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Abstract

In a graph a vertex is said to dominate all its neighbours. A 2-dominating
set of a graph G = (V, E) is a dominating set S that dominates every
vertex of V' — S at least twice. The 2-domination number of G, which is
the minimum cardinality of a 2-dominating set of G, is denoted by v,(G)
and the independence number by 5(G). We compare the value of 7y, and
[ in trees and give bounds on these two parameters in terms of the order
and the number of leaves of the tree. More precisely we show that for
a nontrivial tree T, B(T) < 7,(T) < 36(T)/2, (n++2)/3 < 7,(T) <
(n+4¢)/2 and B(T) < (n+ ¢ — 1)/2. We characterize the trees achieving
equality in each bound.

1 Introduction

For notation and graph theory terminology, we in general follow [1, 6]. In a graph
G = (V, E), the neighbourhood of a vertex v € Vis N(v) ={u eV |w € E}. If §
is a subset of vertices, its neighbourhood is N(S) = U,esN(v). The order of a graph
G is denoted by n(G) and abbreviated to n if there is no confusion. The degree of
a vertex v of G, denoted by degq(v), is the order of its neighbourhood. A vertex of
degree one is called a pendant vertex or a leaf and its neighbour is called a support
vertex. If v is a support vertex of a tree T then L, will denote the set of the leaves
attached at v. A support vertex v is called strong if |L,| > 1. We also denote the
set of leaves of T by L(T) and let |L(T)| = ¢(T"). The trivial tree is K;. A tree
T is a double star if it contains exactly two vertices that are not leaves. A double
star with respectively p and ¢ leaves attached at each support vertex is denoted by
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Spq- A subdivided star SS, is obtained from a star K, by subdividing each edge by
exactly one vertex. The corona G o K; of a graph G is obtained from G by adding
a leaf at each of its vertices.

A subset S C V is a dominating set of G if for every vertex v of V — S,
IN(v)NS| > 1. The domination number y(G) is the minimum cardinality of a
dominating set of G. The domination independence number i(G) and the indepen-
dence number (@) are respectively the minimum and the maximum cardinality
of a set that is both dominating and independent. A graph G is well covered if
i(G) = B(G). The class of well covered trees, denoted here by WCT, consists of
the coronas of all trees. We are interested in dominating sets S with the additional
property that S dominates each vertex in V' — S at least twice. Formally, a subset
S of V is a 2-dominating set of G if for every vertex v € V — S, |[N(v)N S| > 2.
The 2-domination number v,(G) is the minimum cardinality of a 2-dominating set
of G. Note that 2-domination in graphs is a type of multiple domination in which
each vertex not in S (S is a dominating set) is dominated at least %k times for a
fixed positive integer k. Multiple domination was introduced by Fink and Jacobson
[5]. For any parameter u(G) associated to a graph property P, we refer to a set of
vertices with Property P and cardinality p(G) as a p(G)-set. For a comprehensive
treatment of domination in graphs, see [6, 7].

In this paper we study some properties of 5(G) and 7,(G) when G is a tree. In
general the independence number and the 2-domination number are not comparable
and the difference 3(G) — 7,(G) as well as the ratio 5(G)/v,(G) can be arbitrarily
large. This can be seen for instance on the complete bipartite graph K, with
4 < p < ¢ for which § = g and v, = 4. We show that every nontrivial tree 1" satisfies
B(T) <v,(T) <36(T)/2 and we give sharp upper bounds on ,(T") and 5(T") and a
lower bound on ~,(T') as a function of n(T') + ¢(T). For each bound we characterize
the class of extremal trees. Note that a lower bound of a similar form was previously
given on B(T) by the third author.

Theorem A (Favaron [3]) Every tree T with n vertices and { leaves satisfies 5(T) >
(n +0)/3 with equality if and only if the tree is well covered.

We begin by some straightforward observations.

Observation 1 e For a star Ky, with p > 2, B(K;,) = 7,(K1,) = p.
e For a double star S,, withp > 2 and q¢ > 2, £(Spy) = 72(Spq) =P +q.
e For a double star Sy, with ¢ > 1, B(S1,) =14 q and v,(S14) =2 +q.
e For a subdivided star SS,, 5(5S,) = 7,(5S,) = ¢+ 1.
e For an odd path Pyi1, B(Pag+1) = Vo Pogt1) = g+ 1.
e For an even path Py, B(Pay) = q and v,(Pay) = g+ 1.

