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Abstract

We consider sigma-words, which are words used by Evdokimov in the
construction of the sigma-sequence [A.A. Evdokimov, Mat. Zametki 6
(1969), 309–319]. We then find the number of occurrences of certain
patterns, subsequences and subwords in these words.

1 Introduction and Background

We write permutations as words π = a1a2 · · · an, whose letters are distinct and usually
consist of the integers 1, 2, . . . , n.

An occurrence of a pattern p in a permutation π is “classically” defined as a
subsequence in π (of the same length as the length of p) whose letters are in the
same relative order as those in p. Formally speaking, for r ≤ n, we say that a
permutation σ in the symmetric group Sn has an occurrence of the pattern p ∈ Sr

if there exist 1 ≤ i1 < i2 < · · · < ir ≤ n such that p = σ(i1)σ(i2) . . . σ(ir) in
reduced form. The reduced form of a permutation σ on a set {j1, j2, . . . , jr}, where
j1 < j2 < · · · < jr, is a permutation σ1 obtained by renaming the letters of the
permutation σ so that ji is renamed i for all i ∈ {1, . . . , r}. For example, the reduced
form of the permutation 3651 is 2431. The first case of classical patterns studied
was that of permutations avoiding a pattern of length 3 in S3. Knuth [13] found
that, for any τ ∈ S3, the number |Sn(τ )| of n-permutations avoiding τ is Cn, the nth
Catalan number. Later, Simion and Schmidt [16] determined the number |Sn(P )| of
permutations in Sn simultaneously avoiding any given set of patterns P ⊆ S3.

In [1] Babson and Steingŕımsson introduced generalized permutation patterns that
allow the requirement that two adjacent letters in a pattern must be adjacent in the
permutation. In order to avoid confusion we write a ”classical” pattern, say 231,
as 2-3-1, and if we write, say 2-31, then we mean that if this pattern occurs in the
permutation, then the letters in the permutation that correspond to 3 and 1 are
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adjacent. For example, the permutation π = 516423 has only one occurrence of the
pattern 2-31, namely the subword 564, whereas the pattern 2-3-1 occurs, in addition,
in the subwords 562 and 563. A motivation for introducing these patterns in [1] was
the study of Mahonian statistics. A number of interesting results on generalized pat-
terns were obtained in [6]. Relations to several well studied combinatorial structures,
such as set partitions, Dyck paths, Motzkin paths and involutions, were shown there.

Burstein [2] considered words instead of permutations. In particular, he found the
number |[k]n(P )| of words of length n in a k-letter alphabet that avoid all patterns
from a set P ⊆ S3 simultaneously. Burstein and Mansour [3] (resp. [4, 5]) considered
forbidden patterns (resp. generalized patterns) with repeated letters.

The most attention, in the papers on classical or generalized patterns, is paid
to finding exact formulas and/or generating functions for the number of words or
permutations avoiding, or having k occurrences of, certain patterns. In [11] the
authors suggested another problem, namely counting the number of occurrences of
certain patterns in certain words. These words were chosen to be the set of all finite
approximations of a sequence generated by a morphism with certain restrictions. A
motivation for this choice was the interest in studying classes of sequences and words
that are defined by iterative schemes [14, 15]. In [12] the authors also studied the
number of occurrences of certain patterns in certain words. But there they choose
these words to be the subdivision stages from which the Peano curve is obtained.
The authors called these words the Peano words. The Peano curve was studied by
the Italian mathematician Giuseppe Peano in 1890 as an example of a continuous
space filling curve.

In the present paper we consider the sigma-words, which are words used by Ev-
dokimov in construction of the sigma-sequence [7]. Evdokimov used this sequence
to construct chains of maximal length in the n-dimensional unit cube. Independent
interest to the sigma-sequence appears in connection with the well-known Dragon
curve, discovered by physicist John E. Heighway and defined as follows: we fold a
sheet of paper in half, then fold in half again, and again, etc. and then unfold in such
way that each crease created by the folding process is opened out into a 90-degree
angle. The “curve” refers to the shape of the partially unfolded paper as seen edge
on. If one travels along the curve, some of the creases will represent turns to the left
and others turns to the right. Now if 1 indicates a turn to the right, and 2 to the
left, and we start travelling along the curve indicating the turns, we get the sigma-
sequence [8]. In [10] the sigma-sequence was studied from another point of view. It
was proved there that this sequence cannot be defined by iterated morphism.

