AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 36 (2006), Pages 101-111

Algorithmic aspects of minus total
k-subdomination in graphs

LAURA HARRIS

School of Mathematics, Statistics, & Information Technology
University of KwaZulu-Natal
Private Bag X01, Pietermaritzburg, 3209
South Africa

JOHANNES H. HATTINGH

Department of Mathematics and Statistics
Georgia State University
Atlanta, Georgia 30303-3083
U.S.A.

MicHAEL A. HENNING*

School of Mathematics, Statistics, & Information Technology
University of KwaZulu-Natal
Private Bag X01, Pietermaritzburg, 3209
South Africa

Abstract

Let G = (V,E) be a graph and let £ € Z*. A minus total k-subdomin-
ating function (mTkSF') is a function f:V — {—1,0,1} such that for at
least k vertices v of G, the sum of the function values of f in the open
neighborhood of v is positive. The minus total k-subdomination number
of G is the minimum value of f(V') over all mTkSF's f of G where f(V)
denotes the sum of the function values assigned to the vertices under
f. In this paper, we show that the associated decision problem is NP-
complete for bipartite graphs and also present cubic time algorithms to
compute the minus total k-subdomination and minus k-subdomination
numbers of a tree.

* Research supported in part by the University of KwaZulu-Natal and the National Research
Foundation.

102 L. HARRIS, J.H. HATTINGH AND M. A. HENNING

1 Introduction

Our mathematical model is a finite, simple graph G = (V, E') with vertex set V' and
edge set E of order n(G) = |V| and size m(G) = |E|.

The open neighborhood of a vertex v is N(v) = {u|uv € E}. The closed neighborhood
of vis Njv] = N(v)U{v}. A minus dominating function is defined in [2] as a function
f:V —{-1,0,1} such that f(N[v]) > 1 for every v € V. The minus domination
number of a graph G is v~ (G) = min{f(V) | f is a minus dominating function on
G}. A minus k-subdomination function (mkSF) for G is defined in [1] as a function
f:V = {-1,0,1} such that f(N[v]) > 1 for at least k vertices of G. The minus
k-subdomination number of a graph G, denoted by ~,,(G), is equal to min{f(V) | f
is a mkSF of G}.

An analogous theory for minus total k-subdominating functions arises when “closed”
neighborhood in the definition of a minus k-subdominating function is changed to
“open” neighborhood. A minus total k-subdomination function (mTkSF) for G is
defined as a function f : V' — {—1,0, 1} such that f(N(v)) > 1 for at least k vertices
of G. The minus total k-subdomination number of a graph G, denoted by 7,..(G),
is equal to min{f(V) | f is a mTkSFof G}. In the special case where k = |V, the
minus total k-subdomination number is the minus total domination number v, (G),
which is studied in [4]. Specifically, a linear time algorithm to compute the total
minus domination number of a tree appears in [4].

Let f be a mTkSF. The set of vertices covered by f is defined as Cy = {v €
V|f(N(v)) > 1}, while the set Py is defined as {v € V|f(v) = 1}.

The motivation for studying the total k-subdomination number is rich and varied
from a modeling perspective. For example, by assigning the values —1, 0 or +1
to the vertices of a graph we can model networks of people or organizations in
which global decisions must be made (e.g. positive, neutral or negative responses or
preferences). We assume that each individual has one vote and that each individual
has an initial opinion. We assign +1 to vertices (individuals) which have a positive
opinion, 0 to vertices which have a neutral opinion and —1 to vertices which have
a negative opinion. We also assume, however, that an individual’s vote is affected
by the opinions of neighboring individuals. In particular, each individual gives equal
weight to the opinions of neighboring individuals (thus individuals of high degree
have greater “influence”). A voter votes ‘aye’ if there are more vertices in its (open)
neighborhood with positive opinion than with negative opinion, otherwise the vote is
‘nay’. We seek an assignment of opinions that guarantee at least k vertices voting aye.
We call such an assignment of opinions a k-positive assignment. Among all k-positive
assignments of opinions, we are interested primarily in the minimum number of
vertices (individuals) who have a positive opinion. The minus total k-subdomination
number is the minimum possible sum of all opinions, —1 for a negative opinion and
+1 for a positive opinion, in a k-positive assignment of opinions. The minus total
k-subdomination number represents, therefore, the minimum number of individuals

MINUS TOTAL k-SUBDOMINATION IN GRAPHS 103

which can have positive opinions and in doing so force at least k individuals to vote
aye.

