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Abstract
A two-valued function f defined on the vertices of a graph G = (V, E),
f:V — {=1,1}, is an opinion function. For each vertex v of G, the vote
of v is the sum of the function values of f over the open neighborhood of
v. A total k-subdominating function (TkSF) of a graph G is an opinion
function for which at least & of the vertices have a vote value of at least
one. The total k-subdomination number, ~},(G), of G is the minimum
value of f(V) over all TkSFs of G where f(V') denotes the sum of the
function values assigned to the vertices under f. We give a lower bound
on 7L, (G) in terms of the minimum degree, maximum degree and the
order of G. A lower bound on 7, (G) in terms of the degree sequence of
G is given. Lower and upper bounds on i, (G) for a tree G are presented.

1 Introduction

In this paper we consider a model of situations in which a network of people must
make a global yes/no decision. We assume that each individual has one vote and that
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each individual has an initial opinion. We also assume, however, that an individual’s
vote is affected by the opinions of neighboring individuals. In particular, each indi-
vidual gives equal weight to the opinions of neighboring individuals (thus individuals
of high degree have greater “influence”). A global decision requires at least &k of
the votes. Similar topics are considered in [1, 2, 5, 6, 13], but in those papers the
assumption is that each individual gives equal weight to his/her own opinion and to
the opinions of neighboring individuals.

Our mathematical model is a finite, simple graph G = (V, E) with vertex set V'
and edge set E of order n(G) = |V| and size m(G) = |E|. The open neighborhood of a
vertex v is N(v) = {u|uv € E}. The closed neighborhood of v is N[v] = N(v) U {v}.
An opinion function on G is a function f:V — {—1,+1}; f(v) is the opinion of the
vertex v. The weight w(f) of an opinion function f is the sum of its values, i.e.,
w(f) = Xyev f(v), and for S C V we define f(S) = X ,es f(v), so w(f) = f(V). For
a vertex v in V, we denote f(N(v)) by f[v] for notational convenience. For S C V,
we denote the subgraph induced by S in the graph G by G[S].

For a vertex v in a rooted tree T, we let C'(v) and D(v) denote the set of children
and descendants, respectively, of v, and we define D[v] = D(v) U {v}. The maximal
subtree at v is the subtree of T induced by DI[v], and is denoted by T,. A leaf of
T is a vertex of degree 1, while a support vertex of T is a vertex adjacent to a leaf.
The set of leaves in T" is denoted by L(T'). We define a branch vertez as a vertex of
degree at least 3. The set of branch vertices of T is denoted by B(T').

For a positive integer k, Cockayne and Mynhardt [5] define a k-subdominating
function of G as an opinion function such that the sum of the function values, taken
over closed neighborhoods of vertices, is at least one for at least k vertices of G. The
minimum weight of such a function is defined as the k-subdomination number of G.
In the special case where k = |V|, we have the signed domination number which is
studied in [5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 19] and elsewhere. When k = [|V]/2],
we have the weak majority number (also called the majority domination number)
studied in [1, 2] and elsewhere. When k = [(|V|+1)/2], we have the strict majority
function studied in [13] and elsewhere.

In this paper, we develop an analogous theory for total k-subdominating functions
that arise when we simply change “closed” neighborhood in the definition of a k-
subdominating function to “open” neighborhood. Here we define the vote of a vertex
v as the sum of the opinions in N(v), the open neighborhood of v. When the vote
is positive, we say that v votes aye; otherwise, v votes nay. A total k-subdominating
function (TkSF ) of a graph G is an opinion function for which at least &k of the
vertices vote aye. The weight of an opinion function is the sum of its values. The
total k-subdomination number of G, denoted by ~% (G), is the minimum weight of
a total k-subdominating function of G. The weight of a total k-subdominating
function is small when, in our original scenario, the number of individuals with
positive opinions needed to produce a global positive decision is small. A TkSF of
G of weight L (G) is called a i (G)-function. If f is a TkSF of a graph G, we let
Ct(G) = {v e V| flv] > 1}, and when the graph G is clear from context, we denote
C(G) simply by Cy. In the special case where k = |V, the total k-subdomination
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number is the signed total domination number v¢(G) which is studied in [12, 18].
Unless stated otherwise, the order of a graph G = (V, E) is denoted by n, the

size by m, minimum and maximum degrees by § and A and for k-subdomination it
is assumed that 1 < k < n.