Since the sigma-sequence wσ is a sequence in a 2-letter alphabet, we consider
patterns in 2-letter alphabets. Moreover, the patterns in a 1-letter alphabet (for
example 1-1-1) correspond to two subsequences (for this example, these subsequences
are 1-1-1 and 2-2-2), whereas the patterns in a 2-letter alphabet (with at least one
letter 2) uniquely determine the subsequences in wσ that correspond to them, and
conversely. For example, an occurrence of the pattern 1-2-1 is an occurrence of
the subsequence 1-2-1, whereas an occurrence of the subsequence (subword) 211 is
an occurrence of the pattern 211. Thus, any of our results for a pattern, can be
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interpreted in term of subsequences or subwords, depending on the context, and
conversely.

In our paper we give either an explicit formula or recurrence relation for the
number of occurrences for some classes of patterns, subwords and subsequences in
the sigma-words. In particular, Theorem 4, allows to find the number of occurrences
of an arbitrary generalized pattern without internal dashes of length �, provided we
know four certain numbers that can be easily calculated for the sigma-words Ck,
Dk, Ck+1 and Dk+1 (to be defined below), where k = �log2 ��. Theorem 9 gives a
recurrence relation for counting occurrences of patterns of the form τ1-τ2. In Section 6
we discuss occurrences of patterns of the form τ1-τ2- · · · -τk, where the pattern τi does
not overlap with the patterns τi−1 and τi+1 for i = 1, 2, . . . , k − 1. Finally, Section 7
deals with patterns of the form [τ1-τ2- · · · -τk], [τ1-τ2- · · · -τk) and (τ1-τ2- · · · -τk] in
Babson and Steingŕımsson notation, which means that we use ”[x” in a pattern p to
indicate that in an occurrence of p, the letter corresponding to the x must be the
first letter of a word under consideration, whereas if we use “y]”, we mean that the
letter corresponding to y must be the last (rightmost) letter in the word.

2 Preliminaries

In [7], Evdokimov constructed chains of maximal length in the n-dimensional unit
cube using the sigma-sequence. The sigma-sequence wσ was defined there by the
following inductive scheme:

C1 = 1, D1 = 2
Ck+1 = Ck1Dk, Dk+1 = Ck2Dk

k = 1, 2, . . .

and wσ = lim
k→∞

Ck. Thus, the initial letters of wσ are 11211221112212 . . .. We call

the words Ck the sigma words. The first four values of the sequence {Ck}k≥1 are 1,
112, 1121122, 112112211122122.

In [10] an equivalent definition of wσ was given: any natural number n �= 0 can
be presented unambiguously as n = 2t(4s + σ), where σ < 4, and t is the greatest
natural number such that 2t divides n. If n runs through the natural numbers then
σ runs through some sequence consisting of 1 and 3. If we substitute 3 by 2 in this
sequence, we get wσ.

In this paper we count occurrences of patterns in the sigma-words, which are
particular initial subwords of wσ. However, the challenging question is to find the
number of occurrences of patterns or subwords in an arbitrary initial subword of wσ,
or more generally, in a subword of wσ starting in the position i and ending in the
position j.

It turns out that for counting occurrences of certain patterns or subwords in Cn,
one needs to know the number of occurrences of certain patterns in Dn. So, in the
most cases, we give results for both Cn and Dn. However, our main purpose is the
words Cn for n ≥ 1, and in some propositions and examples we do not consider Dn.
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In what follows, we give initial values for the words Ci and Di:

C1 = 1 D1 = 2

C2 = 112 D2 = 122

C3 = 1121122 D3 = 1122122

C4 = 112112211122122 D4 = 112112221122122

C5 = 1121122111221221112112221122122

D5 = 1121122111221222112112221122122

We now give some other definitions.

A descent (resp. rise) in a word w = a1a2 . . . an is an i such that ai > ai+1 (resp.
ai < ai+1). It follows from the definitions that an occurrence of a descent (resp. rise)
is an occurrence of the pattern 21 (resp. 12).

Let cτ
n (resp. dτ

n) denote the number of occurrences of the pattern τ in Cn (resp.
Dn).

