Closure of $K_1 + 2K_2$ -free graphs

IGOR' E. ZVEROVICH* INESSA I. ZVEROVICH

RUTCOR - Rutgers Center for Operations Research, Rutgers,
The State University of New Jersey,
640 Bartholomew Road,
Piscataway, NJ 08854-8003
U.S.A.
igor@rutcor.rutgers.edu

Abstract

Let G and H be graphs. A substitution of H in G for a vertex $v \in V(G)$ is the graph $G(v \to H)$, which consists of a disjoint union of H and G - v with the additional edge-set $\{xy : x \in V(H), y \in N_G(v)\}$. For a hereditary class of graphs \mathcal{P} , the substitutional closure of \mathcal{P} is defined as the class \mathcal{P}^* consisting of all graphs which can be obtained from graphs in P by repeated substitutions.

Let $2K_2$ be the graph consisting of two disjoint copies of the complete graphs K_2 . The graph $K_1 + 2K_2$ is obtained from $2K_2$ by adding a dominating vertex. We characterize $K_1 + 2K_2$ -free graphs in terms of forbidden induced subgraphs.

1 Introduction

The neighborhood of a vertex $x \in V(G)$ is the set $N_G(x) = N(x)$ of all vertices in G that are adjacent to x, and $N[x] = \{x\} \cup N(x)$ is the closed neighborhood of x.

Definition 1. Let G and H be graphs. A substitution of H in G for a vertex $v \in V(G)$ is the graph $G(v \to H)$ consisting of the disjoint union of H and G - v with the additional edge-set $\{xy : x \in V(H), y \in N_G(v)\}$.

Definition 2. For a class \mathcal{P} of graphs, its substitutional closure \mathcal{P}^* consists of all graphs that can be obtained from \mathcal{P} by repeated substitutions, i.e., \mathcal{P}^* is generated by the following rules:

- (S1) $\mathcal{P} \subseteq \mathcal{P}^*$, and
- **(S2)** if $G, H \in \mathcal{P}^*$ and $v \in V(G)$, then $G(v \to H) \in \mathcal{P}^*$.

^{*} The DIMACS Summer 2004 Support of the first author is gratefully acknowledged.

Let $\operatorname{ISub}(G)$ be the set of all induced subgraphs of a graph G [considered up to isomorphism]. A class of graphs \mathcal{P} is called *hereditary* if $\operatorname{ISub}(G) \subseteq \mathcal{P}$ for every graph $G \in \mathcal{P}$. For a set of graphs Z, the class of Z-free graphs consists of all graphs G such that $\operatorname{ISub}(G) \cap Z = \emptyset$. It is easy to show that if \mathcal{P} is a hereditary class, then \mathcal{P}^* is also a hereditary class.

Problem 1. For a hereditary class \mathcal{P} given by a set Z of forbidden induced subgraphs, find a forbidden induced subgraph characterization of the substitutional closure \mathcal{P}^* .

Bertolazzi, De Simone, and Galluccio [1], and De Simone [2] noted that this problem is especially interesting in the case where \mathcal{P} is a good class for the vertex packing problem, i.e., the weighted stability number can be found in polynomial time for all graphs in \mathcal{P} . We say that such a class is α_w -polynomial. The substitutional closure of a hereditary α_w -polynomial class is always α_w -polynomial. The same observation is valid for Weighted Clique Problem [and similarly defined ω_w -polynomial hereditary classes].

We shall use the Reducing Pseudopath Method of Zverovich [5] for constructing the substitutional closure of an arbitrary hereditary class.

Definition 3. A set $W \subseteq V(G)$ is called homogeneous in a graph G if

(H1)
$$2 \le |W| \le |V(G)| - 1$$
, and

(H2)
$$N(x) \setminus W = N(y) \setminus W$$
 for all $x, y \in W$.

According to (H2), a homogeneous set W defines a partition $W \cup W^+ \cup W^- = V(G)$ such that

- every vertex of W is adjacent to every vertex of W^+ [notation $W \sim W^+$], and
- every vertex of W is non-adjacent to every vertex of W^- [notation $W \not\sim W^-$].