2 Lower Bounds

Our aim in this section is to give lower bounds on the total k-subdomination number
of a graph. We first establish such a lower bound in terms of its minimum degree,
maximum degree and its order. The second lower bound is in terms of the degree
sequence of the graph. We begin with the following observation. (Recall that for a
vertex v € V, we denote f(N(v)) by f[v].)

Observation 1 Let f be a TkSF of G and let v € Cy. Ifdegv is even, then flv] > 2,
while if degv is odd, then f[v] > 1.

Theorem 2 Let G be a graph, let f be a~!,(G)-function, and let ¢ denote the number
of vertices with even degree in Cy. Then,

2k(1+ A) +6n—3nA+2¢

t
>
fYks(G) - A+ 5

Proof. We consider the sum N = Y f(u), where the outer sum is over all v € V
and the inner sum is over all u € N(v). This sum counts the value f(u) exactly degu
times for each u € V, so N = Y (degu) - f(u), over all uw € V. Let Ve, denote the
set of all vertices with even degree in Cy. Then, by Observation 1, N = ¥ f[v] over
all v € V satisfies

N o= > fhl+ X fll+ D fl]

VEVeven VECF—Veven vgCy
2 20+ |Cfl =L+ (n—|Cs)(=4)
= (014 A) —nA
> (+k(1+A)-nA. (1)

Let P and M be the sets of those vertices in G which are assigned under f the
values +1 and —1, respectively. Then, 7L, (G) = f(V) = |P| — |[M| =n — 2|M|. We
now write V' as the disjoint union of at most six sets. Let P = Px U Ps U Py where
Pa and Pj are the sets of all vertices of P with degree equal to A and ¢, respectively,
and P, contains all other vertices in P, if any. Let M = Ma U My U M), where M,
Ms, and M, are defined similarly. Further, for i € {A,d, A}, let V; be defined by
Vi = P,UM;. Thus, n = |Val + |V5| + VAl



144 L. HARRIS, J.H. HATTINGH AND M. A. HENNING

If u € Vy, then § + 1 < degu < A — 1. Therefore, writing the sum in (1) as the
sum of six summations and replacing f(u) with the corresponding value of 1 or —1
yields

SA+Y S+ (A=) > A=Y 66— > (5+1)>l+k(1+A)-nA.

u€Pp z€Ps TEP) T€EMA z€Ms €M)

Replacing |P;| with |Vi| — |M;] for ¢ € {A, 0, A}, yields
AVal+6[Vs| + (A = Va| = 28|Ma| — 26[Ms| — (A +6)| M|
>0+ E(1+A)—nA. (2)
We now simplify the left hand side of (2) as follows. Replacing |Vs| with | Ps|+|M;],
and |Ms| + | My| with | M| — |Mal, we have
S|V5 = 20|My| — S| My| = 6| Ps| = 0| M| — 6| My| = 6| Ps| — 6| M| + 6| Mal. (3)
Further, replacing |Va| with n — |Vj| — |V)|, we have

AVal 4+ AVA| = 2A|Ma| — A[M,]
nA — AlVs| = 28| Ma| — A|M,|
— nA- AR - AM| - AlM,| 0

Using (3) and (4), the left hand side of (2) can be written as
nA = Vi = (A = §)[Fs] = (A +6)|M] = (A = 6)|Mal.