Suppose a word W = AaB, where A and B are some words of the same length,
and a is a letter. We define the kernel of order k for the word W to be the subword
consisting of the k − 1 rightmost letters of A, the letter a, and the k − 1 leftmost
letters of B. We denote it by Kk(W ). For example, K3(111211221) = 12112. If
|A| < k − 1 then we assume Kk(W ) = ε, that is, the kernel in this case is the empty
word. Also, mk(τ, W ) denotes the number of occurrences of the pattern (or the word,
or the subsequence depending on the context) τ in Kk(W ).

We denote x-x- · · · -x (� times) by x�. Also, �a� denotes the least natural number
b such that a ≤ b.

3 Patterns 1-1- · · · -1, 1-2 and 2-1

It is easy to see that |Cn| = |Dn| = 2n − 1. The following lemma gives the number
of the letters 1 and 2 in Cn and Dn.

Lemma 1. The number of 1s (resp. 2s) in Cn is 2n−1 (resp. 2n−1 − 1). The number
of 1s (resp. 2s) in Dn is 2n−1 − 1 (resp. 2n−1).

Proof. It is enough to find the number of 1s cn and dn in Cn and Dn respectively,
since the number of 2s in Cn and Dn are obviously equal to |Cn| − cn and |Dn| − dn

respectively.

It is easy to see from the structure of Cn and Dn that{
cn = cn−1 + dn−1 + 1,

dn = cn−1 + dn−1,

together with c1 = 1 and d1 = 0. The solution to this recurrence is cn = 2n−1 and
dn = 2n−1 − 1.
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Proposition 2. The number occurrences of the subsequence 1k (resp. 2k) in Cn is(
2n−1

k

)
(resp.

(
2n−1−1

k

)
). Thus, the number of occurrences of the pattern 1k in Cn is

equal to

c1k

n =

(
2n−1

k

)
+

(
2n−1 − 1

k

)
=

2n − k

2n−1 − k

(
2n−1 − 1

k

)
.

Proof. From Lemma 1, there are 2n−1 (resp. 2n−1 − 1) occurrences of the letter

1 (resp. 2) in Cn, and thus there are
(
2n−1

k

)
(resp.

(
2n−1−1

k

)
) occurrences of the

subsequence 1k (resp. 2k) there.

Proposition 3. We have that for all n ≥ 2, c1-2
n = d1-2

n = 2 · 4n−2 + (n − 2) · 2n−2,
and c2-1

n = d2-1
n = 2 · 4n−2 − n · 2n−2.

Proof. Let us first consider the pattern 1-2. An occurrence of this pattern in Cn =
Cn−11Dn−1 is either inside Cn−1, or inside Dn−1, or the letter 1 is from the word
Cn−11, whereas the letter 2 is from the word Dn−1. Thus

c1-2
n = c1-2

n−1+d1-2
n−1+{ (the number of 1s in Cn−1) + 1}·{ the number of 2s in Dn−1}.

Using the same considerations for Dn = Cn−12Dn−1, one can get

d1-2
n = c1-2

n−1+d1-2
n−1+{ the number of 1s in Cn−1}·{ (the number of 2s in Dn−1) + 1}.

The number of 1s and 2s in Cn−1 and Dn−1 is given in Lemma 1. So,{
c1-2
n = c1-2

n−1 + d1-2
n−1 + 2n−2 · (2n−2 + 1)

d1-2
n = c1-2

n−1 + d1-2
n−1 + 2n−2 · (2n−2 + 1)

⇔

(
c1-2
n

d1-2
n

)
=

(
1 1

1 1

)(
c1-2
n−1

d1-2
n−1

)
+

(
2n−2 · (2n−2 + 1)

2n−2 · (2n−2 + 1)

)
(1)

together with c1-2
2 = 2 and d1-2

2 = 2. Here, and several times in what follows, we
need to solve recurrence relations of the form

xn = Axn−1 + b,

where A is a matrix, and xn, xn−1 and b are some vectors, where b sometimes depends
on n. We recall from linear algebra that such relations can be solved by diagonal-
ization of the matrix A, that is, by writing A = V DV −1, where D is a diagonal
matrix consisting of eigenvalues of A, and the columns of V are eigenvectors of A.
For example, if A is a 2 × 2 matrix that consists of 1s, then we use(

1 1
1 1

)
=

(
1 1

−1 1

)(
0 0
0 2

)(
1/2 −1/2
1/2 1/2

)

for computing powers of A, and thus for solving the recurrence relations. For the
recurrence 1, we get that for all n ≥ 2, c1-2

n = d1-2
n = 2 · 4n−2 + (n − 2) · 2n−2.



