Ratio of generalized stability and domination parameters

IGOR' É. ZVEROVICH*

RUTCOR-Rutgers Center for Operations Research, Rutgers
The State University of New Jersey
640 Bartholomew Rd, Piscataway
NJ 08854-8003, U.S.A. igor@rutcor.rutgers.edu

Inessa I. Zverovich

ASA Institute of Technology, New York
ASA Institute of Technology, 151 Lawrence Street, Brooklyn
NY 11201 U.S.A.

Abstract

Let \mathcal{P} be a class of graphs. A \mathcal{P} -set in a graph G is a vertex subset X such that $G(X) \in \mathcal{P}$. We define the \mathcal{P} -stability number of a graph G, $\alpha_{\mathcal{P}}(G)$, as the maximum cardinality of a \mathcal{P} -set in G.

A \mathcal{P} -dominating set in a graph is a dominating \mathcal{P} -set. Accordingly, the \mathcal{P} -domination number of a graph G, $\gamma_{\mathcal{P}}(G)$, is the minimum cardinality of a \mathcal{P} -dominating set in G.

For each $r \geq 1$, we define a graph G to be an $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graph if $\alpha_{\mathcal{P}}(H)/\gamma_{\mathcal{Q}}(H) \leq r$ for each induced subgraph H of G.

We characterize all classes of $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graphs in terms of forbidden induced subgraphs for all hereditary classes \mathcal{P} and \mathcal{Q} containing all edgeless graphs, and for all real numbers $r \geq 1$. We propose a number of related open problems and conjectures.

We use standard graph-theoretic terminology, see for example Melnikov, Sarvanov, Tyshkevich, Yemelichev, and Zverovich [3]. Let \mathcal{P} be a class of graphs. A \mathcal{P} -set in a graph G is a vertex subset X such that $G(X) \in \mathcal{P}$. We define the \mathcal{P} -stability number of a graph G, $\alpha_{\mathcal{P}}(G)$, as the maximum cardinality of a \mathcal{P} -set in G.

A \mathcal{P} -dominating set in a graph is a dominating \mathcal{P} -set. Accordingly, the \mathcal{P} -domination number of a graph G, $\gamma_{\mathcal{P}}(G)$, is the minimum cardinality of a \mathcal{P} -dominating set in G. For a hereditary class \mathcal{P} , $\gamma_{\mathcal{P}}(G)$ exists for every graph if and only if the following condition holds

^{*} The DIMACS Winter 2003/2004 Support of the first author is gratefully acknowledged.

O-Condition \mathcal{P} contains all edgeless graphs.

Necessity of the condition is clear, since an edgeless graph has a unique dominating set. Sufficiency follows from the fact that each maximal stable set is always a dominating set.

If \mathcal{P} and \mathcal{Q} are hereditary classes satisfying O-Condition, then for every maximal stable set S in a graph G we have $\alpha_{\mathcal{P}}(G) \geq |S| \geq \gamma_{\mathcal{Q}}(G)$, since S is simultaneously a \mathcal{P} -set and a dominating \mathcal{Q} -set. Therefore $\alpha_{\mathcal{P}}(G)/\gamma_{\mathcal{Q}}(G) \geq 1$ for every graph G.

Definition 1. For each $r \geq 1$, we define a graph G to be an $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graph if $\alpha_{\mathcal{P}}(H)/\gamma_{\mathcal{Q}}(H) \leq r$ for every induced subgraph H of G. We denote by $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ the class of all $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graphs.

The classes $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ are interesting because we can approximate both $\alpha_{\mathcal{P}}(G)$ and $\gamma_{\mathcal{Q}}(G)$ within them for each fixed r regardless of particular structure of the classes \mathcal{P} and \mathcal{Q} . Indeed, let S be an arbitrary maximal stable set of an $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graph G. Then $\alpha_{\mathcal{P}}(G)/|S| \leq \alpha_{\mathcal{P}}(G)/\gamma_{\mathcal{Q}}(G) \leq r$ and therefore $|S| \geq \alpha_{\mathcal{P}}(G)/r$. Since S is also a dominating \mathcal{Q} -set of G, $|S|/\gamma_{\mathcal{Q}}(G) \leq \alpha_{\mathcal{P}}(G)/\gamma_{\mathcal{Q}}(G) \leq r$ and $|S| \leq r\gamma_{\mathcal{Q}}(G)$.