Observation 2 In a graph G, there exists a B(G)-set containing all the leaves of G.
Moreover if w is a strong support vertex then every 5(G)-set contains L,. A leaf of
a graph G is contained in every v,(G)-set.
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Observation 2 can be completed by the following lemma.

Lemma 3 Let G be a graph different from a star. Let u be a support vertex of G
having only one nonpendant neighbour and let G' = G — (L, U {u}). Then B(G') =
B(G) — |Ly|, there exists a v,(G)-set not containing u and v5(G') < vo(G) — | Ly|. If
moreover u is a strong support vertez, then v5(G') = 74(G) — | L.

Proof. Let v be the unique nonpendant neighbour of u. If I is a §(G)-set, then
I—L,isa f(G')-set and conversely if I' is a 5(G')-set, then I' U L, is a B(G)-set.
Hence B(G') = B(G) — |Ly|-

Let S be a v,(G)-set. By Observation 2, L, C S. If w € S then (S — {u}) U {v}
is another ,(G)-set not containing u. Let D be a y,(G)-set not containing u. Then
D — L, is a 2-dominating set of G’ and thus v,(G') < v,(G) — |L,|. If moreover
|L,| > 2, let conversely D' be a v,(G')-set. Then D'U L, is a 2-dominating set of G
and thus 7,(G) < 7,(G') + |L,|, implying equality. m

2 Comparison between ~,(7) and §(7)

We show in this section that for every tree T, the 2-domination number is bounded
below by the independence number.

Theorem 4 If T is a tree then v,(T) = B(T).

Proof. We proceed by induction on the order of T. Clearly the result holds for
n = 1,2 establishing the basis cases. Let n > 3 and assume that for every tree T" of
order n’ < n we have v,(T") > S(T"). Let T be a tree of order n. If T is a star then
75(T) = B(T) = n — 1 and hence the result is valid. So assume that T is not a star
and let u be a support vertex of T for which the subgraph induced by V(T') - L, U{u}
is a tree (for instance, u is the support vertex of a leaf of maximum eccentricity). Let
T'=T—L,U{u}. Since T is not a star, 7" has order at least two and u has a unique
neighbour in 7. By Lemma 3, v,(T") < 7o(T) — |L,| and B(T") = B(T) — |L.].
By the induction hypothesis applied to T, we have v,(T") > B(1") implying that
7,(T) 2 B(T). =

In order to characterize the trees with equal 2-domination and independence
numbers we introduce the familly F of all trees T that can be obtained from a
sequence Ty, Ty, ..., Ty (k > 1) of trees, where Ty is a star K, (¢t > 2) of center
vertex w, T = Ty, and, if k& > 2, T;;; is obtained recursively from T; by one of the
three operations defined below. Put A(Ty) = Ly,.

e Operation O, : Add a star K;,, p > 1, centered at a vertex z and join x by
an edge to a leaf y of T;. Put A(Ti4q) = A(T;) U L.

e Operation O, : Add a star K;,, p > 1, centered at a vertex z and join x by
an edge to a nonpendant vertex y of A(T;). Put A(Tj11) = A(Ti) U L.
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e Operation O; : Add a star K, p > 2, centered at a vertex z and join x by
an edge to a vertex y of V(T;) — A(T) Put A(Ti1) = A(T;) U L,.

We also define F; as the subfamily of F consisting of trees constructed from T}
by recursively applying Operation O;. For instance an odd path P41 belongs to F;
since it is obtained from K, by applying ¢ — 1 times O; with each p equal to 1.

We give in the following lemma some properties of the trees in F. The first ones
will be of use in this section, the other ones in Sections 3 and 4.

Lemma 5 1. If T is a tree of F then A(T) is both the unique yo(T)-set and the
unique B(T)-set.

2. If T is obtained from Ty by applying r > 0 times Operations Oy or Oz and any
number of times Operation Oy, then |A(T)| = (n(T) +¢T) —r —1)/2 . If moreover
r > 1 (that is if T € F — Fy), then n(T) + ¢(T) > 3r + 7 with equality if and only if
T is a subdivided star SS, with ¢ > 3 or the double star Sy ».