By (H1), $W^+ \cup W^- \neq \emptyset$ for every homogeneous set W.

A graph without homogeneous sets is called prime. A graph H is called a (primal) extension of a graph G if

- (E1) G is an induced subgraph of H, and
- **(E2)** H is a prime graph.

Definition 4. An extension H of G is minimal if there are no extensions of G in the set $ISub(H) \setminus \{H\}$. We denote by Ext(G) the set of all minimal extensions of a graph G.

In general, we can change some of the forbidden induced subgraphs for an α_w -polynomial (respectively, ω_w -polynomial) class with their substitutional closure to obtain a wider α_w -polynomial (respectively, ω_w -polynomial) class.

Problem 2. Given a graph G, find Ext(G).

Problem 2 was solved for all graphs of order at most four that have finitely many minimal extensions. For many graphs of order five it is easy to construct the set $\operatorname{Ext}(G)$, see Zverovich [4]. This method cannot be applied to the graph K_1+2K_2 , also known as Butterfly. Here $2K_2$ is the graph consisting of two disjoint copies of the complete graphs K_2 , and K_1+2K_2 is obtained from $2K_2$ by adding a dominating vertex. We solve Problem 2 for $G=K_1+2K_2$. In other words, we characterize the substitutional closure of K_1+2K_2 -free graphs in terms of forbidden induced subgraphs.

For a set of graphs Z we put $\operatorname{Ext}(Z) = \bigcup_{G \in Z} \operatorname{Ext}(G)$, and we define Z^o as the set of all minimal graphs in $\operatorname{Ext}(Z)$ with respect to the partial order 'to be an induced subgraph'.

Theorem 1. If Z is the set of all minimal forbidden induced subgraphs for a hereditary class \mathcal{P} , then Z^{o} is the set of all minimal forbidden induced subgraphs for \mathcal{P}^{*} .

2 Reducing pseudopaths

The notation $x \sim y$ (respectively, $x \not\sim y$) means that x and y are adjacent (respectively, non-adjacent). For disjoint sets X and Y, the notation $X \sim Y$ (respectively, $X \not\sim Y$) means that every vertex of X is adjacent to (respectively, non-adjacent) to every vertex of Y. In case of $X = \{x\}$ we also write $x \sim Y$ and $x \not\sim Y$ instead of $\{x\} \sim Y$ and $\{x\} \not\sim Y$, respectively.

Definition 5. Let G be an induced subgraph of a graph H, and let W be a homogeneous set of G. We define a reducing W-pseudopath with respect to G in H as a sequence $R = (u_1, u_2, \ldots, u_t), t \geq 1$, of pairwise distinct vertices of $V(H) \setminus V(G)$ satisfying the following conditions:

(R1) there exist vertices $w_1, w_2 \in W$ such that

(R1a)
$$u_1 \sim w_1$$
, and

(R1b)
$$u_1 \not\sim w_2$$
;

(R2) for each $i = 2, 3, \ldots, t$ either

(R2a)
$$u_i \sim u_{i-1} \text{ and } u_i \not\sim W \cup \{u_1, u_2, \dots, u_{i-2}\}, \text{ or }$$

(**R2b**)
$$u_i \not\sim u_{i-1}$$
 and $u_i \sim W \cup \{u_1, u_2, \dots, u_{i-2}\}$
[when $i = 2, \{u_1, u_2, \dots, u_{i-2}\} = \emptyset$];

(R3) for every
$$i = 1, 2, ..., t-1$$

(R3a)
$$u_i \sim W^+$$
, and

(R3b)
$$u_i \not\sim W^-;$$

(R4) either

(R4a)
$$u_t \not\sim x \text{ for a vertex } x \in W^+, \text{ or }$$

(R4b)
$$u_t \sim y$$
 for a vertex $y \in W^-$.