Thus (2) becomes

2nA —kE(1+A) - ¢ VAl + (A = 0)|Ps| + (A + )| M| + (A — )| Ma]

(A +5)[M]. (5)

vV v

Hence, since 7L, (G) = n — 2| M|, it follows from (5) that

A = k(1+A) =0\ 2k(1+A) + 50— 3nA + 20
t > _
Yis(G) 2 2( Ato ) A+o ’

as desired. O

The next result gives a lower bound on the total k-subdomination number of a
graph in terms of its degree sequence.
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Theorem 3 Let G be a graph, the degrees d; of whose vertices satisfy di < dy <
- < dy, let f be a i, (G)-function, and let { denote the number of vertices of even
degree in Cy. Then,

(+k+ X d;
nicz (LT

Proof. Let f be a +. (G)-function. Let Ve, denote the set of all vertices with even
degree in Cy. Let g:V — {0,1} be the function defined by g(v) = (f(v) + 1)/2 for
all vertices v € V. We consider the sum N = 33" g(u), where the outer sum is over
all v € Cy and the inner sum is over all v € N(v). Then,

1
No= 3 Z = 3 (f[o] +degv) = Zf J+ 3 degv)
UECf ueN(v) veCy veCf veCy
1 k
> Zd+ > degu+ Z degv)2§(2€+|0f|—€+2di)
V€ Veven vECF~Veven i=1

> (£+A+Zd

i=1

On the other hand,

N<> > g(u) =D (degv)-g(v) < dng(V),

vEV weN (v) veEV

and so ]
4+ k+Xr a4
2d,

The desired result now follows since 74,(G) = f(V) =2¢(V) —n. O

g(V) >

As an immediate consequence of Theorem 2 or Theorem 3, we have the following
result.

Corollary 4 Forr > 1, if G is an r-regular graph, then

1
k(r+ )—n if  is odd
r

2
k(r—i_ )—n if v is even
T

Corollary 5 If G is a graph, then

E+2
1(G) >k —2n+ Tem
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Proof. Let the degrees d; of the vertices of G satisfy d; < dy < --- < d, = A. It
follows from Theorem 3 that

Vis(G)

v

1 k

1

>

i=k+1

1

\V,
B

(k+2m—(n—k)A)—n

k4 2m
= k-2 . O
n + A

3 Cycles

Our aim in this section is to determine the total k-subdomination number of a cycle.
As a special case of Corollary 4, we have that 74, (C,,) > 2k —n. If k € {n/2,n}, we
show this lower bound is sharp. We shall prove:

Proposition 6 Forn >3 and 1 <k <n,
2k —n if k€ {n/2,n}

2k +2 —n otherwise.

Vs (Cr) = {

Proof. We show first that ~§,(C,) > 2k + 2 — n except when k =n/2 or k = n, in
which case i, (C,) = 2k — n. Let f be a 7{,(C,)-function. Let M = {v € V(C,,) |
f(v) = -1} and P = {v € V(C,) | f(v) = +1}. Note that, since k > 1, P # (). Let
M, =CynM, P,=CyNP, My =M — M, and P,, = P— P.. Let H = G[M,U P,
i.e., H is the subgraph of G induced by M. U P. The two vertices adjacent to a
vertex in M, are in P,., while the two vertices adjacent to a vertex in P, are in P.
It follows that

2m(G[P]) =) deggpy v 2 > deggrp v = 2|Fe|,
veP vEP,
whence m(G[P]) > |P.|. Thus m(H) = 2|M,| + m(G[P]) > 2|M.| + |P.|. Further if
m(G[P]) = |Pe|, then deggpj(v) = 0 for all v € P, and, since C,, is connected and

none of the vertices in P, is adjacent to any of the vertices of M U P,,, either V = P,
or P, = 0. So, if m(G[P]) = |F,|, either V = P, or P = P,. and m(G[P]) = 0.

Case 1. M,. = (0. Then H = C,, so |M.| + |P| = m(H) > 2|M,| + |P.].
Thus, |P| > |M.| + |P.] = |Cf| > k and so },(C) > 2k — n. If we have strict
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inequality in any of the above inequalities or if |Cf| > k + 1, then |P| > k+ 1, and
1:(Cn) =2|P| —n > 2(k+ 1) — n = 2k + 2 — n. Hence, suppose we have equality
throughout in the above inequalities and |M.| + |P.] = k. Then, by our remarks
above, either V = P, in which case |P,| = k = n, or P, = (), in which case |M,| = k
and n =m(H) = 2|M.| = 2k and so k = n/2.