Proof. 1. Let T' be a tree of F. From the way in which T is constructed, A(T")
is both a 2-dominating set and an independent set. Thus 5(T) > |A(T)| = 7,(T).
The equality follows from Theorem 4.

To show that A(T) is both the unique ~y,(T)-set and the unique S(T')-set, we
proceed by induction on k where k — 1 is the number of operations performed to
construct T from Ty. If k =1, then T = K;, with ¢ > 2 and so A(T') is the unique
~4(T')-set and the unique S(T)-set. This establishes the basis case. Assume now that
k > 2 and the result holds for all trees of F that can be constructed from a sequence
of at most k — 2 operations. Let T be a tree of F constructed by k& — 1 operations,
T" = Ty_y, x the center of the star K, added to 7" to get T', and y the neighbour
of & in T'. Then 5(T) = [A(T)| = (") + |Lq| and 15(T) = |A(T)| = 15(T") + | s .
By induction hypothesis applied to 7", we know that A(7") is the unique ~y,(7")-set
and the unique 5(1")-set.

Suppose that A(T) = A(T") U L, is not the unique 7,(T)-set and let D be a
second y,(T)-set. Then D must contain x for otherwise A(T') and D — L, are two
different ~,(T")-sets, a contradiction. Also y ¢ D and y is dominated by « and by
exactly one vertex of V(T")N D (else D — (L, U{z}) would be a 2-dominating set of
T of order less than v,(7")). Then (DN V(T")) U {y} is a 2-dominating set of T" of
order |D| = (|L.|4+1)4+1 = |A(T)| - | Lz| = |A(T")|. By the unicity of the v,(1")-set,
(DN V(T"))U{y} is the independent set A(T"). This contradicts the fact that y has
a neighbour in V(T") N D. Consequently, A(T) is a unique ~y,(T)-set.

Let I be a 5(T)-set. If L, is not contained in I then by Observation 2, |L,| = 1,
T is constructed from T" by Operation O; or Oy, and y € A(T"). If u is the leaf of
T adjacent to z, u ¢ I, v € I and y ¢ I. The set I = (I — {z}) U {u} is a B(T)-set
such that I; NV(T") is a B(T")-set and I; NV(T") = INV(T"). By the unicity of the
B(T")-set, INV(T') = A(T') contradicting y € A(T") but y ¢ I. Therefore L, C I
and I — L, = INV(T") is a §(T")-set. By the unicity of the 5(T")-set, I — L, = A(T")
and thus I = A(T).
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2. If a tree T is obtained from a tree 7' of F by an operation Oy, then n(T) =
n(T)+p+1, UT) =UT")+p—1, 7(T) = v,(T") + p and thus 1,(T) — (n(T) +
UT))/2 =7,(T") = (n(T")+£(T"))/2 . If T is obtained from T" of F by an operation
O, or Os, then n(T) = n(T") +p+ 1, UT) = UT") + p, 75(T) = 7,(T") + p and
thus 7o(T) — (n(T) + UT))/2 = 75(T") — (n(T") + £(T") + 1)/2 . Hence the value
of 7, — (n+ ¢)/2 is unchanged in each application of O; and decreases by 1/2
in each of the r > 0 applications of Oy or Os. Since for 77 = K;; with ¢ > 2,
Yo(T1) = (n(Th) + ¢(Ty) — 1)/2 , we get |A(T)| = (n(T)+ T) —r —1)/2 . We note
in particular that if T is in F; then r = 0 and B(T) = 7,(T) = (n(T) + ¢(T) — 1) /2.

Each operation O3 increases n by p+ 1 > 3 and ¢ by p > 2. Hence if the tree
T of F is constructed from 177 = K;; by » > 1 operations O3 and any number of
operations Oy, n(T) > n(Ty) +3r =3r+t+ 1, {(T) > {(T1) + 2r = 2r +t and
n(T)+¢(T) > br+2t+1 > 3r+7sincet > 2and r > 1. Moreover n(T)+{(T) = 3r+7
if and only if t = 2 and in the construction of 7', no operation O; and exactly one
operation O with p = 2 has been used, that is if 7" is the double star Sy .