Theorem 2 (Zverovich [5]). Let H be an extension of its induced subgraph G, and let W be a homogeneous set of G. Then there exists a reducing W-pseudopath with respect to any induced copy of G in H.

3 The substitutional closure of $K_1 + 2K_2$ -free graphs

As usual, C_n and K_n denote the cycle and the complete graph of order n, respectively.

Theorem 3. A graph is in the substitutional closure of $K_1 + 2K_2$ -free graphs if and only if it has no induced subgraphs G_1, G_2, \ldots, G_{37} shown in Figure 1, Figure 2 and Figure 3.

We simplify the pictures of some graphs G_i in Figures 1, 2 and 3 as follows. If G_i contains a vertex marked 'd' then d is adjacent to all other vertices of G_i except a unique vertex that is linked with d by a dotted line.

Proof. Let W be a homogeneous set of a graph G. We denote by $\mathcal{H}(G,W)$ the set of all graphs that can be obtained from G by adding a reducing W-pseudopath. Also, $\mathcal{H}_t(G,W)$ is the set of all graphs that can be obtained from G by adding a reducing W-pseudopath of length t.

Claim 1. Let W be a homogeneous set of a graph G. If $W^+ = \{x\}$ and $W^- = \emptyset$ then $\mathcal{H}(G,W)$ is reducible to $\mathcal{H}_1(G,W) \cup \mathcal{H}^a(G,W)$, where $\mathcal{H}^a(G,W)$ consists of all reducing W-pseudopaths $R = (u_1, u_2, \ldots, u_t)$ such that $t \geq 2$ and each vertex u_i , $i = 2, 3, \ldots, t$, satisfies (R2a).

Proof. Let H be a graph that obtained from G by adding a reducing W-pseudopath $R = (u_1, u_2, \ldots, u_t)$. If the statement does not hold, then $t \geq 2$ and there is a vertex u_i satisfying (R2b). We assume that i is the minimal number in $\{2, 3, \ldots, t\}$ such that u_i satisfies (R2b).

By (R2b), $u_i \sim W$ and $u_i \not\sim u_{i-1}$. The set $W \cup \{u_i\}$ induces a subgraph G' isomorphic to G [with u_i for x]. Clearly, W is a homogeneous set in G'. It follows from $u_i \not\sim u_{i-1}$ and (R4) that $(u_1, u_2, \ldots, u_{i-1})$ is a reducing W-pseudopath with respect to G'.

Claim 2. Every graph in $\operatorname{Ext}(K_1 + 2K_2)$ contains at least one of G_1, G_6, G_{23} (Figure 1), or H_1, H_2, H_3, H_4, H_5 (Figure 4) as an induced subgraph.

Figure 1: Forbidden induced subgraphs of order six and seven.

Figure 2: Forbidden induced subgraphs of order eight.

Figure 3: Forbidden induced subgraphs of order nine.

Figure 4: The graphs H_i .

Proof. Let G be a graph isomorphic to $K_1 + 2K_2$. Specifically, $V(G) = \{a, b, c, d, e\}$ and $E(G) = \{ab, cd, ea, eb, ec, ed\}$. The set $W = \{a, b, c, d\}$ is homogeneous in G. Hence every graph $H \in \text{Ext}(G)$ contains a reducing W-pseudopath $R = (u_1, u_2, \ldots, u_t)$. According to Claim 1, we may restrict ourselves with $\mathcal{H}_1(G, W) \cup \mathcal{H}^a(G, W)$.

If t=1 then we obtain one of G_1 (Figure 1) or H_1, H_2, H_3 (Figure 4). If t=2 then we may assume that $u_2 \not\sim W$ and $u_1 \sim a$.

- If $u_1 \not\sim \{c, d\}$ then $\{a, c, d, e, u_1, u_2\}$ induces H_1 . So let $u_1 \sim c$.
- If $u_1 \not\sim \{b, d\}$ then $W \cup \{e, u_1, u_2\}$ induces G_6 . So let $u_1 \sim b$. By (R1b), $u_1 \not\sim d$ and $W \cup \{u_1, u_2\}$ induces H_4 .

