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Abstract
Let k,r,n be integers with £ > 2,0 < r < k —1 and n > 10k + 3. We
prove that if G is a graph of order n such that the degree sum of any pair
of nonadjacent vertices is at least n —r, then G contains k vertex-disjoint
subgraphs H;, 1 < ¢ < k, such that V(H;)U...UV(Hy) = V(G) and H;
is a cycle or isomorphic to K for each ¢ with 1 <7 < r, and H; is a cycle
for each i with r +1 <7 < k.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no
multiple edges. For a graph G, we denote by V(G) and E(G) the vertex set and the
edge set of G, respectively. For a vertex x of a graph G, the neighborhood of z in G
is denoted by Ng(z), and we let dg(x) := |Ng(z)|. For a noncomplete graph G, let
02(G) :==min{dg(z) + de(y)| 2y ¢ E(G)}; if G is a complete graph, let 02(G) := oo.
For an integer n > 1, we let K, denote the complete graph of order n. In this paper,
“disjoint” means “vertex-disjoint”.

A sufficient condition for the existence of a specified number of disjoint cycles
covering all vertices was given by Brandt et al. in [1]:

Theorem A([1]) Let k,n be integers with n > 4k. Let G be a graph of order n,

and suppose that o3(G) > n. Then G contains k disjoint cycles H;, 1 <1i <k, such
that V(Hy) U ... UV (H) =V(G).

In [4], Enomoto and Li showed that if we regard K; and K, as cycles, then the
condition on o5(G) in Theorem A can be weakened:

Theorem B([4]) Let k,n be positive integers withn > k. Let G be a graph of order
n, and suppose that 05(G) > n—k+1. Then unless k =2 and G is a cycle of length 5,
G contains k disjoint subgraphs H;, 1 < i < k, such that V(H;)U.. .UV (Hy) = V(G)
and such that for each 1 < i < k, H; 1s either a cycle or isomorphic to K; or Ks.

Also, in [7], Hu and Li showed that if the order of G is sufficiently large, then we
do not need Ky in Theorem B:
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Theorem C([7]) Let k,n be positive integers with n > 10k + 3. Let G be a graph
of order n, and suppose that 02(G) > n —k + 1. Then G contains k disjoint sub-
graphs H;, 1 < i <k, such that V(H,)U.. .UV (Hy) = V(G) and such that for each
1 <11 <k, H; is either a cycle or isomorphic to K;.

Along a slightly different line, Kawarabayashi [8] proved the following refinement
of Theorem A:

Theorem D([8]) Let k,n be integers with k > 2 and n > 4k. Let G be a graph of
order n, and suppose that 02(G) > n — 1. Then one of the following holds:

(1) G contains k disjoint cycles H;, 1 < i < k, such that V(H;)U.. UV (Hy) = V(G);

(ii) G has a vertex set S C V(G) with |V(S)| = 25% such that G — S is independent;
or

(iii) G is isomorphic to the graph obtained from K,_1 by adding a vertex and join it
to precisely one vertex of K,y (i.e., G = (K2 UK))+ K).

The purpose of this paper is to ”interpolate” Theorem C and Theorems D and
A by proving the following theorem, which was conjectured by Enomoto [5]:

Theorem 1 Let k,r,n be integers with2 <r < k—2 and n > Tk. Let G be a graph
of order n, and suppose that 05(G) > n —r. Then G contains k disjoint subgraphs
H;, 1 <i<k, such that V(H)U...UV(Hy) = V(G) and H; is a cycle or isomorphic
to Ky for each i with 1 <1i <r, and H; ts a cycle for each i withr +1 <1< k.

Combining Theorems A,C and D and Theorem 1, we obtain the following corol-
lary:

Corollary 2 Let k,r,n be integers with k > 2,0 < r < k—1 and n > 10k + 3.
Let G be a graph of order n, and suppose that 02(G) > n —r. Then G contains k
disjoint subgraphs H;, 1 < i < k, such that V(H,) U ... UV (H) = V(G) and such
that H; is a cycle or isomorphic to Ky for each i with 1 < ¢ <r, and H; is a cycle

for each i withr +1 <1< k.