We characterize the classes $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ in terms of forbidden induced subgraphs. A vertex u is dominating in a graph G if u is adjacent to all other vertices of G. For an integer $p \geq 1$ and a hereditary class \mathcal{P} , we define two sets of graphs:

- DI(P, p) consists of all graphs in P of order p that have a dominating vertex, and
- $DO(\mathcal{P}, p)$ consists of all graphs G such that
 - -|V(G)|=p
 - -G has a dominating vertex u,
 - $-G u \in \mathcal{P}$, and
 - $-G v \notin \mathcal{P}$ for each vertex $v \neq u$.

The conditions $G - u \in \mathcal{P}$ and $G - v \notin \mathcal{P}$ imply that u is a unique dominating vertex in $G \in DO(\mathcal{P}, p)$.

Theorem 1. Let \mathcal{P} and \mathcal{Q} be hereditary classes satisfying O-Condition, and let $r \in [p, p+1)$ for an integer $p \geq 1$.

- (i) A graph G is an $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graph if and only if it G does not contain all graphs in $DI(\mathcal{P}, p+1) \cup DO(\mathcal{P}, p+2)$ as induced subgraphs.
- (ii) $DI(\mathcal{P}, p+1) \cup DO(\mathcal{P}, p+2)$ is the set of all minimal forbidden induced subgraphs for the class $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$.

Proof. (i) Necessity. Let H be an induced subgraph of G. If $H \in DI(\mathcal{P}, p+1)$, then $\alpha_{\mathcal{P}}(H) = |V(H)| = p+1$ [since $H \in \mathcal{P}$] and $\gamma_{\mathcal{Q}}(H) = 1$ [since H has a dominating vertex]. Therefore $\alpha_{\mathcal{P}}(H)/\gamma_{\mathcal{Q}}(H) = p+1 > r$, i.e., H is not an $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graph.

If $H \in DO(\mathcal{P}, p+2)$, then $\alpha_{\mathcal{P}}(H) = |V(H)| - 1 = p+1$ [since $H - u \in \mathcal{P}$ for a dominating vertex u in H] and $\gamma_{\mathcal{Q}}(H) = 1$ [since H has a dominating vertex]. Again, $\alpha_{\mathcal{P}}(H)/\gamma_{\mathcal{Q}}(H) = p+1 > r$, i.e., H is not an $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graph.

Sufficiency. Let G be a minimal forbidden induced subgraph for the class $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$. Suppose that $G \notin DI(\mathcal{P}, p+1) \cup DO(\mathcal{P}, p+2)$. Let S be a maximum \mathcal{P} -set in G, and let D be a minimum dominating \mathcal{Q} -set in G.

Claim 1. Each vertex in $S \cap D$ is adjacent to at most p-1 vertices of S.

Proof. Suppose that it does not hold, i.e, there is a vertex $u \in S \cap D$ such that the set $X = N(u) \cap S$ contains at least p vertices. The subgraph H induced by $\{u\} \cup X \subseteq S$ belongs to $DI(\mathcal{P}, p+1)$, since S is a \mathcal{P} -set. Hence $H \notin \alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$. By minimality of G, G = H, a contradiction.

Claim 2. Each vertex in $D \setminus S$ is adjacent to at most p vertices of S.

Proof. Suppose that it does not hold, i.e, there is a vertex $u \in D \setminus S$ such that the set $X = N(u) \cap S$ contains at least p+1 vertices. We denote by H the subgraph induced by $\{u\} \cup X$.

If $G - v \in \mathcal{P}$ for a vertex $v \in X$, then we can delete v and obtain an induced subgraph H' belonging to \mathcal{P} . Clearly, $H' \in DI(\mathcal{P}, p+1)$. By minimality of G, G = H', a contradiction. Thus, $G - v \notin \mathcal{P}$, and therefore $H \in DO(\mathcal{P}, p+2)$. It follows that G = H, a contradiction.

Let S_1 be the set of all vertices in S that are dominated by $S \cap D$. In particular, $S \cap D \subseteq S_1$. According to Claim 1,

$$|S_1| \le p|S \cap D|. \tag{1}$$

Let S_2 be the set of all vertices in $S \setminus D$ that are dominated by $D \setminus S$. By to Claim 2,

$$|S_2| \le p|D \setminus S|. \tag{2}$$

Each vertex of S is dominated by a vertex of D. Then (1) and (2) imply

$$|S| \le |S_1| + |S_2| \le p|S \cap D| + p|D \setminus S| = p|D|.$$

In other words, $\alpha_P/\gamma_Q = |S|/|D| \le p$, i.e., G is an $\alpha_P/\gamma_Q(r)$ -perfect graph, a contradiction.