Finally, let $t \geq 3$. We have $\{u_{t-1}, u_t\} \not\sim W$, $u_t \not\sim e$, and $\{u_{t-2}, u_{t-1}\} \sim e$.

- If $u_{t-2} \not\sim \{a, b\}$ then $\{a, b, e, u_{t-1}, u_{t-2}, u_t\}$ induces H_1 . Thus, $u_{t-2} = u_1$. By the symmetry, may assume that $u_{t-2} \sim \{a, c\}$.
- If $u_{t-2} \not\sim \{b, d\}$ then $W \cup \{e, u_{t-1}, u_{t-2}, u_t\}$ induces G_{23} . So let $u_{t-2} \sim b$. Since $u_{t-2} = u_1$ satisfies (R1b), $u_{t-2} \not\sim d$, and $W \cup \{u_{t-1}, u_{t-2}, u_t\}$ induces H_5 .

Claim 3. (Zverovich and Zverovich [7]) Let W be a homogeneous set of a graph G. If |W| = 2 then $\mathcal{H}(G, W)$ is reducible to $\mathcal{H}_1(G, W)$.

Claim 4. Every graph in $Ext(H_1)$ contains at least one of

$$G_1, G_2, G_3, G_4, G_5, G_7, G_9, G_{10}, G_{11}, G_{12}, G_{16}$$

(Figure 1) as an induced subgraph.

Proof. The graph H_1 has a unique homogeneous set $X = \{f, g\}$, see Figure 4. By Claim 3, we need to construct reducing X-pseudopaths of length t = 1 only. For H_1 , there are 15 possible variants, 5 of them being redundant [there is a proper induced subgraph isomorphic to G_1].

Claim 5. Every graph in $Ext(H_2)$ contains at least one of

$$G_1, G_{14}, G_{15}, G_{17}, G_{18}, G_{19}, G_{20}, G_{21}, G_{22}$$

(Figure 1), or H_1 (Figure 4) as an induced subgraph.

Proof. The graph H_2 has a unique homogeneous set $X = \{f, g\}$, see Figure 4. By Claim 3, we need to construct reducing X-pseudopaths of length t = 1 only. There are 15 possible variants, 5 of them being redundant [there is an induced subgraph isomorphic G_1], and two variants being reducible to H_1 .

Figure 5: Cases (b1), (b2), (c1) and (c2).

Claim 6. Every graph in $Ext(H_3)$ contains at least one of

$$G_1, G_8, G_{13}, G_{29}, G_{30}, G_{31}, G_{32}$$

(Figure 1 and Figure 2), or H_1 (Figure 4) as an induced subgraph.

Proof. The graph H_3 has two homogeneous sets, namely, $W_1 = \{b, c\}$ and $W_2 = \{d, e\}$, see Figure 4. By Claim 3, we need to construct reducing pseudopaths of length t = 1 only.

- a) Suppose that $R=(u_1)$ is a reducing W_1 -pseudopath and a reducing W_2 -pseudopath simultaneously. In other words, u_1 is adjacent to exactly one of b, c, and u_1 is adjacent to exactly one of d, e. If $u_1 \not\sim a$ then $\{a, b, c, d, e, u_1\}$ induces G_1 , and the proof is complete. If $u_1 \sim a$ then $\{a, b, c, d, e, f, u_1\}$ induces either G_8 [when $u_1 \not\sim f$] or G_{13} [when $u_1 \sim f$].
- b) Suppose that $R_1 = (u_1)$ is a reducing W_1 -pseudopath, but it is not a reducing W_2 -pseudopath. We may assume that u_1 is adjacent to b and u_1 is not adjacent to c.
- b₁) Let $u_1 \not\sim \{d, e\}$. If $u_1 \not\sim a$ then $\{a, b, c, d, e, u_1\}$ induces H_1 . If $u_1 \sim a$ then $u_1 \sim f$ [by (R4)], and $\{a, b, d, e, f, u_1\}$ induces H_2 .
- b₂) Let $u_1 \sim \{d, e\}$. If $u_1 \not\sim a$ then $\{a, b, c, d, e, u_1\}$ induces H_2 . If $u_1 \sim a$ then we obtain the variants (b1) and (b2) shown in Figure 5.
- c) Suppose that $R_2 = (u_1')$ is a reducing W_2 -pseudopath, but it is not a reducing W_1 -pseudopath. We may assume that u_1' is adjacent to d and u_1' is not adjacent to e.
- c₁) Let $u_1' \not\sim \{b,c\}$. If $u_1' \not\sim a$ then $\{a,b,c,d,e,u_1'\}$ induces H_1 . If $u_1' \sim a$ then $u_1' \not\sim f$ [by (R4)], and $\{a,b,c,d,f,u_1'\}$ induces H_1 .