In this paper, we show that the associated decision problem is NP-complete for
bipartite graphs and also present cubic time algorithms to compute the minus total k-
subdomination and minus k-subdomination numbers of a tree. The decision problem
corresponding to the computation of the minus k-subdomination number was shown
to be NP-complete for bipartite graphs in [5].

2 Complexity result

In this section we will show that the decision problem corresponding to the compu-
tation of the minus total k-subdomination number is NP-complete by describing a
polynomial transformation from the NP-complete problem EXACT COVER BY
3-SETS.

Let r = ¢ < 1 be a fixed positive rational number (in lowest terms). Consider the
decision problem

MINUS TOTAL SUBDOMINATING FUNCTION (MTSF)
INSTANCE: A graph G and an integer /.

QUESTION: Is there a function f : V(G) — {—1,0,1} of weight ¢ or less for G
such that |C¢| > r|V(G)| ?

In this section we show that MTSF is NP-complete by describing a polynomial
transformation from the following NP-complete problem (see [3]):

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A set X = {z1,...,23,} and a set C = {C4,...,Cn} where C; C X
and [Cj|=3for j=1,...,m.

QUESTION: Does C have a pairwise disjoint g-subset of C whose union is X (i.e.

an exact cover)?

If r = 1, then MTSF is the NP-complete problem MINUS TOTAL DOMI-
NATING FUNCTION (see [4]). Hence, we also assume that r < 1. For two real
numbers a and b, we say that a divides b if there is an integer £ such that b = ka.

Theorem 1 MTSF is NP-complete, even for bipartite graphs.

Proof. It is obvious that MTSF is in NP. To show that MTSF is an NP-complete
problem, we will establish a polynomial transformation from the NP-complete prob-
lem X3C. Let X = {z1,...,23,} and C = {C},...,Cy,} be an arbitrary instance of
X3C where C; C X and |C;] = 3 for 1 < j < m. We will construct a bipartite

104 L. HARRIS, J.H. HATTINGH AND M. A. HENNING

graph G and an integer ¢ such that this instance of X3C will have an exact cover if
and only if there is a function f : V(G) — {—1,0,1} of weight at most £ such that
|Cs| = rV(G)].

Corresponding to each z; € X, associate the graph constructed from the path Ps,
with vertices labeled z;, y;, 2;, v;, w;, and the path P», with vertices labeled u; and
t;, by joining the vertices u; and v;. Corresponding to each Cj, associate the graph
constructed from the path P, with vertices labeled ¢;, d;, ¢;, f;, and the path P, with
vertices labeled g;, h;, by joining the vertices g; and e;. Add the edges {z;c; | z; € C;}
and call the resulting graph H. Note that n(H) = 6m + 21q. Let

~Jo if r divides 6m + 21q
F=1a- (6m + 21g) mod a otherwise ’

Then p is the smallest nonnegative integer that may be added to 6m + 21¢g so that
r divides 6m + 21q + p evenly. Construct the (bipartite) graph G = (V,E) as
follows. Take the disjoint union of two copies of H, say H; and H,, add a set S
of a := 2(% — (6m + 21q)) vertices, and, with S = {sy, s2,...,Sa}, add the
edges spSki1, where k = 1,3,...,a — 1. The graph G has order 2(%), and,
since 0 < u < a — 1 and a is a constant, G can be constructed from the input in
polynomial time. Lastly, let £ = 2(8m + 28¢ + 2 — (22F21444)) . We will denote a
vertex v; or v; of H in Hg by v, or v; 3, for § =1,2.

Suppose C' C C is an exact cover for X. Let P = U?il{ul”l,U,i’2,/Ul"1,’Ui,g,zl"l,zz',g} U
U™ {15 Gi2s €315 €52, At dje} UURS {si} U{cjn, ¢j2 | C € €'} and M = U {w; 1,
wip} UUT{fi1, fia} UUR o, {sk}

Define f: V — {-1,0,1} by

1 ifzeP
flx)=< -1 ifveM
0 otherwise.