(ii) Let $F \in DI(\mathcal{P}, p+1)$. To show minimality of F as a forbidden induced subgraphs for the class $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$, it is sufficient to note that $\alpha_{\mathcal{P}}(F')/\gamma_{\mathcal{Q}}(F') \leq |V(F')| \leq |V(F)| - 1 = p \leq r$ for each proper induced subgraph F' of F.

Now let $F \in DO(\mathcal{P}, p+2)$, and let u be a unique dominating vertex of F. We consider an arbitrary proper induced subgraph F' of F. If $u \notin V(F')$ then either

- $\alpha_{\mathcal{P}}(F') \leq p+1$ and $\gamma_{\mathcal{Q}}(F') \geq 2$ [since u is a unique dominating vertex of F], or
- $\alpha_{\mathcal{P}}(F') \leq p$ and $\gamma_{\mathcal{Q}}(F') \geq 1$.

If $u \in V(F')$ then $\alpha_{\mathcal{P}}(F') \leq p$ and, since $G - v \notin \mathcal{P}$ for each vertex $v \neq u$ of F. In any case, $\alpha_{\mathcal{P}}(F')/\gamma_{\mathcal{Q}}(F') \leq p \leq r$. Thus, all proper induced subgraphs of F are $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graphs.

Corollary 1. Let \mathcal{P} and \mathcal{Q} be hereditary classes satisfying O-Condition. All classes of $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graph have finite forbidden induced subgraph characterizations independently of \mathcal{P} , \mathcal{Q} , and $r \geq 1$.

Proof. The statement follows from Theorem 1(ii), since the sets $DI(\mathcal{P}, p+1) \cup DO(\mathcal{P}, p+2)$ are always finite.

Thus, recognizing all classes $\alpha_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ can be done in polynomial time [for each fixed r]. If \mathcal{P} is the class \mathcal{O} of all edgeless graphs, and \mathcal{Q} is the class \mathcal{GRAPH} of all graphs, then $\alpha_{\mathcal{P}}(G)$ is the usual stability number $\alpha(G)$, and $\gamma_{\mathcal{Q}}(G)$ is the usual domination number $\gamma(G)$. In this case we obtain the class of $\alpha/\gamma(r)$ -perfect graphs.

Corollary 2 (Naidenko and Orlovich [4]). Let $r \in [p, p+1)$ for an integer $p \ge 1$. A graph G is an $\alpha/\gamma(r)$ -perfect graph if and only if it does not contain the star $K_{1,p+1}$ as an induced subgraph.

Proof. Indeed, $DI(\mathcal{O}, p+1) = \emptyset$, since there are no edgeless graphs of order $p+1 \geq 2$ with a dominating vertex. Also, $DO(\mathcal{O}, p+2) = \{K_{p+1}\}$. Now the result follows from Theorem 1.

In connection with Corollary 1 we mention a related result of Berman [1], and Halldórsson [2]. For $p \geq 2$, there is a polynomial-time algorithm to approximate the stability number for $K_{1,p}$ -free graphs within a factor of p/2, i.e. to determine a stable set S of a given $K_{1,p}$ -free graph G such that $|S| \geq \alpha(G)/2$.

Since the result of Theorem 1 does not depend on Q, Corollary 1 is valid in more general form.

Corollary 3. Let Q be a hereditary classes satisfying O-Condition, and let $r \in [p, p+1)$ for an integer $p \ge 1$. A graph G is an $\alpha/\gamma_Q(r)$ -perfect graph if and only if it does not contain the star $K_{1,p+1}$ as an induced subgraph.

In case of $Q = \mathcal{O}$, we have $\gamma_Q(G) = \iota(G)$, the independent domination number of G. In other words, we obtain the class of $\alpha/\iota(r)$ -perfect graphs, where $r \geq 1$.

Corollary 4. Let $r \in [p, p+1)$ for some $p \ge 1$. A graph is an $\alpha/\iota(r)$ -perfect graph if and only if it does not contain the star $K_{1,p+1}$ as an induced subgraph.