Our notation is standard except possibly for the following. Let G be a graph.
For a subset L of V(G), the subgraph induced by L is denoted by (L). For a subset
M of V(G), we let G — M = (V(G) — M) and, for a subgraph H of G, we let
G — H = (V(G) — V(H)). For subsets L and M of V(G), we let E(L, M) denote
the set of edges of G joining a vertex in L and a vertex in M. A vertex z is often
identified with the set {«}. Thus if & € V(G), then (z) means ({z}), G — x means
G —{«}, and E(z, M) means E({z}, M) for M C V(G). We say that G is pancyclic
if |V(G)| > 3 and G contains a cycle of length [ for each [ with 3 < < |V(G)|. For a
cycle C = z125 ... zpy(o) 21 and for a vertex z = z; € V(C), we define 2% = 7, ; and
277 = z;_; (indices are to be read modulo [V(C)|). Also, we let z+ =zt 2= =z~

We conclude this section by listing known results which we use in the proof of
Theorem 1.
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Theorem E([6]) Letn > 3 be an integer. Let G be a 2-connected graph of order n,
and suppose that max{dg(z),da(y)} > § for any x,y € V(G) such that © and y are
at distance 2 apart. Then G has a hamiltonian cycle.

Theorem F([2]) Let k,d,n be integers with k > 3,d > 4k —1 and n > 3k. Let G be
a graph of order n, and suppose that 05(G) > d. Then G contains k disjoint cycles
covering at least min{d,n} vertices of G.

The following theorem, announced in [2], asserts that Theorem F holds for k = 2
as well.

Theorem G([3]) Let d,n be integers with d > 7 and n > 6. Let G be a graph of
order n, and suppose that o2(G) > d. Then G contains two disjoint cycles covering
at least min{d,n} vertices of G.

2 Preparation for the proof of Theorem 1
We start with three lemmas related to Theorem E.

Lemma 2.1. Let o > 3 be an integer. Let F be a 2-connected graph of order a,
and suppose that max{dr(z),dr(y)} > 5] for any z,y € V(F) with x # y and
xy ¢ E(F). Then F is pancyclic.

Proof. If a = 3 or 4, then the assumption of the Lemma implies that F = K.
Thus we may assume « > 5. We first prove the following claim.

Claim. There exists « € V(F) with dp(x) > [§] such that F — 2 contains a cycle
D of length a — 1 or av — 2.

Proof. By Theorem E, F' contains a hamiltonian cycle C. Take z € V(C) = V(G)
with dp(z) > [§]. If dp(z™) < |[§] and dp(z?) < [§], then 272" € E(F), and
hence F' — x contains a cycle of length o — 1; if dp(z™) > [§] and dp(z™) > | 3],
then there exists y € V/(C) such that y € Np(z~) and y* € Np(zt) (it is possible
that y = 2™ or y* = ¢7), and hence F — x contains a cycle of length o — 1. Thus
we may assume dp(z”) < |§] and dp(2™) > [§]. Arguing similarly with z replaced
by «*, we may also assume dp(z*?) < |%]. But then z#~z%? € E(F), and hence
F — {x,2"} contains a cycle of length o — 2. O

Returning to the proof of the lemma, let @, D be as in the Claim. If |V(D)| =
a—2, then |[E(z,V(D))| > | 2] -1 = |2 if |V(D)| = a—1, then |E(z, V(D))| >
5] > leg—D)‘J In either case, |E(z,V(D))| > L@J Now let 3 <1l < a-—-1
Then there exists z € V(D) such that z € Np(z) and z+0~2 € Np(z). Thus

{z}u{z, 2", ..., 2t2}) contains a cycle of length [. oo
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Lemma 2.2.Let v, be integers with o > r+2 > 4. Let F be a graph of order «, and
suppose that F is not 2-connected, and max{dp(x),dr(y)} > § for any z,y € V(F)
with x £y and vy ¢ E(F). Then one of the following holds:

(1) F contains r disjoint subgraphs Ay, ..., A, such that V(A;)U.. .UV (A,) =V (F)
and such that for each 1 < j <r, Aj is either a cycle or isomorphic to K;;

(2) r =2, F is disconnected, and one of the components of F has order 2; or

(3) =2, and there exists e € E(F) such that one of the components of F — e has
order 2.

