
number of subgroups isomorphic to the Cartan-Dickson-Chevalley exceptional group
G2(4), we write G2(4) for a fixed representative. The group G»(4) is maximal in
PSps(4), 5], [6)

When ¢ is even, an orthogonal polarity is a symplectic one. The group G acts
on the set ® of all quadrics of PG(5,4) inducing the polarity A and contains the
corresponding orthogonal groups.

Let V' be the 6-dimensional vector space underlying PG(5,4), and let {ey, es, €3,
€s,€5,6} be a basis of V' so that the basic nonsingular alternating form B has the
canonical coordinate form

B(z,y) = Z(xiy3+i + YiTati)- (1)

i=1

A quadratic form @ on V has B for its corresponding polar form if and only if

B(z,y) = Q(z +y) + Q(z) + Qy). (2)

From (1) it follows that @ is a quadratic form for a quadric in ®, with associated
alternating form B, if and only if

6
Q(.Z‘) = X1T4 + TaX5 + T3Te + Z Ozi.z‘g7

i=1

for some «; € GF(4). Dye shows in [10] that two members Q, Qy of ® (with
corresponding quadratic forms @i, Qs associated with B) are equivalent, that is,
have the same Witt index, if and only if there is a transvection of the group Spg(4)
of B transforming @, into Q.. The choices for the a;’s lead to 4% distinct quadratic
forms associated with B. The group G has two orbits on @, [8, Theorem 14 |: an orbit
of size 43(43+1)/2 consisting of maximal Witt index quadratic forms and denoted by
He, and an orbit of size 43(43 — 1) /2 consisting of non-maximal Witt index quadratic
forms and denoted by £g. From a projective point of view, members of Hg give rise
to hyperbolic quadrics Q7 (5,4) inducing the polarity A, and members of g give rise
to elliptic quadrics Q~(5,4) inducing the polarity A.
The Arf invariant of @ with respect to the basis {e;, s, €3, €4, 5,66} is

3

AQ) =Y Qle)Qlesys)-

i=1

Let L ={)+X: X € GF(4)}, the image of the homomorphism A — A? + X of the
additive group GF(4)*of GF(4) whose kernel is GF(2). Thus L is a subgroup of

GF(4)" isomorphic to GF(4)T/GF(2)*. Write A(Q) for the class of A(Q) modulo
L.
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Dye shows in [9], [10] that A(Q) is independent of the choice of the symplectic
base, and two quadratic froms associated with B, say (), and @), are equivalent if
and only if A(Q;) = A(Q2). In particular, @ has non-maximal Witt index if and
only if A(Q) does not belong to L.The group G(4) acts transitively on both Hg
and &g [6].

From [5], the group H = PSL,(13) is always a subgroup of Go(4%), i > 1 and it is
a maximal subgroup if and only if ¢« = 1. The group H is generated by the matrices:

w w? w1l 0w
w 0 w? w0 1
1= 0 1 w 0 w 1

711w w 10w |
0 1 1 0 w 0
0 w w? 0 w1

and
w 1 1 0 0 0
w2 0 1 0 0 0
9 _ 0 0 w2 0 0 0
9o = 1 1 o w W W
1 w w 0 W w
0 w w 0 1 0
where w? = w + 1. Direct computations show that H acts transitively on the

set Y of 14 quadrics of £ with equations x4 + Tox5 + 2316 + Z?:l a;z?, where
(ala g, (3, Oy, A5, aﬁ) €:

{(1,0,w? w,0,w), (w, w,0,w,w?), (w, 1,w? W w,w),

(w?1,0,w%0,1), (w”,w,1,1,w,w),(1,0,w,1,0,1),
whw,w? 1,0,w), (W 0,1,1,w,1), (W 0,w,w,w? w),
(0,1,1,w*,1,1),(0,1,w,0,w,w?), (0,0, 1,w,w, 1),
(0,0, w? w,1,1), (w? 1,0,w*, W w).
Proposition 3.1 The group PSLy(13) as a subgroup of G2(4) is the full stabilizer
of a set Y of 14 quadrics in Eg. This action of H is equivalent to the primitive action

of PSLy(13) on the bases of PG(2,13) when PSLy(13) is considered as stabilizer of
a conic in PG(2,13).

Remark 3.2 It should be noted that the group PSLy(13) as a subgroup of G,(4)
is also the stabilizer of a certain distance 2-ovoid of the split Cayley Hexagon H(4),
see [7].
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4 The embedding PSLy(7) < A7 < PSUs(25)

Let PG(2,25) denote the Desarguesian projective plane over the finite field GF(25).
A Hermitian curve H(2,25) in PG(2, 25) is defined as the set of all isotropic points of
a non-degenerate unitary polarity L of PG(2,25). The number of points of H(2,25)
is 126. If P is a point in PG(2,25), then the polar line P+ of P meets #(2,25) in 1
or 6 points, according as P lies on #(2,25) or does not. Lines of the first type are
called tangents, those of the second type are called secants of H(2,25). There is just
one tangent at every point P € 7(2,25), whereas the remaining 25 lines through P
are secants. If P ¢ 7(2,25), then through P there are 6 tangents (meeting #(2,25)
in the points of PN #(2,25)) and 20 secants.

Let PSU;(25) denote the special projective unitary group associated with L. The
group PSUs(q?) acts doubly transitively on the set of points of H(2,25).

A spread of H(2,25) is a set of 21 pairwise disjoint secants that partition the
points of (2, 25).

An obvious method for constructing a spread of #(2,25) requires one to start
with a non-isotropic point P € PG(2,25). The set of secants to #(2,25) through P,
together with P+, form a spread of H(2,25). This spread is called regular.

Let #(2,25) be the Hermitian curve with equation X¢ + X§ + X¢ = 0, where
X1, X5, X3 are projective homogeneous coordinates in PG(2,25). The group K gen-
erated by the matrices

wt o1 3
8 10 16

hi=| w* w? w ,

w2 w16 w4

and
EC B L S
hy = w oW Wh ,
4 ol9 Ut

where w € GF(25) and w? = w + 2 is isomorphic to PSLy(7) and leaves H(2,25)
invariant. The orbit of the line 7 : WX, + w®X, — X3 = 0 under K gives rise to a
spread of #(2,25). This spread was firstly noted by T. Penttila [14]. The group K
is easily seen to be maximal in A7 which in turn is maximal in PSU;(25). For more
geometry on the groups embedding A; < PSU;(25), see [11].
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