Notice that f(V) = S0, 6+ 37, 6+ X3 1+2¢— (X3, 2+ X0 2+ X0, 1) =
14g + 4m + 4p — o = 2(8m + 28¢ + 2u — S™H2H) - Note that © € Cj for all

z € V(H,) UV (Hy) UUR {s}. Thus, |Cf| > 2(6m +21q) +2u = 2(6m +21q+) =
T26m+21q+u — T|V|.

We now prove the converse. Let L be the set of all leaves of G. Among all functions
f:V = {-1,0,1} for which f(V) < ¢ and |C¢| > r|V(G)|, choose one, say f, for
which f(L) is as small as possible. This implies that f(z) € {-1,1} for all z € S.
Note that |Cy| > r28+21H = 12m 4 42¢ + 24,

We will show that V(H;) U V(H,) C Cy, while establishing function values for
the elements of V(H;) U V(H;). The assumption of an incorrect function value

for a vertex in V(H;) U V(H,) implies in all of the cases that we consider next
V(Hy) UV (Hy) € Cy. Thus, if V(H,) UV (Hy) € Cy, then |Cy| > 12m + 42q implies

MINUS TOTAL k-SUBDOMINATION IN GRAPHS 105

that there exists s, € S N Cy, whence f(s;_1) =1 or f(sg+1) = 1 — without loss of
generality, we will assume the latter.

The function g, p, ., 18 the function obtained from f by assigning some vertex r
in V(H;) U V(Hs) the value p;, some vertex ry in S the value p,, while all other
vertices are assigned the same value as under f, where p1,p2 € {—1,0,1}. In all
cases, a neighbor of some vertex r; in V(H;) UV (H,) will become covered, while the
neighbor of r, in S will no longer be covered, so |C,4| > |C¢|. Moreover, in all cases,
o(V) < (V) <.

Let i € {1,...,3¢},j €{1,...,m} and 8 € {1, 2}.
Fact 1. f(g;5) =1 (and, similarly, f(e;s) = f(uig) = f(vig) =1).

Proof. For suppose, to the contrary, f(gjg) < 0. Then h;g ¢ Cf and g =
9g;.5.Lsns1.f(g5,5) Das g(L) < f(L), which is a contradiction. ¢

Fact 2. f(h;g) = 0 (and, similarly, f(t;5) = 0).

Proof. For suppose, to the contrary, f(h;s) = —1. Then g;3 ¢ Cy and g =
Gh; 5,0,s041,—1 Nas g(L) < f(L), which is a contradiction. Furthermore, since f(L) is
a minimum, f(h;g) = f(t;g) =0. &

Fact 3. ¢;3 € Cy (and, similarly, v; g € Cf).

Proof. For suppose, to the contrary, that e; 3 ¢ Cy. Then f(d;g) + f(f;5) < —1.
This implies that f(d;z) < 0. Then g = gy, 5 1,541,7(d,,5) has g(L) < f(L), which is a
contradiction. <

Fact 4. f(f;p) = —1 and f(d;g) = 1 (and, similarly, f(z;s) =1 and f(w;g) = —1).

Proof. Since ¢;5 € Cy, f(djp) + f(95,8) + f(fi8) = f(djp) + 1+ f(fis) 2 1, which
implies f(d;g) + f(fj) = 0. Now f(L) is minimum and can be achieved by setting

f(fis) = —1 which forces f(d;g) = 1.
Fact 5. d;s € Cy and f(cjp) > 0 (and, similarly, z;5 € Cy and f(y5) > 0).

Proof. If d;3 ¢ Cy, then, since f(e;3) = 1, f(cjp) = —1. Then g = g, ;1
has g(L) < f(L), which is a contradiction. <

Fact 6. Yip € Cf and f(Ciﬁ) > 0.

»Sk+1,—1

Proof. If y; 3 ¢ C, then, since f(z4) =

]-7 f(xz,ﬂ) = —1. Then g = gzi’ﬁ,l,sk_*_l,fl
has g(L) < f(L), which is a contradiction. <
Fact 7. c;3 € Cy and z; 3 € Cy.

Proof. Since ¢; g is adjacent to d; g, which is assigned +1 under f, and three vertices
in{z14,...,T3,4}, all of which are assigned at least 0 under f, we have that c; 3 € Cy.