Case 2. M,. # (). In this case H consists of a disjoint union of ¢ > 1 paths. Then,
| M|+ |P| =€ =m(H) > 2|M.|+|P.|. Thus, |P| > |M|+|P.|+¢ > |Cs| +1 > k+1,
and s0 7L, (Cy) > 2(k+1)—n=2k+2—n.

We have shown that 7%, (Cp) > 2(k+ 1) —n = 2k + 2 — n except when k = n/2
or k = n, in which case 74,(Cy) > 2k — n. We now show that 74,(C,) < 2k —n if
k =n/2 or k =n and that 7{,(C,) < 2k + 2 — n otherwise. For this purpose, we
denote the vertex set of the cycle C,, by {0,1,...,n — 1}. We now define a function
f(V(C,)) = {-1,1} as follows:

For 1 < k< n/2 let f(v;) =1ifi € {0,2,...,2k} and f(v;) = —1 otherwise.
Then, f(V)=2(k+1) —n, and {vi,vs,...,vs6_1} C C}, so that |Cf| > k.

For k =n/2,let f(v;) = 1if i is even and f(v;) = —1 otherwise. Then, f(V) =0
and {vi,vs,..., 0,1} C Cf, so that |Cy| > k.

For (n+2)/2 < k < n—1and n even, let f(v;) = lifiisevenori € {1,3,...,2k—
n + 1} and f(v;) = —1 otherwise. Then, f(V) = 2|P| —n = 2k — n + 2, and
{v1,v3,...,0n_1} U {02, 04, ..., 094} C Cy so that |Cf| > n/2+ (kK —n/2) = k.

For (n +1)/2 < k < n—1 and n odd, let f(v;) = 1 if i is even or i €
{1,3,...,2k —n} and f(v;) = —1 otherwise. Then, f(V)=2|P| —n =2k —n+2,
and {v1,vs,...,0p—2} U {vg,v2,...,025_n_1} C Cf so that |C¢| > (n —1)/2 + (2k —
n+1)/2=k.

For k = n, the function that assigns 1 to every vertex of the cycle is the desired
function.

In all the above cases, f is a TkSF of C,. Thus, 7,,(C,) < f(V) =2k —n if
k =n/2, while v} (Cy) < f(V) = 2k + 2 — n otherwise. O

4 Graphs with equal total k- and /-subdomination numbers

Our aim in this section is to give a characterization of graphs G with equal total
k-subdomination and total ¢-subdomination numbers where 1 < k < ¢ < [V(G)|.
Our proof is along similar lines to that presented in [16].

Theorem 7 Let G be a graph. Then 74 (G) = ~i,(G) if and only if there exists a
partition (P, M) of V' for which

1. |N(z) N P| = |N(z) N M| > 1 for at least £ of the vertices of G, and

2. for any P' C P and any M' C M satisfying |P'| > |M'|, we have
{z eV | 2(IN(z) N P'| = [N(z) N M'|) 2 [N(z) N P| = [N(z) N M|} > n —
k.
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Proof. Suppose 7., (G) = ~},(G). Let f be a T¢SF of G such that f(V) =+,(G)
7%:(G). Let P={z €V | f(z) =1} and M = {z € V| f(z) = —1}. Then (P, M)
constitutes a partition of V. For each © € Cf, we have flz] = |N(z) N P| — |N(z) N
M| > 1. Since |Cf| > ¢, Condition (1) holds.