- c₂) Let $u'_1 \sim \{b, c\}$. If $u'_1 \not\sim a$ then $\{a, b, c, d, e, u'_1\}$ induces H_2 . If $u'_1 \sim a$ then we obtain the variants (c1) and (c2) shown in Figure 5.
- d) It remains to consider four possible variants: (b1) and (c1); (b1) and (c2); (b2) and (c1); (b2) and (c2). Each of them has two subvariants depending on adjacency of u_1 and u'_1 .

If we have (b1) & (c1) then either $\{a, c, e, f, u_1, u_1'\}$ induces H_1 [when $u_1 \not\sim u_1'$] or $V(H_3) \cup \{u_1, u_1'\}$ induces G_{29} [when $u_1 \sim u_1'$]. If we have (b1) & (c2) then either $\{a, c, e, f, u_1, u_1'\}$ induces G_1 [when $u_1 \not\sim u_1'$] or $\{b, c, d, e, f, u_1, u_1'\}$ induces G_{13} [when $u_1 \sim u_1'$]. If we have (b2) & (c1) then $V(H_3) \cup \{u_1, u_1'\}$ induces either G_{30} or G_{31} . Finally, if we have (b2) & (c2) then either $\{b, c, d, f, u_1, u_1'\}$ induces H_2 [when $u_1 \not\sim u_1'$] or $V(H_3) \cup \{u_1, u_1'\}$ induces G_{32} [when $u_1 \sim u_1'$].

Claim 7. Every graph in $Ext(H_4)$ contains at least one of

$$G_1, G_6, G_{24}, G_{25}, G_{26}, G_{27}, G_{28}$$

(Figure 1 and Figure 2), or H_1 , H_2 (Figure 4) as an induced subgraph.

Proof. The graph H_4 has a unique homogeneous set $X = \{f, g\}$ (see Figure 4). By Claim 3, we need to construct reducing X-pseudopaths $R = (u_1)$ only. Let $u_1 \sim g$ and $u_1 \not\sim f$.

Suppose that $u_1 \not\sim c$. Then the set $\{a,b,c,f,g,u_1\}$ induces G_1 or H_1 . Hence we may assume that $u_1 \sim c$. Further, suppose that $u_1 \sim e$. If $|N(u_1) \cap \{a,b\}| \leq 1$ then the set $\{a,b,c,e,g,u_1\}$ induces either G_6 or H_1 . Let $u_1 \sim \{a,b\}$. If $u_1 \not\sim d$ then the set $\{a,c,d,e,f,u_1\}$ induces G_1 . If $u_1 \sim d$ then $V(H_4) \cup \{u_1\}$ induces G_2 . So we may assume that $u_1 \not\sim e$.

Now we know that $u_1 \sim c$ and $u_1 \not\sim e$. It remains to consider seven possible variants. If $u_1 \not\sim \{a,b\}$ then $u_1 \not\sim d$ and $\{a,b,c,d,e,g,u_1\}$ induces G_6 .

Let $u_1 \sim a$. If $u_1 \not\sim d$ then $\{a, c, d, e, f, u_1\}$ induces H_1 . If $u_1 \sim d$ then $V(H_4) \cup \{u_1\}$ induces one of G_{26}, G_{27} . Let $u_1 \not\sim a$. Then $u_1 \sim b$ and $V(H_4) \cup \{u_1\}$ induces one of G_{24}, G_{25} .