Suppose, to the contrary, that z;3 ¢ Cy. Then all vertices adjacent to x;g are
assigned the value 0 under f — particularly f(y;3) = 0. It now follows that g =

106 L. HARRIS, J.H. HATTINGH AND M. A. HENNING

Gyi s Lssr,—1 Das g(L) < f(L), which is a contradiction. ¢

Combining the facts above, we have V(H;) U V(H,) C Cy. Since n(H;) + n(Hsz) =
12m + 42q and |Cy| > 12m + 42q + 2p, |[S N C¢| > 2p.

Let X = {216, @308}, Yo ={t1,6,-- - ysqp} Cs = {18, s Cmp}, cxp = [XgN
Pf|,Cyg = |Yg ﬂpf‘ and cCg = ‘Cg ﬂPf|

Since f(V(HiUHy) — X; — X5 — Y] — Y, — C1 — C3) = 2(2(3q) + 2m) = 12q + 4m,
F(V) > 12q+4m+cxy + cxy + ey + cya + cer + cep + 2+ (—1) (2822148 9(6m +
21q) — 2pu) = 54q + 16m + 44 + cx1 + cx2 + cy1 + cya + ccq + cca — 2(&”%&). But
f(v) < 56q+16m+4u—2(%), and 8o cz+cTo+cy;+cystccy+eco < 2q. Hence
certces < 2g—(cx1tcxatcyr+cys), and so at most 3(c1+cz) < 6¢g—3(z1+22+y1+Y2)
vertices of X; U X, are adjacent to vertices of (Cy U Cy) N Py, cxy vertices in X, are
assigned a +1 under f, cxs vertices in X, are assigned a +1 under f, cy; vertices in
Y] are assigned a +1 under f, and cy, vertices in Y; are assigned a +1 under f. Thus,
at most 6g— 3(cx1+ e+ cyr +cy2)+cxr +cratcyr +cya = 6¢—2(cxr+ ezt cyr +cys)
of X; U X, are either adjacent to a vertex of (Y3 UY> U Cy U Cy) N Py or assigned
a +1 under f. If czy + cxy + cyy + cya > 0, then there is a vertex in Xy U X5, say
z, such that « & Cy, which is a contradiction. Thus, czy + cz2 + ¢y + cy2 = 0, and
c1+c2 <2q. Since z;3 € Cpfori=1,...3¢gand = 1,2, ¢c; = g and ¢; = ¢q. It now
follows that C' = {C; | f(¢cj1) = 1} is an exact three cover for X. ¢

3 A cubic algorithm to compute ~;,(7) of a tree T’

In this section, we will present a cubic time algorithm to compute the minus total
k-subdomination number of a tree. The tree T will be rooted and represented by
the resulting parent array parent[l ... n]. We make use of the well-known fact that
the tree T can be constructed recursively from the single vertex K; using only one
rule of composition, which combines two trees (G, z) and (H,y), by adding an edge
between z and y and calling = the root of the larger tree F. We express this as
follows: (F,z) = (G,z) o (H,y). With each such subtree (F,z), we associate the
following data structure:

1. table[z].numvertices: the number of vertices in the subtree (F, z).
2. table[z].degree: degp(z).

3. table[z].sum[f(z),t,k]: the minimum weight of a function f : V(F) —
{-1,0,1} such that z is assigned f(z), |t| < degy(z)—degp(z) (representing all
possible sums of assignments of —1, 0 and +1 to the vertices of Ny(z) — Np(z)
and |M(f, F,t,x)| > k for 0 < k < table[z].numvertices, where M(f, F,t,z)
is defined as {v| f(Np(v))+t > 1 when v = z and f(Np(v)) > 1 when v # z}.

Our input consist of the order of the tree 7', say n, and the parent array of the tree,
rooted at a certain vertex. The root of the tree T is labeled with 1, the vertices on the

MINUS TOTAL k-SUBDOMINATION IN GRAPHS 107

next level are labeled with 2 through 2 plus the number of vertices on level 2, and so
on. Using the parent array, we compute degy(x) for each vertex z, z = 1,...,n. We
then initialize the variable table[x] for each vertex x, where x = 1,...,n. Let z be an
arbitrary vertex of T. Imitially, (F,z) = (K, z), whence table[z].numvertices=1
and table[r].degree=0. Suppose t is an integer such that |¢| < degy(z) —degp(z) =
degy(x), representing all possible sums of assignments of —1, 0 and +1 to the vertices
of Np(z) — Np(z) = Np(z). Then t € {—degy(z),...,degp(z)}. The only way for
f(Ng(z))+t=1¢t>1,is for t > 1. Thus, we have the following initializations:

Case 1: t € {1,...,degp(z)}. Then table[z].sum][f(z),t, 1] = table[z].sum][f(z),
t,0] = f(z) where f(z) € {-1,0,1}.