Proof. If F is connected, then let B be an endblock of F such that B — ¢ contains
a vertex a with dp(a) > [§], where c is the cut vertex of F' contained in B; if F is
disconnected, then let B be a component of F' such that B contains a vertex a with
dr(a) > [2], and take ¢ € V(B). Then |V(B)| > dg(a) + 1 = dp(a) + 1 > [2] + 1.
Hence for each z € V(F — B), dp(z) < |(V(F — B) U {c}) — {z}| < [§] — 1. This
implies that F — B is a complete graph, and

dp(r) =dp(z) > [$] > L@J for every x € V(B — ¢). (2.1)
If |V(F — B)| <r—1, then by (2.1) and Lemma 2.1, B contains a cycle C of length
a — (r — 1), and hence {C} U {(v)| v € V(F — C)} forms a collection of subgraphs
having the properties required in (1). Thus we may assume |V (F — B)| > r. Then
|V(B)| > [¢1+1>|V(F-B)|+2>r+2. If [V(F—B)| > 3, then F — B contains
a cycle C of length |V(F — B)| and B contains a cycle D of length |V(B)| — (r — 2),
and hence {C, D} U {(v)| v € V(F — C — D)} forms a collection of subgraphs with
the desired properties. Thus we may assume |V (F — B)| = 2, which forces r = 2. By
(2.1),dp—c(z) > [§] -1 = [%1 for every « € V(B — ¢). This in particular
implies that B — ¢ is 2-connected. Hence by Theorem E, B — ¢ contains a cycle C of
length |V(B)|—1 = a—3. Now if |E(¢, V(F—B))| = 2, then C and ((V(F - B)U{c})
satisfy the properties required in (1). Thus we may assume |E(c¢, V(F — B))| < 1,
which implies that (2) or (3) holds. O

Lemma 2.3. Let v, be integers with o > r + 2 > 4. Let F be a graph of order
a, and suppose that max{dp(x),dp(y)} > 5] for any x,y € V(F) with x # y and
zy ¢ E(F). In the case where r = 2, suppose further that |V(F)| < 6. Then F
contains v disjoint subgraphs Ay, ..., A, such that V(A;)U...UV(A,) =V(F) and
such that for each 1 < j <r, A; is either a cycle or isomorphic to K;.

Proof. If F is 2-connected, then by Lemma 2.1, F' contains a cycle C' of length
a — (r — 1), and hence {C} U {{(v)| v € V(F — C)} forms a collection of desired
subgraphs. Thus we may assume F' is not 2-connected. In view of Lemma 2.2, we
may also assume that (2) or (3) of Lemma 2.2 holds. Then r = 2 and, with B and
a as in the proof of Lemma 2.2, we have dr(a) > |§], and hence a = |V(F)| =
[V(B)| +2 > (dr(a) +1) 4+ 2 > |§] + 3. This contradicts the assumption that we
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have a < 6 when r = 2. O

Throughout the rest of this paper, let n, k,r be as in Theorem 1, and let G be
a counterexample to Theorem 1. Let L = {v € V(G)| da(v) < "3*}. Note that
zy € E(Q) for any =,y € L by the assumption that 05(G) > n — r. We first prove
the following lemma.

Lemma 2.4.In G, there exist k — r disjoint cycles Hy, ..., Hy_, such that n —3r <
| UL V(H) < n—r

Proof. Take vy,...,v, € V(G), and let G' = G—{v1,...,v,}. Then 05(G’) > n—3r.
Since k—r > 2 and n—r > n—3r > 4(k—r), it follows from Theorems F and G that
G’ contains k —r disjoint cycles Hy, ..., Hy_, such that |U¥] V(H;)| > n—3r. Since
|USTV(H)| < V(G| =n—r, Hy, ..., Hy_, are cycles with the desired properties.0

Let Hy,...,Hy_, be as in Lemma 2.4. We choose Hi, ..., H;_, so that

(a) |UMT V(H;)| is maximum (subject to the condition that U= V(H;)| < n—r)
and,
subject to condition (a),

(b) |(UEZTV(H;)) N L] is maximum
(we make use of (b) only in the proof of Lemma 2.15).

Let H = (UTV(H,)) and let a = |V(G — H)|. If a = r, then {H,, ..., Hy_,} U
{(v)| v € V(G — H)} forms a collection of subgraphs having the properties required
in Theorem 1. Thus we may assume a > r + 1.