If the construction of T uses at least one operation O, joining the center = of a
star K, to a vertex y of 1", then y is a nonpendant vertex of A(7"). This implies
that at least one operation (J; has been performed before O,. Hence n(T') is at least
equal to n(7}) plus two vertices added in O; plus 2r vertices added in the r operations
O, and O3 (exactly 2r if and only if these r operations are of type O, with p = 1).
Similarly, ¢(T) is at least equal to ¢(T}) plus r leaves added in the r operations O
and Oj; (exactly r if and only if these r operations are of type Oy with p = 1). In
this case, n(T) > t+ 3+ 2r, {(T) > t+r and n(T)+ {(T) > 3r +2t+3 > 3r + 7.
Moreover, n(T') + ¢(T) = 3r + 7 if and only if T is constructed from Kj by using
one operation O; and r > 1 operations s, each of them with p = 1. This tree T is
a subdivided star SS; with ¢ =7+22>3. =

We are now ready to characterize the trees achieving equality in Theorem 4.

Theorem 6 Let T be a tree. Then the following statements are equivalent:

a) 7,(T) = B(T),
b)) T=K, orT € F,

¢) T has a unique v,(T)-set that also is a unique B(T)-set.

Proof. Let T be a tree of order n.

(b) = (c). The result is obvious if T' = K and it follows from Lemma 5 if T’ € F.

(c) = (a). Obvious.

(a) = (b). We proceed by induction on the order of T. If n = 1 then T' = K;. The
only tree T of order n = 2 does not satisfy v,(T) = B(G). If n = 3 then T = K5
is a tree T} of F. Let n > 4 and assume that any tree 7" of order n’ < n with
7 (T") = B(T") is in F.

Let T be a tree of order n such that v,(7) = 5(T'). If T is a star then 7' € F, so
assume that T is not a star. Let « be a support vertex of T' such that T — (L, U{xz}) is
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a tree denoted by T" and let y be the unique neighbour of z in 7”. If 7" has order two,
then B(T) = |Ly|+1 and v4(T) = |L,|+2, a contradiction. Hence T" has order at least
three. Then by Lemma 3, S(T") = B(T) — |L,| and v,(T") < v,(T) — | Ly|. Therefore
75(T") < B(T") and by Theorem 4, ~,(T") = S(T"). By induction hypothesis, 7" is
in F. The set A(T") U L, is then both a B(T)-set and a 7,(T)-set. The addition of
the star {z} U L, = K;, to T" in an operation O if y is a leaf of 7", Oy if y is a
nonpendant vertex of A(T"), Os if y ¢ A(T") (in this case |L,| > 2 else A(T")U L,
is not a 2-dominating set of T"). Therefore ' € F. m

3 Upper bounds on v, and f
Theorem 7 If T is a nontrivial tree of order n then v,(T) < (n+ ¢(T))/2.

Proof. Let T be a nontrivial tree. If T is a star then the result holds so we assume
that 7" is not a star. The tree T" obtained from T by removing all its leaves is not
trivial and admits a bipartition A, B. Every vertex of degree one in 7" is a support
vertex in T that is adjacent to at least one vertex of L(T). Every vertex of degree at
least two of A (resp. B) is dominated twice by B (resp. by A). Thus L(T) U A and
L(T)UB are two 2-dominating sets of T. So v,(T) < min{|L(T) U A|,|L(T) U B|} <
UT)+ (n—=¢T)/2=(n+T))/2. m

In order to characterize the nontrivial trees attaining the upper bound in Theorem
7, we introduce the collection G of all trees T that can be obtained from a sequence
Ty, Ty, ..., Ty, (k > 1) of trees, where Tj is the path Py, T' = T}, and if k > 2, T;44
is obtained recursively from T; by one of the two operations listed below.

e Operation 7;: Add a star Ky ,, p > 2, centered at a vertex « and join x by an
edge to a leaf y of T;.

e Operation 73: Add a path P, = zz, join z by an edge to a leaf y of T}, and add
k > 0 new vertices adjacent to y.

For instance an even path P, is constructed from P, by performing ¢ — 1 times
T, with £ = 0. Hence P, € G.

Theorem 8 Let T be a nontrivial tree. Then vo(T) = (n+ U(T))/2 if and only if
Teg.