To verify that Condition (2) holds, consider any P’ C P and M’ C M such that
|P'| > |M'|. Let X = (P\P)UM and Y = (M \ M') U P'. Define a function
g:V — {=1,1} as follows: g(z) = 1 for every z € X and g(z) = —1 for every
@ €Y. Then g(V) = |X| = [V = (|P] — [P+ [M']) - (|M]| — [M'| + |P"]) =
|P| — |M|=2(|P'| — |M']) < |P| = |M]| = f(V) =.,(G). Thus, g is not a TkSF of
G, and so |Cy| < k. Consequently,

Hz eV ]glel <O} =V -Cpf=n—|Cy| >n -k (6)

Note that

IN(z) N X| —|N(z) N Y|
= IN(z) N ((P\ PYUM)| = [N(z) N ((M\ M) U P
IN(z) 0 (P\ P+ |N(z) 0 M| = [N(z) 0 (M\ M)
—|N(z) N P
IN(z) N P| — |N(z) N P'| +|N(z) N M'| - |N(z) N M|
+|N(z) N M|~ |N(z) N P|
= IN(z) N P| = |N(z) N M| =2(|N(z) n P'| = [N(z) n M']).  (7)

glz]

Combining (7) and (8), we obtain Condition 2.

For the sufficiency, suppose there is a partition (P, M) of V such that Conditions
(1) and (2) hold. Define a function f:V — {—1,1} as follows: f(z) = 1 for every
z € P and f(z) = —1 for every z € M. Then flz] = |[N(z) N P|— |N(z)Nn M| > 1
for at least ¢ vertices of G (by Condition (1)). Thus, f is a T¢SF of G, so that
14(G) < |P| - |M].

We now show that 74,(G) > |P| — |M|: Suppose, to the contrary, 74, (G) <
|P| — |M]|. Let g be a TKSF of G such that 4, (G) = g(V). Let X = {z € V|
g(z) =1} and Y = {& € V | g(z) = —1}. Let PP = P\ X and M' = M \Y.
Then PP C P, M' C M, X =(P\P)UM and Y = (M \ M') U P'. Moreover,
| P|=[M][+2(|M'| = | P'|) = |P|= |P'|+|M'| = [M|+|M'| = | P'| = | X| = [Y] = },(G) <
|P| — |M], so that |P'| > |M'|. By Condition (2), |V — Cy| = [{z € V | g[z] < 0}| =
{z e V|2(|N(z)NP'|—|N(z)nM'|) > |[N(z) N P| — |N(z) " M|}| > n— k. Thus,
|Cy| < k, contradicting the fact that g is TkSF of G. Hence, ~},(G) > |P| — |M].

We conclude that |P| — [M| < 7L (G) < 74,(G) < |P| — |M], so that 74, (G) =
76(G). O

Theorem 8 Let G be a graph. Then ! (G) = a if and only if there exists a partition
(P,M) of V for which
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1. |[N(z) N P| = |N(z) N M| > 1 for at least k of the vertices of G,
2. |P| = |M]|=a, and

3. for any P' C P and any M' C M satisfying |P'| > |M'|, we have

|k{m€V | 2(|N(z) N P'| = |[N(z)nM'|) > [N(z) N P| — |[N(z) " M|} > n—

Proof. Suppose 7.,(G) = a. Let f be a TkSF of G such that f(V) = 1L,(G) = a.
Let P={z e V| f(z) =1} and M = {z € V| f(z) = —1}. Conditions (1) and (3)
follows as in the proof of Theorem 7. Moreover, f(V) = |P| — |M]|, so Condition (2)
holds.

For the sufficiency, suppose there is a partition (P, M) of V such that Conditions
(1), (2) and (3) hold. Define a function f:V — {—1, 1} as follows: f(z) = 1 for every
z € P and f(z) = —1 for every z € M. Then flz] = |[N(z) N P|— |N(z)n M| > 1
for at least k vertices of G (by Condition (1)). Thus, f is a TkSF of G, so that
Ms(G) < |P|—|M| = a (by Condition (2)). As in the proof of Theorem 7, 45(G) >
|P| — |M|. Hence, |P| — |M| < 1s(G) < |P| = |M| = a, so that y,(G) = a. O

5 Trees

We have two immediate aims: first to show that the total k-subdomination number
of a tree can be arbitrarily large negative if £k is less than the order of the tree, and
secondly to determine an upper bound on the total k-subdomination number of a
tree and characterize trees attaining this bound.