Case 2: t € {—degp(z),...,0}. Then table[z].sum][f(z),t,1] is undefined, and
table[z].sum[f(z),,0]=f(z) where f(z) € {-1,0,1}.

The following code implements the aforementioned discussion.

for vertex <~ 1 ton
do degree[vertex] « 0

for vertex <+ 2 ton

do [degree[vertex] < degree[vertex] + 1
degree[parent|vertex]] < degree[parent|vertex|| + 1

for vertex < 1 ton

table[vertex].numvertices < 1
table[vertex].degree + 0

for excessvalue + 1 to degree|vertex]
do for rootvalue <~ —1 to 1
{table[vertex].sum[rootvalue,excessvalue,1} + rootvalue
do d
table[vertex].sum[rootvalue,excessvalue,0] < rootvalue
for excessvalue +— -degree[vertex] to 0
do for rootvalue <~ —1 to 1
d {table[vertex].sum[rootvalue,excessvalue,1} +— 0
table[vertex].sum[rootvalue,excessvalue,0] < rootvalue

Inputting the parent array takes O(n) steps, while computing the degree array
from the parent array also takes O(n) steps. Initializing the array table takes
O(XVertex—; (2degp(vertex) + 1) x 3) = O(6 x 2m(T')) + O(3n) = O(12(n — 1)) +
O(n) = O(n) steps. Thus, the overall complexity here is O(n).

Our next result shows that our algorithm is correct.

108 L. HARRIS, J.H. HATTINGH AND M. A. HENNING

Theorem 2 Suppose (G,z) and (H,y) are two disjoint rooted subtrees, and let
(F,z) = (G,z)o(H,y). Let s € {—1,0,1}, t be an integer such that |t| < degp(z) —
degp(z) and k be an integer with 0 < k < |V(F)|. Then

table[z].sum]|s, t, k]= min{table[z].sum|[s, t+ 5, j|+table[y].sum]s’, s, k—j] | s’ €
{_15051}:0 <j< k} =

min{table[z].sum[s, t+5', j]+table[y].sum[s’, s, k—j] | ' € {-1,0,1} ,max{0, k—
[V(H)[} < j < min{k, [V(G)[}.

Moreover, |t| < degp(x) — degp(z) if and only if —(degp(x) — degg(z) — 1) <t <
degy (2) — degg(x) — 1.

Proof. Suppose f : V(F) — {—1,0,1} such that table[z].sum][s, ¢, k]= f(V(F)).
Let g (respectively, h) be the restriction of f on V(G) (respectively, V(H)) and
= h(y) = f(y). Note that f(Ng(z)) +t = g(Ng(z)) +t + s* and f(Np(v)) =
(c(v)) for all v € V(G) — {z}, while f(Nr(y)) = h(Nu(y)) + s and f(Np(v)) =
g(Ng(v)) for allv € V(H) — {y}. Thus, k < |M(f,F,t,z)| = |[M(g,G,t+ s*,z)| +
|M(h,H,s,y)|. Ifj =|M(g,G,t+s* z)|, then k—j < |M(h, H,s,y)|. It now follows
that table[z].sum([s, t + s*, j] + table[y].sum[s*, s,k —j] < g(V(G))+h(V(H)) =
table[z].sum]s, t, k]. Hence, min{table[z].sum[s, ¢+ &', j]+table[y].sum][s’, s, k —
jl | € {-1,0,1},0 < j < k} <table[z].sum][s,t, k].

