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Abstract

Given an acyclic digraph D = (V, A), its competition graph G = K (D)
is an undirected graph with the same vertex set as D and with an edge
zy € E(G) if and only if there is a vertex a so that (z,a) € A and
(y,a) € A. The phylogeny graph G = P(D) of D is an undirected graph
with the same vertex set as D and with an edge zy € E(G) if and only
if (z,y) € Aor (y,z) € Aor (z,a),(y,a) € A for some vertex a € V.
If G is any graph, G together with sufficiently many isolated vertices is
a competition graph of an acyclic digraph, and the competition number
of GG is the smallest number of such isolated vertices. We shall call the
acyclic digraph D a phylogeny digraph for G if G is an induced subgraph
of P(D) and D has no arcs from vertices outside of G to vertices in
G. The phylogeny number p(G) is the smallest r such that G has a
phylogeny digraph D with |V(D)| — |[V(G)| = r. In this paper we study
the competition and phylogeny numbers for a class of graphs in which
each graph G includes at least one not K, clique, and any two different
maximal cliques of G have at most one common vertex. The results of
this paper generalize some results provided by Kim and Roberts, and by
Roberts and Sheng.
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1 Introduction

The competition graph of a digraph was introduced by Cohen [1] in connection with
a problem in ecology. Since the notion of competition graph was introduced, there
has been a very large literature on it. Besides ecology, various applications include
applications to channel assignments, coding, and modelling of complex economic and
energy systems. Some related notions have also been introduced. The phylogeny
graph introduced by Roberts and Sheng [6] was one related notion of competition
graph.

Let D = (V,A) be a digraph, in which V is the vertex set and A the set of
directed arcs. The competition graph K (D) is the undirected graph G with the same
vertex set as D and with an edge zy € E(G) if and only if there is a vertex a so that
(z,a) € A(D) and (y,a) € A(D). We denote by G U I; the graph consisting of G
and k isolated vertices. For any graph G, the competition number of G, denoted by
E(G), is the smallest k so that G U I, is a competition graph of an acyclic digraph.

Given an acyclic digraph D = (V, A), the phylogeny graph P(D) of D is an
undirected graph G with the same vertex set as D and with an edge zy € E(G) if
and only if (z,y) € A or (y,x) € A or (z,a),(y,a) € A for some vertex a € V. For
any graph G, we shall call the acyclic digraph D a phylogeny digraph for G if G is an
induced subgraph of P(D) and D has no arcs from vertices outside of G to vertices
in G. The phylogeny number p(G) is the smallest r such that G has a phylogeny
digraph D with |V(D)| — |[V(G)| = r. A phylogeny digraph D for G is called an
optimal phylogeny digraph for G if |V(D)| — |[V(G)| = p(G).

An edge clique cover of G is a collection of cliques that covers all edges of G. The
edge clique cover number of G, denoted by .(G), is the minimum number of cliques
in an edge clique cover of G. Given G = (V, E), let E~ be the subset of E obtained
by deleting all the edges of the maximal cliques of G of size at least 3 from E, and
let G- = (V,E7).

Kim and Roberts [3], and Roberts and Sheng [6] studied the competition numbers
and phylogeny numbers for the graphs with one or two triangles respectively. In this
paper, as a generalization, we study the competition and phylogeny numbers for a
class of graphs in which each graph G includes at least one not K, clique, and any two
different maximal cliques of G have at most one common vertex. Note that this kind
of graph may include many triangles. In Sections 2 and 3 we study the competition
and phylogeny numbers of this kind of graph respectively. In fact, we generalize some
results provided by Kim and Roberts in [3], and by Roberts and Sheng in [6]. Let
[1,n] denote {1,2,...,n}, and w(G) denote the number of connected components of
G. For all undefined notation and terminology, see [3,6].

2 Competition numbers

We first introduce some lemmas.
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Lemma 2.1 (Harary et al. [2]). Let D = (V, A) be a digraph. Then D is acyclic if
and only if there exists an ordering of vertices, ¢ = [v1, Vs, ..., vy], such that one of
the following two conditions holds:

(1) For alli,j € [1,n], (v;,v;) € A implies that 1 < j.
(2) For alli,j € [1,n], (v;,v;) € A implies that i > j.

By this lemma, if D is an acyclic digraph, we can find a vertex labelling 7 : V' —
{1,2,...,|V|} so that whenever (z,y) is in A, 7(y) < n(z). We call 7 an acyclic
labelling of D. Conversely, if D is a digraph with an acyclic labelling, then D is
acyclic. In the following, let n = |V(G)| and e = |E(G)|.

Lemma 2.2 (Roberts [5]). If G is a connected graph with no triangles, then k(G) =
e—n+2.
Lemma 2.3 (Opsut [4]). For any graph G, 6.(G) < k(G) +n — 2.