We now prove several lemmas which we use in estimating the degree of various
vertices.

Lemma 2.5. Let P = vjvz...u(l > 1) be a path in G — H and let 1 < i < k—r,
and suppose that |V(H;)| > 1+ 1. Suppose that Ng(vi) N V(H;) # 0, and let
x € Ng(v1) N V(H;). Then E(v, {z~!,z}) = 0.

Proof. Suppose not. By symmetry, we may assume vz € E(G). Then (V(H;) U
V(P)—{a*}, ..., 2" 1}) contains a cycle C of length |V(H;)|+1. Hence by replacing
H; by C, we get a contradiction to the maximality of | U¥-] V(H,)). O

Lemma 2.6. Let v € V(G — H), and let 1 <i < k —r. Then the following hold.
(1) |E(v,{z,z*})| <1 for every x € V(H;).
(i1) [E(o, V(H))l < |[V(Hi)l/2.
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Proof. Applying Lemma 2.5 with [ = 1, we see that (i) holds, and (ii) follows from

(1). a

Lemma 2.7. Let v € V(G — H). Then |E(v,V(H))| < (n — «a)/2.

Proof. By Lemma 2.6(ii), |E(v, V(H))| < Zi:f [V(H;)|/2 = (n—a)/2. O

Lemma 2.8. Suppose that o = r + 1. Let v,v' € V(G — H) with v # V', and let
1<i<k-—r. Letabe V(H;) witha # b, and suppose that a,b* € Ng(v) and
at,b € Ng(v'). Then {a,a™} N{b,b"} #£0.

Proof. Suppose that {a,a*} N{b,b"} = 0. Then (V(H;)U {v,v'}) contains disjoint
cycles C, D such that V(C)U V(D) = V(H;) U {v,v'}. Since a = r + 1, this means
that {Hi,...,H;—1,C, D, Hipq, ..., Hy o} U {(u)| v € V(G — H) — {v,v'}} forms a
collection of subgraphs with the desired properties. O

Lemma 2.9. Let vv' € E(G — H), and let 1 < i < k —r. Then the following
statements hold:

(i) Ifv is adjacent to a vertex x € V(H;) and E(v',{x",2*}) £ 0, then a =r + 1.
(i) |E({v,v'}, V(H:)| < 2[V(Hi)| +4)/3.
(ili) If No-u(v) N Ng_g(v') # 0, then |E({v,v'}, V(H;))| < ([V(H;)| +1)/2.

Proof. If vz € E(G), E(V,{z~,27}) # 0 and a > r + 2, then (V(H;) U {v,v'})
contains a cycle C of length |V (H;)|+ 2 and, by replacing H; by C, we get a contra-
diction to the maximality of |US= V/(H;)|. Thus (i) holds. We proceed to the proof of
(ii) and (iii). If |[V(H;)| = 3, then by Lemma 2.6(ii), |E({v,v'},V(H;))| < 1+1=2.
Thus we assume that |V (H;)| > 4, and define f(z) = |E({v,v'},{z",z,21})| for
each ¢ € V(H;) and, if Ng_y(v) N Ng_g(v') # 0, then we also define g(z) =
|[E({v,v'},{z~,z,z",z*?})| for each z € V(H;).

We first prove (ii). We start with the following claim.
Claim 1. Let z € V(H;). Then f(z) < 3. Further if equality holds, then oo =r +1,
and one of the following holds:
(1) E(v,{z7,2,27}) = {vz",vz"} and E(v',{z7,z,27}) = {v'z}; or
(2) Blo, 127, 2 7)) = foz} and B, {2, 7)) = {7, vs¥).
Proof. Supoose that f(z) > 3. Then |E(v,{z7,2,2%})| > 2 or |E(V,{z7,2,
zt})| > 2. We may assume |E(v,{z7,2,27})] > 2. Then by Lemma 2.6(i),
E(v,{z7, 2,27}) = {vz",vzt}. Therefore applying Lemma 2.5 with [ = 2, we
obtain E(v', {27,z ,2%}) = {v'2}, and hence « =7 + 1 by (i). O
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Now by way of contradiction, suppose that |E({v,v'},V(H,))| > (2|[V(H; )|+
4)/3. Then since |[E({v,v'}, V(H)))| = (X ev(a, f(2))/3, it follows from Clalm 1
that « = r + 1, |V(H;)| > 5, and the number of those vertices z of H; for which
f(z) = 3 is at least 5. Hence there exist z,y € V(H;) with f(z) = f(y) = 3 such
that [{z7,z,27} N{y~,y,y*}| < 1. By the symmetry of z and y, we may assume
{z7,z}n{y~,y,y*T} = 0. By the symmetry of v and v', we may assume (1) of Claim
1 holds for &. Now if (1) holds for y, we get a contradiction by applying Lemma 2.8
with @ = 2~ and b = y; similarly if (2) holds for y, we get a contradiction by applying
Lemma 2.8 with ¢ = 2~ and b = y~. Thus (ii) is proved.