Proof. We first prove the part “if” by induction on the number k—1 of operations
performed to construct T from T} = P,. If k = 1, then T = Py, and so 7,(T) =
(n+¢(T))/2 = 2. This establishes the basis case.

Assume now that & > 2 and that the result holds for all trees in G that can be
constructed from less than k& — 1 operations. Let T =T}, € G, and let 77 = Ty_;. By
induction hypothesis applied to T" we have v,(T") = (n(T") + ¢(T")) /2. We consider
two cases depending on whether T is obtained from T by using operation 7; or 7s.
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Case 1. T is obtained from 7" by using operation 7;.
Let |Ly| = p > 2. Then n(T) = n(T")+p+1and {(T) = {(T")+p— 1. By
Lemma 3,

72(T) = 72(T) + | Le| = (n(T") + L(T"))/2 + p = (n(T) + ((T))/2 .

Case 2. T is obtained from 7" by using operation 7s.

If Y denotes the set (possibly empty) of vertices attached at y by this operation,
n(T) = n(T") + Y| + 2 and {T) = {T') + |Y|. By Observation 2, let S be a
2-dominating set of T not containing x (but necessarily containing ¥ U {z}). To
2-dominate z, S also contains y which implies that S — (Y U {z}) is a 2-dominating
set of T". Hence 7,(T") < 7,(T) — |Y| — 1. On the other hand if S’ is a v,(T")-set
then it contains the leaf y of 7" and thus S’ U (Y U {z}) is a 2-dominating set of T.
Hence v,(T) < 7,(T") +|Y| + 1. Therefore

72(T) = 7(T) + Y]+ 1= (n(T) + UT))/2 + Y[+ 1 = (n(T) + £(T))/2 -

We prove the part “only if” by induction on the order of T. If n = 2 then
T = P, which belongs to G. The only tree of order three does not satisty v,(T") =
(n(T) + ¢(T))/2. One of the two trees of order four, namely P, satisfies v,(T) =
(n(T)+¢(T))/2 and it belongs to G. For n > 5, suppose that every tree of order less
than n and satisfying v,(T') = (n(T) +¢(T))/2 is in G and let T" be a tree of order n
satisfying v,(T) = (n(T)+¢(T))/2. By Observation 1 on stars and double stars, the
only trees of diameter 2 or 3 satisfying ,(T) = (n(T) + ¢(T))/2 are the double stars
S1,4 with ¢ > 1. These trees are obtained from P, by using one operation 7, with
k = g—1 and thus belong to G. So we suppose diam(T) > 4 and consider a v,(T')-set
S of T. We root T at a vertex r of maximum eccentricity. Let v be a support vertex
at maximum distance from r, u the parent of v and 7" = T — (L, U {v}). Since
diam(T) > 4, T' is not trivial and has order n(T") = n(T) — |L,| — 1. We consider
two cases.
Case 1. v is a strong support vertex and thus v4(T") = v4(T") + |L,| by Lemma 3.
If deg;(u) > 3, then [(T") = I(T') — |L,|. By Theorem 7 we have

(T) = |Lo| +7(T") < L] + (0(T") + UT")) /2 = (n(T) + U(T)) /2 = 1/2
< (n(T) +4T))/2,

a contradiction. So w is a leaf of T and {(T") = I(T') — |L,| + 1. Hence
Vo(T") = 72(T) = [Lo| = ((T) + U(T))/2 = |Ly| = (n(T") + £(T"))/2.
By induction hypothesis applied to 17", we have 7" € T . Since T is obtained from

T’ by performing 71, T € T.

Case 2. From now on we may assume that no child of u is a strong support
vertex. Let v be the unique leaf adjacent to v. We claim that u has no child besides
v as a support vertex. Suppose to the contrary that a child w of u is a support
vertex with L,, = {w'} and let T' be the nontrivial tree T — (L, U {v}). Let S’ be



324 BLIDIA, CHELLALI AND FAVARON

a 7,(T")-set not containing w. Then S’ contains w' and w. Hence {v'} U S’ is a 2-
dominating set of T and so by Theorem 7, v,(T) < 1+ 5| < 1+ (n(T") + U(T")) /2.
Since n(T") = n(T) — 2 and [(T") = UT) — 1, we get v,(T) < (n(T) +U(T)) /2, a
contradiction.Thus every child (if any) of u besides v is a leaf.