On the other hand, suppose g : V(G) — {—1,0,1} such that g(V(G)) = table[z].
sum|[s,t+s',j] and h: V(H) — {—1,0, 1} such that h(V(H)) = table[y].sum][s’, s,
k — j]. Define f: V(F) — {-1,0,1} by f(v) = g(v) if v € V(G) and f(v) = h(v
for all v € V(H). As before, f(Np(z)) +t = g(Ng(z)) + ¢t + s and f(Ng(v))
9(Ng(v)) for all v € V(G) — {z}, while f(Np(y)) = h(Ng(y)) + s and f(NF())
g(Ng(v)) for all v € V(H) — {y}. Thus, |M(f,F,t,z)| = |M(g,G,t + s, z)|
|M(h,H,s,y)| > j+ (k—j) = k. Hence, table[z].sum][s,t, k]< f(V(F))
9(V(G)) + h(V(H)) =table[z].sum][s,t + s’,j] + table[y].sum[s’,s,k — j]- Thus,
table[z].sum[s, ¢, k] < min{table[z].sum[s, t+5', j]+table[y].sum]s’, s,k—j] | s' €
{71a0a1}:0 <Jj< k}

H_/

=+

Since 0 < j < |V(G)| and j < k, we have 0 < k — j < |V(H)|, so that 0 > j — k >
—|V(H)|, whence j > k — |V(H)|. We conclude that max{0,k — |[V(H)|} < j <
min{k, |V(G)|}.

Lastly, |t| < degr(z) — degp(z) if and only if —degy(z) + degg(z) +1 < t <
degr(z) — degg() — 1, since degp(z) = degg(z) + 1. &

At the conclusion of our algorithm, 7= F', and so t = 0. Clearly, v,,(T) =
min{ table[1].sum[-1,0, k], table[1].sum]0, 0, k] table[1].sum[1,0, k] }.

We are now in a position to present the remainder of the algorithm.

MINUS TOTAL k-SUBDOMINATION IN GRAPHS 109

for oldroot < n downto 2

do

do

do

for k<~ 0Oton
do output (k, min{table[1].suml-1, 0, k], table[1].sum|0, 0, k], table[1].sum][1, 0, k|})

resulttable.numvertices < table[oldroot].numvertices + table[parent|oldroot]].numvertices
resulttable.degree < table[parent[oldroot]].degree + 1
range < degree[parent|oldroot]] — resulttable.degree
for newrootvalue < -1 to 1
do for newrootexcess — -range to range
do for k < 0 to resulttable.numvertices
minimum <— oo
startvalue <— max(0, k - table[oldroot].numvertices)
stopvalue < min(k, table[parent[oldroot]].numvertices)
for j « startvalue to stopvalue

for oldrootvalue < -1 to 1

do

number ¢ degree[parent[oldroot]] - table[parent[oldroot]].degree- 1
if -number < newrootexcess < number

summand]l « table[parent[oldroot]].
sum[newrootvalue, newrootexcess + oldrootvalue, j]
then
summand?2 <+ table[oldroot].sum[oldrootvalue,
newrootvalue, k-j]
temp ¢— summandl + summand2
if (temp < minimum)
then minimum < temp

resulttable.sum[newrootvalue, newrootexcess, k| <— minimum
table[parent[oldroot]|] «+ resulttable

The complexity of the above part of the algorithm, excluding the output phase, is

O(

(n—2)

>

3 x (2 x degy [parent[oldroot]] + 1) X n x n X 3)

n-oldroot=o

0(18n* >~ degy(v)) + O(n x 9n°) = O(18n°2m(T)) + O(n®)

veV(T)

(18n% x 2 x (n— 1)) + O(n?)
O(n®) + 0(n*) = O(n?),

while the complexity of the output phase is O(n). Thus, the overall complexity of
the algorithm is O(n?).

4 A cubic algorithm to compute ~,,(T") of a tree T'

In this section, we present a cubic algorithm to compute 7;,(T) of a tree T. The
approach here is similar to what we described in the previous section. Here we have
the following data structure, associated with the subtree (F,x).

1. table[z].numvertices: the number of vertices in the subtree (F,z).

110 L. HARRIS, J.H. HATTINGH AND M. A. HENNING

2. table[z].degree: degp(z).

3. table[z].sum[f(z),t,k]: the minimum weight of a function f : V(F) —
{—1,0,1} such that z is assigned f(z), |t| < degy(z)—degp(z) (representing all
possible sums of assignments of —1, 0 and +1 to the vertices of Np(z) — Np(z)
and [{v| f(Np[v]) + ¢t > 1 when v = x and f(Ng[v]) > 1 when v # z}| > &,
where 0 < k < table[z].numvertices.