To prove (iii), suppose that Ng_g(v) N Ng_g(v') # 0.

Claim 2. Let z € V(H;). Then g(z) < 3. Further if equality holds, then oo = 7 + 1,
and one of the following holds:

(1) E(v,{z7,2,2%,2%?}) = {vz",vzt} and E(v, {27, 2,27, 21%}) = {v'z};
(2) E(v,{z7,2,2%,2%%}) = {vz} and E(v',{z7,2,2%,27%}) = {v'z7, 02T };
E ; EU, {z‘,z,zﬂz”}% = {vz,vz™?} and E(v',{z7,2,2%,272}) = {v/zF };or

E(v,{27,2,2%,272}) = {vz"} and E(v', {27, 2,27, 27%}) = {v'2, 0272}

Proof. Suppose that g(z) > 3. Then |E(v,{z7,z,2%,2T2})| > 2 or |E(V,{z~
,2,27,272})| > 2. We may assume |E(v, {27, z, 2%, 272})| > 2. Then by Lemma 2.6(i),
E(w,{z7, 2,27, 2%}) = {vz, vz}, {vz, vzt }or {vz,vz 2} HE(v,{z7,2,2%,27%}) =
{vz7,v2%%}, then applying Lemma 2.5 with [ = 2,3, we get E(v, {27, 2,2F, 272}) =
(), which contradicts the assumption that g(z) > 3. Thus E(v,{z7,2,27,2%%? }) =
{vz=,v2%} or {vz,v2"?}. We may assume E(v, {27, 2, 2%,272}) = {v2~,v2"}. Then
applying Lemma 2.5 again with [ = 2,3, we obtain E(v',{z7,2,27",272} ) = {v'z},
and hence a = r + 1 by (i).

Returning to the proof of (iii), suppose that |E({v,v'}, V(H;))| > (|V(H;)| +1)/2.
Then since |E({v,v'}, V(H;))| = (X.cvm, 9(2))/4, it follows from Claim 2 that
a =71+ 1 and the number of those vertices z of H; for which g(z) = 3 is at least
3. Take z € V(H;) with g(z) = 3. By symmetry, we may assume (1) of Claim 2
holds for . Then E({v,v'},z%?) = 0. Applying Claim 2 with z = =™, we also see
that E({v,v'},z*3) = (). Similarly applying Claim 2 with 2 = 7! and 2z = 272, we
get E({v,v'},z72) = 0 and E({v,v'},27%) = 0. Hence again by Claim 2, g(z) < 2
for each 2z € {o7, 273,272, 2", 22, 2™}, Consequently |V(H;)| > 9 and there
exists y € V(H;) — {a:_4,:c_3,w 2 a7, w2 23} such that g(y) = 3. Then
{z7,z, 2T, 220 {y~,y,y",y™2} = 0. Therefore we get a contradiction by applying
Lemma 2.8 with a = 2~ and b =y, y or y*, which proves (iii). od

Lemma 2.10. Let vv' € E(G — H). Then the following hold.
(1) [E({o,v'}, V(H))| < 2(n = o) +4(k —7))/3.