Now let 7" =T — (L, U L, U {v}). Then T" is not trivial. If S is a 7,(T)-set not
containing v, then S contains v to 2-dominate v, S — ({v'} U L,) is a 2-dominating
set of T and thus 7, (T") < 75(T) —1—|L,|. On the other hand every ~,(T")-set S”
contains the leaf u of 7" and thus S”U(L,U{v'}) is a 2-dominating set of T', implying
Yo(T) < 7o(T") + 1 4 |Ly|. Since n(T) = n(T") + 2 + |L,| and {(T) = {(T") + |L.|
we get

72(T") = 72(T) =1 = |Lu| = (n(T) + U(T))/2 = 1 = |Lu| = (n(T") + €(T"))/2 -

By induction hypothesis applied to 7", we have T" € G . Since T is obtained from
T" by using 75, T € G. This completes the proof of the theorem. m

The following observation will be used in Section 5.

Observation 9 From the part “only if” of the previous proof we deduce that if a tree
T satisfying v,(T) = (n(T) + ¢(T'))/2 and having no strong support vertex is rooted
at a vertex r of mazimum eccentricity, then a vertex at distance diam(T) — 2 from r
has exactly one child as a support vertes.

Theorems 4 and 7 show that every nontrivial tree satisfies 3(T) < (n(T)+¢(T))/2.
The following theorem slightly improves this bound.

Theorem 10 IfT is a nontrivial tree then B(T) < (n(T)+{(T)—1)/2 with equality
if and only if T € F.

Proof. In the inequalities chain S(T) < v,(T) < (n(T)+¢(T))/2, B(T) and v,(T')
are integers. Hence each equality 8(T) = (n(T) +¢(T))/2 or B(T) = (n(T) + ¢(T') —
1)/2 implies B(T) = 7,(T) and thus, by Theorem 6 and Lemma 5, 5(T") = v,(T) =
(n(T)+4(T)—r—1)/2 for some r > 0. Therefore B(T') = (n(T)+¢(T))/2 is impossible
and 5(T') = (n(T)+¢(T)—1)/2 implies T € F with r = 0, that is T" € F;. Conversely
we already observed that each tree T' in F; satisfies 5(T) = (n(T) + ¢(T) —1)/2. =

4 Lower bound on v,

From Theorem A and Theorem 4 we deduce that every nontrivial tree satisfies
72(T) > (n(T) + ¢(T))/3 . In this section we slightly improve this bound.

Theorem 11 IfT is a nontrivial tree then vo(T) > (n(T)+4(T)+2)/3 with equality
if and only if T is a subdivided star SS, with ¢ > 3 or the double star Ss .
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Proof. In the inequalities chain v,(7") > B(T") > (n(T)+€(T"))/3, B(T') and v,(T')
are integers. Hence each of the equalities v,(T) = (n(T) 4+ €(T))/3, 7,(T) = (n(T) +
UT)+1)/3,7,(T) = (n(T)+¢(T)+2)/3 implies v,(T) = 5(T) and thus, by Theorem
6 and Lemma 5, v,(T) = B(T) = (n(T) + {(T) —r —1)/2 and n(T) + ¢(T) > 3r +7
for some 7 > 0. But if vo(T") < (n(T') + ¢(T) +1)/3 then (n(T) +4(T) —r —1)/2 <
(n(T)+¢(T)+1)/3, thus implying n(T)+(T") < 3r+5 which is impossible. Therefore
79(T) > (n(T) + ¢(T) + 2)/3 with equality if and only if n(T") + (T') = 3r 4+ 7. The
result follows from Lemma 5. m

5 Upper bounds on v,(7)/5(T) and ~,(T) — (T

The upper bound on ~,(T) and the lower bound on (T’ show that ,(T') cannot be
arbitrarily large with respect to 5(T).

We introduce the class H of all trees T' that can be obtained from a sequence
Ty, Ty,..., Ty of trees where T} is a path Py = zlyly?a?, T =Ty and if k > 2, Ty,
is obtained recursively from T; by the operation defined below.

e Operation Q : Add four vertices forming a path P, = z{ vy}, y? 22, and
join by an edge an internal vertex y},, or y7 , of this path to a nonpendant
vertex of Tj.