As pointed out earlier, when k& = n, the total k-subdomination number is the
signed total domination number. In [12], lower and upper bounds on the signed
total domination number of a tree in terms of its order are given and the trees
attaining these bounds are characterized.

Theorem 9 ([12]) If T is a tree of order n > 2, then

2 <4(T) < n.

Furthermore, ~{(T) = 2 if and only if every vertex v € V(T) — L(T') has odd degree
and is adjacent to at least (degv — 1)/2 leaves, while v{(T') = n if and only if every
vertex of T is a support vertex or is adjacent to a vertex of degree 2.

By giving a positive opinion to the center of a star of order n > 3 and negative
opinions to all the leaves we obtain a TkSF of the star. Thus

Proposition 10 Forn >3 and 1 <k <n, 7L, (Kin-1) =2 —n.
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Hence the total k-subdomination number of a tree can be arbitrarily large nega-
tive if k is less than the order of the tree. Next we establish the total k-subdomination
number of a path. We begin with the following lemma.

Lemma 11 Forn > 3 and 1 < k < n, there eaists a vi,(P,)-function that assigns
to one of its leaves a negative opinion and to its neighbour a positive opinion.

Proof. Let T be the path vy, vs,...,v, and let f be a ~i (T)-function. Let i be
the smallest subscript such that f(v;) = —1. If ¢ > 2, then the function obtained
from f by interchanging the values of v; and v; is an opinion function having the
same weight as f and with at least as many vertices voting aye as under f. Hence,
we can choose f so that f(v;) = —1. Now let j be the smallest subscript such that
f(v;) = 1. If j > 3, then the function obtained from f by interchanging the values
of vy and v; is an opinion function having the same weight as f and with at least as
many vertices voting aye as under f. Hence, we can choose f so that f(ve) = 1. O

Proposition 12 Forn > 2,

-1 ifk=3(n+1)
2k —n  otherwise,

Proof. We proceed by induction on the order n > 2 of a path P,. If n = 2,
then 74, (Py) = 2k —n for k = 1 or k = 2. Suppose n = 3. If k = 3, then
1o (Ps) =3 =2k —n, while for 1 <k < 2, 4. (P;) = —1 by Proposition 10 and the
desired result follows. This proves the base cases when n =2 or n = 3.

Suppose that n > 4 and that for every nontrivial path P, of order n’ < n, and any
integer k' with 1 <k < n/, v, (Py) < —=1if K = (' +1)/2 and 7}, (Py) < 2K — 0/
otherwise. Let T be a path P, of order n. Let u be a leaf of T and let v be the
vertex adjacent to u.

If £ = 1, then giving a positive opinion to v and negative opinions to all other
vertices of T we obtain a TkSFof T of weight 2 — n. Since 7L,(G) > 2 — n for all
graphs G with no isolated vertex, vk, (P,) =2 — n = 2k — n. Hence we may assume
k > 2. Furthermore, if £ = n, then the result follows from Theorem 9. Hence we
may assume that k < n. Let 7" =T — u —v. Then, T" is a path of order n' =n — 2.
Let ¥ =k — 1. Since 2 < k < n — 1, it follows that 1 < & < n'.

Let f' be a L (T")-function. Let f:V(T) — {—1,1} be the function defined by
flz) = f'(x) if 2 € V(T'), f(v) =1 and f(u) = —1. Every vertex that votes aye in
T’ also votes aye in T, while u votes aye in T. Hence at least &' + 1 = k vertices of
T vote aye, and so f is a TkSFof T. Thus, 7.,(T) < w(f) = w(f’) = 7L,(T"). On
the other hand, by Lemma 11 there exists a +{,(7)-function g that assigns to u a
negative opinion and to v a positive opinion. Let g’ be the restriction of g to V (T").
Then, ¢’ is a TK'sF of T". Thus, v, (T") < w(g') = w(g) = ~L,(T). Consequently,

7]{"3 (T) = ’Yltc’s (T,) .
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Suppose k' = (n' + 1)/2. Then, k = (n + 1)/2 and by the inductive hypothesis,
w(f") = -1, and so v4,(T) = w(f') = —1. Suppose k' # (n’ + 1)/2. Then, k #
(n +1)/2 and by the inductive hypothesis, w(f’) = 2k’ — n’ = 2k — n, and so
1 (T)=w(f')=2k—n. 0

Next we present an upper bound on the total k-subdomination number of a tree.