(i) If Ng_g(v) N Ng_pg(v') # 0, then |[E({v,v'},V(H))| < (n—a)+ (k—1))/2.
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Proof. By Lemma 2.9(it), |E({v,v'}, V(H))| < ST 2|V(H,)|+4)/3 = (2(n—a) +
4(/;:—7"))/3 and, if Ng_ g (v)NNg_x(v) # 0, then by LemmaQ 9(iii), | E({v,v'}, V(H))|
2imt (V(H)+1)/2 = ((n —a) + (k= 7))/2. o

Lemma 2.11.Letv € V(G- H), and let 1 <i < k—r. Let x € V(H;), and suppose
that Ng(v) 2 {z,272}. Then dy(z*) < (n—a)/2.

Proof. By the assumption Ng(v) D {z,2+2}, there exists a cycle C of length |V (H;)|
in ((V(H;) — {z*}) U {v}). Thus arguing similarly as in the proof of Lemma 2.6,
we see from the maximality of | USZ] V(H;)| that |E(z", V(H;))| < |H;|/2 for
each j with 1 < j < k—r and j 7é i, and |E(zT,V(C))| < |V(C)|/2, and
hence |E( T V(H;) — {«})] < |V(C)|/2 = |V(H;)|/2. Consequently, dg(zt) <
5221 VH) = (0= a)/2. O

The following two lemmas are used when we choose an appropriate vertex in H
where degree is to be estimated.

Lemma 2.12. Let v € V(G — H) — L. Suppose that either dg_p(v) < ta or
a < r+2. Then for some i with 1 < i < k —r, there exist three distinct vertices
z,y,z € V(H;) such that Ng(v) D {z,z72,y,y"?, 2, 212} (it is possible that {x,y,2}N
[, 242} £0).

Proof. Suppose not. Then it follows from Lemma 2.6(i) that for each 1 < ¢ < k—r,
we have |E(v,{z,2",2%?)| < 1 for every vertex « € V(H;) possibly except two.
Hence |E(v, V(H))| = 32 Zzevg)lE( {z7 2,2} < 50 —a) + (k= 7).
et 2k — ) +dg_g(v) > dg(v ) > 5T, and hence
n < 4k—r—2a+6dc a(v). Now1fdG,H( ) < §, then from o < 3r and r < k — 2,
we obtain n < 4k —r 4+ a < 4k 4 2r < 6k, which contradicts the assumption that
n > Tk; if a <r 42, then from dg_g(v) < |[V(G—H)|—-1=a—-landr < k-2,
we obtain n < 4k —r +4a — 6 < 4k + 3r + 2 < 7Tk, which again contradicts the
assumption that n > 7k. O

Lemma 2.13. Let v € V(G — H) — L and v' € Ng_g(v), and suppose that either
dg-g(v) < § ora < r+2. Then for some i with 1 < i < k —r, there ewists
z € V(H;) such that z,2™ € Ng(v), v,v' ¢ Ng(z©) and |E(z*, V(G — H))| < %52,

Proof. Let i,z,y, z be as in Lemma 2.12. Then by Lemma 2.6(ii), |V (H;)| > 6. Sup-
pose that some two of z%,y* and z*, say 2™ and y™, have a common neighbor u in
V(G—H)—{v}. Then (V(H;)U{v, u}) contains a cycle of length |V (H;)|+2. In view
of the maximality of | U=] V(H,)], this implies a = r + 1. On the other hand, since
|V(H;)| > 6,it follows from Lemma 2.6(i) that we have {z,z*} N {y*,y™2} =0 or
{zt, 2" }n{y,y"} = Q). Consequently we get a contradiction by applying Lemma 2.8
with a = z and b = y™ or a = y and b = 2*. Thus no two of z7,y* and 2z have
a common neighbor in V(G — H) — {v}. In particular, at most one of z*,y* and
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2t is adjacent to v'. We may assume zt0',ytv' ¢ E(G). We may also assume
|E(zt,V(H;))| < |E(yT,V(H;))|. Then since ztv,yTv ¢ E(G) by Lemma 2.6(i),
E(2*, V(G- H)) < M = 22 Thus = has the desired properties. O

Finally we prove two lemmas which we need in considering the case where V(G —
H)C L.

Lemma 2.14. Suppose that o = r + 1 and there exists a triangle T in G — H. Let
1<i<k—rwith|V(H;)| >4, and let v € V(H;).Then dg(z) + dr(zt) <n —a.