Theorem 12 If T is a nontrivial tree then v,(T)/B(T) < 3/2 with equality if and
only if T belongs to H.

Proof. By Theorem A and Theorem 7, v,(T)/5(T) < 3/2 with equality if and
only if 5(T') = (n(T) + ¢(T))/3 and v,(T) = (n(T) + ¢(T))/2 .

Let T = T}, be a tree of H.Then every 7,(T)-set must contain at least three
vertices of each of the k paths Py. Hence v,(T) > 3k = (4k+2k)/2 = (n(T)+4(T))/2.
On the other hand, T' is the corona of a tree and thus by Theorem A, 5(T) =
(n(T) + ¢(T))/3. Therefore v,(T)/B(T) = 3/2.

We prove the part “only if” by induction on n. For 2 < n < 4, the only tree T
satistying 7,(T) — (n(T) + (T))/2 and (T) = (n(T) + £(T))/3, namely Py, is in .

For n > 5 we suppose this property true for every tree of order less than n and
we consider a tree T of order n such that S(T) = (n(T) + ¢(T))/3 and ~,(T) =
(n(T)+ ¢(T))/2 . By Theorem A, T is the corona of a tree. In particular T has no
strong support vertex. We root T at a vertex r of maximum eccentricity. Let v be
a support vertex at distance diam(T) — 1 from r, L, = {v'}, u the parent of v and
L, = {v'}. From Observation 9, v is the unique child of u that is a support vertex.
The tree 7" =T — {u,u’,v,v'} is not trivial, otherwise u would be a strong support
vertex, and n(7") = n(T) — 4. Since the parent = of u is a support vertex, the
deletion of {u,u',v,v'} does not create any new leaf and ¢(T") = ((T') — 2. Clearly
B(T") = B(T) — 2 and thus

B(T) = (n(T)+UT))/3—-2=n(T)+UT")+6)/3—2= (n(T")+£(T"))/3.
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On the other hand, Let S’ be a v,(T")-set. Then S"U {u,u’,v} is a 2-dominating set
of T. Hence

72(T) < 7(T') +3 < (n(T) + U(T"))/2+3 < ((T) + U(T)) /2.

Since 7,(T) = (n(T) + 4(T))/2, we get 7,(T") = (n(T") + ¢(T"))/2. Therefore
7(T")/B(T") < 3/2. By induction hypothesis, 77 € H. The tree T is obtained
from 7" by using € (the internal vertex w of the path Py = w'uvv’ is joined by an
edge to the nonpendant vertex z of T"). Therefore T' € H which completes the proof.
Note that this means that H = WCT NG. m

In a similar way, Theorem A and Theorem 7 show that ~,(T) — 8(T) < (n(T) +
¢(T))/6 and that the upper bound is attained if and only if 3(T) = (n(T') + ¢(T))/3
and v,(T) = (n(T) + ¢(T"))/2 . Therefore we get the following

Corollary 1 If T is a nontrivial tree then v,(T) — B(T) < (n(T) + ¢(T))/6 with
equality if and only if T belongs to H.

Concluding remarks For the other domination parameters, ir (the irredundance
number), v and ¢, which are related in every graph G by the inequalities ir(G) <
7(G) < i(G), the upper bound i(T) < (n(T) + ¢(T))/3 is known to hold in every
tree [3] and is sharp even for ir. But since ir(K;,) = v(Ky,) = i(K;,) = 1 for
arbitrarily large stars, ir(7), v(T) and (7T") cannot admit any lower bound of the
form (n(T)+¢(T'))/c where c is a constant. However there exist other lower bounds
on these parameters in terms of n and ¢. Lemariska [8] proved that in every tree,
YT) > (n(T) — ¢(T) + 2)/3 and characterized the class of extremal trees. Actually,
since the connected domination number ,(T') of a tree T is equal to n(T) — ¢(T),
the bound on (T') given in [8] is the adaptation to trees of a result by Duchet and
Meyniel [2] who proved that in every connected graph G, v(G) > (7.(G) +2)/3.
This last result was improved to ir(G) > (v.(G) +2)/3 in [4].
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