The initialization phase here proceeds as follows.

Let z be an arbitrary vertex of T'. Initially, (F,z) = (K3,), whence
table[z].numvertices = 1 and table[z].degree = 0.

Suppose t is an integer such that |t| < degr(z) — degp(z) = degr(x), representing
all possible sums of assignments of —1, 0 and +1 to the vertices of Nr(z) — Np(z) =
Nz(z). Then t € {—degr(z),...,degr(z)}. The only way for f(Np(z))+ f(z)+t =
f(z)+t>1,isfor t > 1 — f(z). Thus, we have the following initializations:

Case 1: ¢t € {1 — f(z),...,degp(z)}. Then table[z].sum[f(z),t,1] = table[z].
sum|[f(z),t,0] = f(z) where f(z) € {-1,0,1}.

Case 2: t € {—degp(z),...,—f(z)}. Then table[z].sum[f(z),¢, 1] is undefined,
and table[z].sum][f(x),t,0]=f(x) where f(z) € {-1,0,1}.

One may prove a result analogous to Theorem 2.

We are now in a position to state the algorithm. Note that the initialization phase
of the algorithm has complexity O(X,cy ()3 x (2degr(v) +1)) = O(6 x 2m(T)) +
O(3n) = 0(12(n—1)) +O(n) = O(n). Thus, the overall complexity of the algorithm
is also O(n®).

for vertex <— 1 to n
do degree|vertex] < 0

for vertex <+ 2 ton

do [degree[vertex] < degree[vertex] + 1
degree[parent[vertex]] <— degree[parent|vertex]| + 1

for vertex <+~ 1 ton

do for rootvalue < -1 to 1
for excessvalue - 1 - rootvalue to degree[vertex]

d {table[vertex].sum[rootvalue,excessvalue,1} + rootvalue
table[vertex].sum[rootvalue,excessvalue,0] < rootvalue
for excessvalue < -degree[vertex] to -rootvalue
d {table[vertex].sum[rootvalue,excessvalue,1} +— 0
table[vertex].sum[rootvalue,excessvalue,0] < rootvalue

do

for oldroot < n downto 2

do

for k
do

MINUS TOTAL k-SUBDOMINATION IN GRAPHS 111

resulttable.numvertices «— table[oldroot].numvertices + table[parent[oldroot]].numvertices
resulttable.degree <+ table[parent[oldroot]].degree + 1
range < degree[parent|oldroot]] — resulttable.degree
for newrootvalue - -1 to 1
do for newrootexcess — -range to range
do for k < 0 to resulttable.numvertices
minimum ¢ oo
startvalue <— max(0, k - table[oldroot].numvertices)
stopvalue < min(k, table[parent[oldroot]].numvertices)
for j « startvalue to stopvalue
for oldrootvalue < -1 to 1
number < degree[parent|oldroot]] - table[parent[oldroot]].degree-1
if -number < newrootexcess < number

do summandl « table[parent[oldroot]].
do sum[newrootvalue, newrootexcess + oldrootvalue, j]
do then
summand?2 <+ table[oldroot].sum[oldrootvalue,
newrootvalue, k-j|
temp ¢— summandl + summand2
if (temp < minimum)
then minimum < temp
resulttable.sum[newrootvalue, newrootexcess, k| < minimum
table[parent[oldroot]] + resulttable

< 0Oton
output (k, min{table[1].sum[-1, 0, k], table[1].sum[0, 0, k], table[1].sum[1, 0, k]})

References

1]

2]

I. Broere, J. E. Dunbar and J. H. Hattingh, Minus k-subdomination in graphs,
Ars Combin. 50 (1998), 177-186.

J.E. Dunbar, W. Goddard, S.T. Hedetniemi, M. A. Henning and A. A. McRae,
The algorithmic complexity of minus domination in graphs, Discrete Appl. Math.
68 (1996), 73-84.

M. R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, New York (1979).

L. Harris and J. H. Hattingh, The algorithmic complexity of certain functional
variations of total domination in graphs, Australas. J. Combin. 29 (2004), 143
156.

J.H. Hattingh, A. A. McRae and E. Ungerer, Minus k-subdomination in graphs
III, Australas. J Combin. 17 (1998), 69-76.

(Received 27 Apr 2005; revised 27 June 2006)