Proof. Suppose that dp(z) + dg(z™) > n — «a. Then there exists j such that
|E(z, V(Hj))| + |E(z*,V(H;))| > |V(Hj)|. Assume for the moment that j = i.
Then there exists y € V(H;) such that zy, 2"y € E(G) (it is possible that y = =
or y*? = z). Since |V (H;)| > 4, this implies that (V(H;)—{y™}) contains a cycle C of
length |V( ;)] — 1, and hence {Hl, cos Hi, C Ay, Hiva, o oo Hy—r , TYU{{U)| 0 €

V(G — H — T)} forms a collection of subgraphs with the desired properties. Thus
we may assume j # ¢. Then there exists y € V(H;) such that zy,2Ty™ € E(G). (it
is possible that y = y*?), which implies that (V(H) U(V(H;) — {y*,y™?)) contains
a cycle C of length |V (H;)| + |V(H;)| — 2. Hence replacmg H; and H; by C and T,
we get a contradiction to the maximality of | USZ] V(Hy)|. O

Lemma 2.15.Suppose that V(G — H) C L, and let 1 <i <k —r.
(i) If 2 € V(H;) and E(z,V(G — H)) # 0, then E(z** V(G - H)) = 0.
(i) There exists z € V(H;) such that E(z,V(G—H)) =0 and E(z",V(G—H)) = 0.

Proof. Suppose that there exists z € V(H;) such that F(z,V(G — H)) # 0 and
E(z“,V(G—H)) # 0, and take v € Ng(2)NV(G—H) and v' € Ng(2™)NV(G-H).
If v # ', then (V(H;)U{v,v'})—{z1}) contains a cycle C of length |V (H;)|+1, and
hence we get a contradiction to the maximality of | U’” 1 V(H,)| by replacing H; by
C. Thus v = v'. Then ((V(H;)U{v}) — {z1}) contains a cycle C of length |V (H;)|.
Since vzT ¢ E(G) by Lemma 2.6(i) and since v € L by the assumption of the lemma,
2zt ¢ L by the assumption that o92(G) > n — r. Consequently, replacing H; by C,
we get a contradiction to the maximality of |(U¥-7V(H;)) N L|. This proves (i). We
now prove (ii). We may assume E(V(H;),V(G — H)) # 0. Take y € V(H;) with
E(y,V(G — H)) # 0. Then E(y*%, V(G — H)) =0 by (i). If E(y",V(G — H)) =0,
then y* has the desired properties. Thus we may assume E(y*, V(G - H)) #0.
Then E(y™3, V(G — H)) =0 by (i)( so |V(H;)| > 4), and hence y*? has the desired
properties. a

3 Proof of Theorem 1

We continue with the notation of the preceding section, and complete the proof of
Theorem 1. We divide the proof into two cases.
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Case 1. V(G-H)¢ L
Subcase 1.1. r+3 < a < 3r.