The following theorem is the main result in this section.
Theorem 2.4. Suppose K,,,, K,,, ..., K,, are the mazimal cliques of size at least 3
of a connected graph G = (V, E), where t > 1 and n; > 3 fori=1,2,...,t. If any
two different mazimal cliques of G have at most one common vertex, then

t

e—Z(ZZ) —n+t+2§k(G)§e—i<ni;1> 42

i=1 i=1

Proof. Suppose any two different maximal cliques of G have at most one common
vertex. Since by the conditions of the theorem, each clique K,,,i = 1,2,...,t, has

(7;1) edges, and the other cliques of G are all K, then

By Lemma 2.3,

K(G) > 0.(G) —n+2=(e i( >+t—n+2—e—§t:<r;>—n+t+2. (1)

i=1 =1

In order to prove the upper bound, let {v§,v3,...,v; } be the vertex set of K,_,
where s = 1,2,...,t. Deleting the edges viv] from G, where 2 <7 < j < ng and
s=1,2,...,t, the resulting graph

t
G=c¢-UC U {vv}
s=1 2<i<j<n,
is connected and triangle-free. Lemma 2.2 implies that

_Z<”i;1>)—n+2:e—i<”i;1> —n+2.

i=1 i=1
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Let D' be an acyclic digraph whose competition graph is

Gur . .
e=Y (") —n+2
i=1
t
Since SL_Jl{v{vg, vjvs, ..., vivs } is the subset of E(G'), there are arcs (vf, a3), (vs,a3),
(v},a3), (v3,a3), (vi,a3), (vi,a3), ..., (v},a5.), (v5 a3 ) in D' for vertices a3, a3, . . .,

a; of D', where s = 1,2,...,t. For any 4,5 € [2,n,], if i # j, then a # aj since
vivs ¢ E(G'), where s € {1,2,...,t}. By Lemma 2.1, there is an acyclic labelling
7 of D" such that whenever (z,y) is an arc of D', 7(y) < n(z). So 7(af) < 7(v$),
where 2 < ¢ < ng and s = 1,2,...,t. Without loss of generality, we may assume
that 7(a3) < m(af), where 3 < j < nyand s = 1,2,...,t. So m(a3) < 7(v§), where
2<j<ngand s =1,2,...,t. Let D be the digraph obtained from D’ by adding
arcs (v3,as), (v3,as),...,(v5 ,a3) to D', where s = 1,2,...,t. It is easy to see that

D is acyclic. Therefore, the competition graph of D is

S0

k(G)g—fj(”";l)—mz. 2)

Combining (1) and (2), the proof is complete. O

The following corollary is the special case of the above theorem when ¢ =1 and
ny = m.

Corollary 2.5. If a connected graph G = (V, E) has a clique K, and every triangle
of G is included in the K,,, where 3 < m < n, then

e—<T;)—n+3§k(G)Se—<m;1>—n+2.

By Corollary 2.5, as m = 3 the following corollary follows.

Corollary 2.6 (Kim and Roberts [3]). If G is connected and has ezactly one
triangle, then k(G) =e—n ore—n+ 1.

3 Phylogeny numbers

In order to prove the main result in this section, we cite some lemmas from [6].
Given graph G = (V,E), let D = (V U L,, A) be a phylogeny digraph for G and let
uv € E. We say that G is triangulated if it contains no chordless cycle of four or
more vertices. We say that wv is taken care of by a vertex a € VU I,, if (u,a) € A
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and (v,a) € A. If E; C E, we will let E;, = E— E;. A triangle is a mized triangle of
G relative to E; if some edge of the triangle is in E; and some edge of the triangle
is in El-

Lemma 3.1 (Roberts and Sheng [6]). For any graph G = (V, E), p(G) > 0.(G) —
n+ 1.

Lemma 3.2 (Roberts and Sheng [6]). If G = (V, E) is a triangulated graph, then
p(G) = 0.

Lemma 3.3 (Roberts and Sheng [6]). If G = (V, E) is a connected graph with no
triangles, then p(G) =e —n + 1.

Lemma 3.4 (Roberts and Sheng [6]). If G = (V, E) is a graph with no triangles and
with k connected components, then p(G) = e — n + k. Moreover, if x is an arbitrary
vertex of G, there is an optimal phylogeny digraph for G with x a source vertex.

Lemma 3.5 (Roberts and Sheng [6]). Suppose G = (V, E), let E; C E and G, =
(V,Ey). Let D = (V U1, A) be an optimal phylogeny digraph for G and let I, be
the set of Ty wvertices in I, that only take care of edges in E1. If G has no mized
triangle relative to Ey, then p(G) > p(Gy) +my > p(G1) + p(Gy).

Theorem 3.6. Suppose K,,, K,,,...,K,, be the mazimal cliques of size at least 3
of connected graph G = (V, E), where t > 1 and n; > 3 fori=1,2,...,t, and any
two different maximal cliques of G have at most one common vertex.