Theorem 13 For any tree T of order n > 2,

-1 ifk=1%n+1)
Me(T) <
2k —n  otherwise,

and these bounds are sharp.

Proof. We proceed by induction on the order n > 2 of a tree T'. If n € {2, 3}, then
T = P, and the result follows from Proposition 12. This proves the base cases when
n=2orn=3.

Suppose that n > 4 and that for every nontrivial tree 7" of order n’ < n, and any
integer &' with 1 < &' <n'—1, 7 (T") < —1if &K' = (n'+1)/2 and ~},(T") < 2k' —7n/
otherwise. Let T be a tree of order n.

If T is a star, then, by Proposition 10,7} (T) = 2—n < —1. Thus, 7}, (T) = 2k—n
if k=1, while v},(T) < 2k —n if 2 < k < n. Hence the desired result follows if T’ is
a star. Thus we may assume that diam7 > 3.

If k = n, then, by Theorem 9, v;,(T) < n = 2k —n. Hence we may assume k < n.

Let T be rooted at a leaf r of a longest path. Let v be a vertex at distance diam 7'—
1 from r on a longest path starting at r, and let w be the parent of v. Let |C(v)| = m.
Then, m > 1. If £ < m, then giving a positive opinion to v and negative opinions to
all the other vertices we obtain a TkSF of T of weight 2 — n, and the desired result
follows. Hence we may assume k > m.

Let 7" = T — V(T,). Then, T" has order n' = n —m — 1. Since diamT > 3,
n'>2. Letk'=k—m. Sincem+1<k<n—1, wehave 1 <k <n'. Let f' bea
Yiro(T")-function. Let f:V(T) — {—1,1} be the function defined by f(z) = f'(z) if
z e V(T"), f(v) =1and f(u) = —1 for every child of v. Every vertex that votes aye
in T" also votes aye in T', while each child of v votes aye in T'. Hence at least K'+m = k
vertices of T' vote aye, and so f is a TkSF of T. Thus, 7L,(T) < w(f) = w(f')+1—m.

Suppose k' = (n' +1)/2. Then, k = (n + m)/2. By the inductive hypothesis,
1(T) < =1, and so 74,(T) < —m. Thus if m = 1, then k = (n + 1)/2 and
1s(T) < =1, while if m > 2, then £k > (n+2)/2 and 7L, (T) < -2<2<2k—n. In
any event, the result follows.

On the other hand, suppose k' # (n' + 1)/2. By the inductive hypothesis,
Y (T") < 2K —n' =2k —n+1—m, and so 74,(T) < 2k — n+ 2(1L — m). Suppose
E = (n+1)/2. Then, ¥ = (n' —m+2)/2. Since k' # (n' + 1)/2, it follows that
m > 2, and so v, (T) < 2k —n+2(1L —m) < —1. Suppose k # (n + 1)/2. Then,
since m > 1, v (T) < 2k — n. Once again, the desired result follows.
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That the bounds are sharp, follows from Proposition 12. O

As an immediate consequence of Theorem 8 we have the following result.

Corollary 14 Let T be a tree. Then, vis(T) = 2k — n if and only if there exists a
partition (P, M) of V' for which

1. |[N(z) N P| = |[N(z) N M| > 1 for at least k of the vertices of T,
2. |P| = |M| =2k —n, and

3. for any P' C P and any M' C M satisfying |P'| > |M'|, we have

|k{m€V | 2(|N(z) N P'| = |[N(z)nM'|) > [N(z) N P| — |[N(z) " M|} > n—

We show next that when T is a nontrivial tree of even order n, and k = n/2 + ¢
for some integer ¢ with 0 < ¢ < 3, then the result of Theorem 13 can be improved
slightly.