If de_g(z) > /2 for all z € V(G — H) — L, then by Lemma 2.3, G — H con-
tains r disjoint subgraphs Ai,..., A, such that V(A4;)U...UV(4,) = V(G — H)
and A; is either a cycle or isomorphic to K; for each 1 < j < r (note that we
have |V(G — H)| < 3r = 6 in the case where 7 = 2), and they together with
Hy,...,H;_, yield subgraphs with the desired properties. Thus we may assume
there exists v € V(G — H) — L such that dg_pg(v) < a/2. We first consider the case
where there exists v’ € Ng_p(v) such that Ng_y(v)NNg_g(v') # 0. By Lemma 2.13,
there exists a cycle H; and there exists z € V(H;) such that z,2%% € Ng(v) and
v,v' ¢ Ng(xT). Since a > r + 3, we see from the maximality of |ZI‘ 1 V(H;)| that
Ng(zT)N Ng(v)NV(G - H) =0 and Ng(z") N Ng(v')NV(G — H) = @ and hence
|Na(z)NV(G—H)|+|Ng(v)NV(G - H)| < aand |Ng(z™)NV (G — H)|+|Ng(v')N
V(G — H)| < a. Since |Ng(zt)NV(H)| < (n — «)/2 by Lemma 2.11 and |Ng(v) N
V(H)| + |Ne(v)NV(H)| < ((n—a)+ (k—r))/2 by Lemma 2.10(ii), this implies
2dg(zt)+dg(v)+dg(v') < 2a+(n—a)+((n—a)+(k—r))/2 = 3n/2+k/2—r/2+a/2.
On the other hand, since v,v’ ¢ Ng(zt), 2dg(x™) + dg(v) + dg(v') > 2n — 2r by the
assumption that o2(G) > n — r. Consequently 2n — 2r < 3n/2 4+ k/2 —r/2 + /2,
which implies n < k+ 3r + a < k + 6r < 7k, a contradiction. We now consider the
case where Ng_p(v) N Ng_g(z) = 0 for every z € Ng_pg(v). In this case, we have
|Ng(v) N (L — V(H))| <1 by the fact that (L — V(H)) is a complete graph. Since
de_g(v) =dg(v) — |[Ne(v)NV(H)| > (n—71)/2 - (n —a)/2 > 1 by Lemma 2.7 and
the assumption of Subcase 1.1, this implies Ng_g_r(v) # 0. Take v' € Ng_g_r(v).
Since Ng_g(v) N Ng_y(v') = 0, [INg(v) N V(G — H)| + |Ne(v') N V(G — H)| < a.
Since |[Ng(v)NV(H)|+ |[Ng(v' )NV (H)| < (2(n—«)+4(k —r))/3 by Lemma 2.10(i),
this implies dg(v) + dg(v') < a+(2(n —a) +4(k —r))/3. On the other hand, we get
dg(v)+dg(v') > n—rfromv,v' ¢ L. Consequently n—r < 2n/3+4k/3— 4r/3+a/3
which implies n < 4k — r + a < 4k + 2r < 6k, a contradiction.

Subcase 1.2. r+1<a <r+2.

Let v E V(G H)— L. By Lemma 2.7, dg_g(v) = dg(v) — |Ng(v) N V(H)| >
osr — 228 > (0. Take v' € Ng_pg(v). By Lemma 2.13, we can find a cycle H;
for which there exists x € V(H;) such that z,z™* € Ng(v), v,v' ¢ Ng(zt), and
INa(zT)NV(G—H)| < 252 If Ng_p(v)NNg-g(v') # 0, then by Lemma 2.10(ii) and
Lemma 2.11, 2n—2r < 2dg(z?) +dg(v)+dg(v') < 2(%—}—0‘7_2)—0—%—}—2(04—
1), which implies n < k+3r+3a—8 < k+6r—2 < 7k, a contradiction. Thus we may
assume Ng_y (v)NNg_g (v') = 0. Then |Ng(v)NV(G—H)|+|Ne(v)NV(G—H)| < a.
Hence by Lemma 2.10(i) and Lemma 2.11, 2n — 2r < 2dg(z) + dg(v) + dg(v') <
p(nge y as2)y An—altilkon) 4 which implies n < 4k+2r+a—6 < 4k+3r—4 < Tk.
This is a contradiction, which completes the discussion for Case 1.

Case 2: V(G-H)CL
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In this case, G — H is a complete graph by the definition of L. If & > r+ 2, then
G — H contains a cycle C of length o — (r — 1) > 3, and hence {H,,..., Hy_,,C} U
{(v)| v € V(G — H — C)} forms a collection of desired subgraphs of G. Thus we
may assume « = r + 1. Since |V(H)| = n — (r + 1) > 3k, there exists a H; with
|V(H;)| > 4. By Lemma 2.15(ii), there exists € V(H;) such that Ng(z) C V(H)
and Ng(zt) C V(H). Take v,v' € V(G — H). Note that {v,v'} is contained in
a triangle of G — H because |V(G — H)| = r + 1 > 3. Hence by Lemma 2.14,
de(z) + dg(zt) = duy(z) + dg(zt) < n—r — 1. By Lemma 2.10(ii), we also have
|Na(v) N V(H)| + |Ng(0') N V(H)| < &= Gince we clearly have |Ng(v) N
V(G — H)|+ |Ng(v)NV(G — H)| <2(]V(G — H)| — 1) = 2r, this implies dg(v) +
de(v') < 221 Consequently 2n—2r < dg(z)+dg(zh)+dg(v)+de(v') < 2nth=3
and we therefore obtain n < k + 4r — 3 < bk, which is a contradiction.

This completes the proof of Theorem 1.
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