¢
(1) If G~ is connected, then p(G) =e — Y (7;1) -n+t+1
=1

(2) If G~ has a connected component including exactly one vertex for some clique
K,,,i€{1,2,...,t}, then

e—g;(gi)—n+w(a)<p 2;( )—n+w(G‘)+t—1.
Otherwise,
_i<zi>_n+w(g)<p 2;( )—n+w(G)+t.

i=1

Proof. Let {v{,v3,...,v5 } be the vertex set of K, , where s =1,2,...,¢.
Case 1. Suppose that G~ is connected. By the proof of Theorem 2.4,

t
6.(G)=c-3 (2) 1,
It follows from Lemma 3.1 that

p(G)Z@e(G)—n—Fl:e—Xt:(Zi)+t—n+1. (3)

i=1
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By Lemma 3.3,
t .
PG )=e-3 (Z) —n+1
i=1

We may assume that D~ is an optimal phylogeny digraph of G~. Let D be the
digraph obtained from D~ by adding vertices ai, as,...,a; to V(D~) and adding the
arcs (v§,ay), (v3,as),...,(v5 ,as) to A(D”), where s = 1,2,...,t. It is easy to see
that D is acyclic and a phylogeny digraph for G. So

p(G) < V(D) = [V(G)] = V(D7) +t = [V(GT)]

_p(G—)+t_e—zt:<7;i)—n+t+1. (4)

i=1
t
Inequalities (3) and (4) imply that p(G) =e — X (3) —n+t+1.
i=1
Case 2. Suppose that C1, Cs, ..., Cy(g-) are the connected components of G—, where

t
w(G~) > 1. Lemma 3.2 implies p(ig1 K,,) =0, and Lemma 3.4 implies

w67 e 3 ((5) - e,

i=1
So by Lemma 3.5,
t
p(G) 2 p(G™) +p(J Kw))

i=1
t t

_6—2@')—n+w(G—)+o_e—z<Z">—n+w(G—). (5)

=1 i=1

Suppose that G~ has a connected component including exactly one vertex for
some clique K,,, 1 € {1,2,...,t}. Without loss of generality, we may assume that

C, includes exactly one vertex of K,,, say vi. By Lemma 3.4, there is an opti-

mal phylogeny digraph D~ for G~ with v} a source vertex. Let D be the digraph

obtained from D~ by adding vertices as,as,...,a; to V(D~) and adding the arcs

(vg,v1), (v3,01), ..., (vp,,v1), (V1,a2), (V3,02),..., (V2 as), ..., (v}, ap), ..., (VL a)

to A(D7). It is easy to see that D is acyclic and a phylogeny digraph for G. So

p(G) < V(D) = IV(G)] = V(D7) + (t = 1) = [V(G)]

t

:p(G)+(t—1):e—2<2">—n+w(G)+t—1. (6)

i=1

Combining (5) and (6), we have

e_z@‘) —n+w(G) < p(@) ge_;;(”;) —ntw(@)+t-1

i=1
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Suppose for any clique K, , s € {1,2,...,t}, each component of G~ includes
t
either at least two vertices of K, or none. By Lemma 3.4, p(G~) =e— X (”;) -n+

w(G7), and suppose that D~ is an optimal phylogeny digraph for G~. Let D be the

digraph obtained from D~ by adding vertices as, as, . ..,q; to V(D~) and adding the

arcs (vi,a1), (v3,a1), ..., (vp ,a1), (v}, a2), (v3,as), ..., (V2 a2), ..., (v}, a), ..., (0L,

at) to A(D7). It is easy to see that D is acyclic and a phylogeny digraph for G. So

p(G) < V(D) = [V(G)] = V(D7) +t = [V(GT)]

By (5) and (7),

t

e_z<7;i> —n+w(G) < p(G) ge_zt;@') —n4w(G)+t.

i=1

Combining all the cases above, the proof is complete. O

The following corollary is the special case of the above theorem when ¢ =1 and
ny =m.

Corollary 3.7. Suppose the connected graph G = (V, E) has a clique K, and any
triangle of G is included in the K,,, where 3 <m <mn.

(1) If G~ is connected, then p(G) = e — (;”) -n+2.
(2) If G~ has a connected component including exactly one vertex of K, then

p(G) = e — (7;) —n+ w(G7). Otherwise, p(G) = e — (T;) -n+w(G7) or
p(G)=e—(3) —n+wG)+1.

By Corollary 3.7, as m = 3 the following corollary follows.

Corollary 3.8 (Roberts and Sheng [3]). Let G = (V, E) be a connected graph with
exactly one triangle. Then

(@) = e—n if G~ has three components,
p "l e—=n—1 if G~ has one or two components.

4 Concluding remarks

Corollary 2.6 and Corollary 3.8 show that Theorem 5 in [3] is the special case of our
Theorem 2.4, and Theorem 17 in [6] is the special case of our Theorem 3.6. So this
paper generalizes some results provided by Kim and Roberts in [3], and by Roberts
and Sheng in [6].
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