Theorem 15 For any tree T of even order n > 2, and any integer k with n/2 <
E<nandk=n/2+1i where 0 <7< 3,

(T) <20k — 1) — 1,
unless T' is a path, in which case v} ,(T) = 2k —n.

Proof. We proceed by induction on the order n of a tree T, where n > 2 is even.
If n =2, then T = P, and k € {1,2} and the result follows from Proposition 12. If
n = 4, then k € {2,3,4} and either T = P,, in which case the result follows from
Proposition 12, or T' = K 3, in which case the result follows from Proposition 12 (if
kE € {2,3}) or Theorem 9 (if k& = 4). This proves the base cases when n = 2 and
n=4.

Suppose that n > 4 is even and that for every nontrivial tree 7" of even order n’ <
n, and any integer &' with n'/2 < k' < n’ and k' = n//2 + i where 0 < i < 3,
Yo (T") < 2(k' — 1) —n/, unless 1" is a path, in which case 7%,,(1") = 2k' —n. Let T
be a tree of order n.

If & = n, then since k < (n+6)/2, n = k =6, and so it follows from Theorem 9
that 7.,(T) < 4 unless T = P, in which case v, (T) = 6. Hence the desired result
follows if k& = n. Thus we may assume k < n. In particular, if £ = n/2 + 3, then
n > 8.

Following the notation used in paragraph 5 and 6 of the proof of Theorem 13,
N (D) < w(f) = w(f)+1—-m. If¥ = (0 +1)/2, then k£ = (n +m)/2. By
Theorem 13, 74,,(7") < —1, and so 7,(T) < —m. Hence we may assume k' #
(n' +1)/2. By Theorem 13, 74,,(T") < 2K —n' =2k —n + 1 —m, and so 7, (T) <
2k—n+2(1—m). Iff m > 2, then 7. (T) < 2k —n+2(1—m) < 2(k—1) —n,
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as desired. Hence we may assume m = 1, andso ¥’ = k-m=%k—-1,n' =n —2
and 14, (T) < w(f') = L ,(T"). Furthermore, n' is even and n//2 < k' < n/ and
k' =n'/2 41 where 0 <7 < 3. Applying the inductive hypothesis to T", 7k, (T") <
2(k"— 1) —n/, unless T" is a path, in which case 74, (T") = 2k’ — n. Let u denote the
child of v.

If L (1) < 2(K' —1) —n’, then v, (T') < 2(k — 1) —n, as desired. Hence we may
assume that 7" is a path.

Suppose w is neither a leaf nor a support vertex of 7”. Let v’ be the child of w
different from v, and let «’ be the child of v'. Assign a positive opinion to w and its
two children and to all vertices of degree 2 at even distance from w. Assign a negative
opinion to all remaining vertices. If k = n/2, reassign to w a negative opinion. If
kE =n/2+2, reassign to u a positive opinion, while if &k = n/2+ 3, reassign to each of
u and ' a positive opinion. In all cases, this produces a TkSF of weight 2(k —1) —n,
and so 7}, (T) < 2(k — 1) — n, as desired. Note that here T is not a path.

Suppose that w is a support vertex of 7. Let v’ be the child of w different
from v. Assign a positive opinion to w and to all vertices different from v whose
distance from w in T is odd. Assign a negative opinion to all remaining vertices. If
kE = n/2, reassign to w a negative opinion. If & = n/2 + 2, reassign to u a positive
opinion, while if k¥ = n/2+ 3, reassign to each of the two vertices at distance 2 from
w positive opinion. In all cases, this produces a TkSF of weight 2(k — 1) — n, and so
1 (T) < 2(k — 1) — n, as desired. Note that here 7' is not a path.

Finally, if w is aleafin T", then T is a path of even order and so, by Proposition 12,
1 (T) =2k —n. O
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