If $\mathcal{P} \subseteq \mathcal{Q}$, then $\gamma_{\mathcal{P}}(G) \geq \gamma_{\mathcal{Q}}(G)$, or $\gamma_{\mathcal{P}}(G)/\gamma_{\mathcal{Q}}(G) \geq 1$ for every graph G. We introduce the classes of $\gamma_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graphs consisting of all graphs G such that $\gamma_{\mathcal{P}}(H)/\gamma_{\mathcal{Q}}(H) \leq r$ for each induced subgraph H of G.

Conjecture 1. Let $\mathcal{P} \subseteq \mathcal{Q}$ be hereditary classes, both satisfying O-Condition. For every $r \geq 1$, the class of all $\gamma_{\mathcal{P}}/\gamma_{\mathcal{Q}}(r)$ -perfect graphs has a finite forbidden induced subgraph characterization.

Open Problem 1. Characterize $\alpha_P/\alpha_Q(r)$ -perfect graphs in terms of forbidden induced subgraphs.

We specify an interesting particular case, where $\mathcal{P} = \mathcal{O}$ and $\mathcal{Q} = \mathcal{GRAPH}$, that is the class of $\iota/\gamma(r)$ -perfect graphs, $r \geq 1$.

Conjecture 2. For every $r \geq 1$, the class of all $\iota/\gamma(r)$ -perfect graphs has a finite forbidden induced subgraph characterization.

Open Problem 2. Characterize $\iota/\gamma(r)$ -perfect graphs in terms of forbidden induced subgraphs.

The case r=1 of Open Problem 2 corresponds to the class of domination perfect graphs, i.e., graphs G such that $\gamma(H)=\iota(H)$ for every induced subgraph H of G. A result of Zverovich and Zverovich [5] implies that $\iota/\gamma(1)$ -perfect graphs are characterized by 17 minimal forbidden induced subgraphs. Note that a related problem concerning ratio of the irredundance number and the domination number was investigated by Zverovich [6].

If $\mathcal{P} \supseteq \mathcal{Q}$, then $\alpha_{\mathcal{P}}(G) \ge \alpha_{\mathcal{Q}}(G)$, or $\alpha_{\mathcal{P}}(G)/\alpha_{\mathcal{Q}}(G) \ge 1$ for every graph G. Therefore it is natural to consider the classes of $\alpha_{\mathcal{P}}/\alpha_{\mathcal{Q}}(r)$ -perfect graphs [for $r \ge 1$] defined in an obvious way.

Open Problem 3. Let $\mathcal{P} \supseteq \mathcal{Q}$ be hereditary classes, both satisfying O-Condition. Does each class of $\alpha_{\mathcal{P}}/\alpha_{\mathcal{Q}}(r)$ -perfect graphs, $r \ge 1$, have a finite forbidden induced subgraph characterization?

Open Problem 4. Characterize the classes of $\alpha_P/\alpha_Q(r)$ -perfect graphs in terms of forbidden induced subgraphs.

Acknowledgment

We thank the anonymous referees, whose suggestions helped to improve the presentation of the paper.

References

- [1] P. Berman, A d/2 approximation for maximum weight independent set in d-claw free graphs, Lecture Notes Comput. Sci. **1851** (2000) 214–219
- [2] M. M. Halldórsson, Approximating discrete collections via local improvements, in: Proceedings of the 6th annual ACM-SIAM symposium on discrete algorithms (1995) 160–169
- [3] O. Melnikov, V. Sarvanov, R. Tyshkevich, V. Yemelichev, and I. Zverovich, Exercises in graph theory, Kluwer Texts in the Mathematical Sciences 19 (Kluwer Academic Publishers Group, Dordrecht, 1998) viii+354 pp.
- [4] V. G. Naidenko and Yu. L. Orlovich, Independent and dominating sets in $K_{1,r}$ -free graphs, Vestsī Nats. Akad. Navuk Belarusī Ser. Fīz.-Mat. Navuk (2) (2000) 126–130, 144 (in Russian)
- [5] I. E. Zverovich and V. E. Zverovich, An induced subgraph characterization of domination perfect graphs, J. Graph Theory 20 (3) (1995) 375–395
- [6] V. E. Zverovich, The ratio of the irredundance number and the domination number for block-cactus graphs, J. Graph Theory 29 (3) (1998) 139–149

(Received 29 Oct 2003)