Claim 8. Every graph in $Ext(H_5)$ contains at least one of

$$G_1, G_6, G_{23}, G_{33}, G_{34}, G_{35}, G_{36}, G_{37}$$

(Figure 1 and Figure 2), or H_1 , H_2 , H_4 (Figure 4) as an induced subgraph.

Proof. The graph H_5 has a unique homogeneous set $X = \{f, g\}$, see Figure 4. By Claim 3, we need to construct reducing X-pseudopaths $R = (u_1)$ only. Let $u_1 \sim g$ and $u_1 \not\sim f$.

Suppose that $u_1 \not\sim c$. Then the set $\{a,b,c,f,g,u_1\}$ induces one of G_1 , H_1 or H_2 . Therefore we may assume that $u_1 \sim c$. Further, suppose that $u_1 \sim e$. If $|N(u_1) \cap \{a,b\}| \leq 1$ then the set $\{a,b,c,e,g,u_1\}$ induces either G_6 or H_1 . Let

 $u_1 \sim \{a,b\}$. If $u_1 \not\sim d$ then the set $\{a,c,d,e,f,u_1\}$ induces H_1 . If $u_1 \sim d$ then the set $\{a,b,c,e,f,g,u_1\}$ induces H_4 . So we may assume that $u_1 \not\sim e$.

Now suppose that $u_1 \sim h$. If $u_1 \not\sim \{a, b\}$ then the set $\{a, b, c, e, h, u_1\}$ induces H_1 . If $|N(u_1) \cap \{a, b\}| = 1$ then the set $\{a, b, c, e, f, g, h, u_1\}$ induces G_{23} . If $u_1 \sim \{a, b\}$ then either the set $\{a, c, d, e, f, h, u_1\}$ induces G_6 or the set $V(H_5) \cup \{u_1\}$ induces G_{37} .

Thus, $u_1 \sim c$ and $u_1 \not\sim \{e, h\}$. It remains to consider seven possible variants. If $u_1 \not\sim \{a, b\}$ then $u_1 \not\sim d$ and $\{a, b, c, d, e, g, h, u_1\}$ induces G_{23} .

Let $u_1 \sim a$. If $u_1 \not\sim d$ then $\{a, c, d, e, h, u_1\}$ induces H_1 . If $u_1 \sim d$ then $V(H_5) \cup \{u_1\}$ induces one of G_{35}, G_{36} . Let $u_1 \not\sim a$. Then $u_1 \sim b$ and $V(H_5) \cup \{u_1\}$ induces one of G_{33}, G_{34} .

Acknowledgment

We thank the anonymous referees, whose suggestions helped to improve the presentation of the paper.

References

- [1] P. Bertolazzi, C. De Simone and A. Galluccio, A nice class for the vertex packing problem, *Discrete Appl. Math.* **76** (1997), 3–19.
- [2] C. De Simone, On the vertex packing problem, *Graphs and Combin.* **9** (1) (1993), 19–30.
- [3] S. Olariu, On the closure of triangle-free graphs under substitution, *Inform. Process. Lett.* **34** (2) (1990), 97–101.
- [4] I. E. Zverovich, A finiteness theorem for primal extensions, *Discrete Math.* (submitted).
- [5] I. E. Zverovich, Extension of hereditary classes with substitutions, Discrete Appl. Math. 128 (2003), 487–509.
- [6] I. E. Zverovich and I. I. Zverovich, Algorithmic aspects of Reducing Pseudopath Method, (to appear).
- [7] I. E. Zverovich and I. I. Zverovich, The reducing copath method for simple homogeneous sets, RUTCOR Research Report RRR 19-2001 (Rutgers University, 2001).
- [8] I. E. Zverovich and I. I. Zverovich, The substitutional closure of Diamond-free graphs, *Discuss. Math. Graph Theory* (submitted).