192 SERGEY KITAEV

In the same manner, we can get that for the pattern 2-1,{
c2-1
n = c2-1

n−1 + d2-1
n−1 + 2n−2 · (2n−2 − 1),

d2-1
n = c2-1

n−1 + d2-1
n−1 + 2n−2 · (2n−2 − 1),

together with c2-1
3 = 2 and d2-1

3 = 2. This gives, that for all n ≥ 2, c2-1
n = d2-1

n =
2 · 4n−2 − n · 2n−2.

Proposition 3 shows that asymptotically, the numbers of occurrences of the pat-
terns, or the subsequences, 1-2 and 2-1 in Cn or Dn are equal.

4 Patterns without internal dashes

Recall the definitions in Section 2.

Theorem 4. Let τ = τ1τ2 . . . τ� be an arbitrary generalized pattern without internal
dashes that consists of 1s and 2s. Suppose k = �log2 ��, a = m�(τ, Dk1Ck), and
b = m�(τ, Dk2Ck). Then for n > k + 1, we have

cτ
n = (a + b + cτ

k+1 + dτ
k+1) · 2n−k−2 − b,

dτ
n = (a + b + cτ

k+1 + dτ
k+1) · 2n−k−2 − a.

Proof. Suppose n > k + 1. In this case, Cn = Cn−11Dn−1 = W1K�(Dk1Ck)W2, for
some words W1 and W2 such that |W1| = |W2|. Because of the definition of the
kernel K�(Dk1Ck), an occurrence of the pattern τ in Cn is in either Cn−1, or Dn−1, or
Kk(Dk1Ck) (from the definitions |Cn−1 ∩Kk(Dk1Ck)| = |Dn−1 ∩Kk(Dk1Ck)| = �− 1
and thus these intersections cannot be an occurrence of τ ). So,

cτ
n = cτ

n−1 + dτ
n−1 + a,

whereas in the same way, we can obtain that

dτ
n = cτ

n−1 + dτ
n−1 + b.

By solving these recurrence relations, we get the desirable result.

In particular, Theorem 4 is valid for � = 1, in which case the number of occur-
rences of τ in Cn (or Dn) is the number of letters in Cn (or Dn). Indeed, in this
case, k = 0, a = b = c1

1 = d1
1 = 1, hence c1

n = d1
n = 2n − 1 = |Cn| = |Dn|. Also, as a

corollary to Theorem 4 we have, that if a = b = cτ
k+1 = dτ

k+1 = 0 for some pattern τ ,
then this pattern never appears in sigma-sequence.

All of the following examples are corollaries to Theorem 4.
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Example 5. Suppose τ = 12. We have that k = 1, a = m2(12, D11C1) = 0 and
b = m2(12, D12C1) = 0. Besides, c12

2 = 1 and d12
2 = 1. Thus using Theorem 4, for all

n > 2, c12
n = 2n−2. So, the number of rises in Cn is equal to 2n−2, for n ≥ 2.

If τ = 21, again k = 1, but now a = m2(21, D11C1) = 1 and b = m2(21, D12C1) =
1. Besides, c21

3 = 1 and d21
3 = 1. From Theorem 4, for all n > 3, c21

n = 2n−2 − 1,
which shows that the number of descents in Cn is one less than the number of rises.

Since in both cases a = b, using the recurrences in Theorem 4, we have that
c12
n = d12

n = 2n−2, whereas c21
n = d21

n = 2n−2 − 1.

Example 6. Suppose τ = 112. We have that k = 2, a = m3(112, D21C2) = 0, and
b = m3(112, D22C2) = 0. Besides, c112

3 = 2 and d112
3 = 1. Now, from Theorem 4, we

have that for all n > 3, c112
n = d112

n = 3 · 2n−4.

Example 7. Suppose τ = 221. We have that k = 2, a = m3(221, D21C2) = 1, and
b = m3(221, D22C2) = 1. Besides, c221

3 = 0 and d221
3 = 1. Now, from Theorem 4, we

have that for all n > 3, c221
n = d221

n = 3 · 2n−4 − 1.

Example 8. If τ = 2212221 then k = 3, a = m7(221, D31C3) = 0, b = m7(221,
D32C3) = 1, c2212221

4 = 0, and d2212221
4 = 0. Thus for n ≥ 4, c2212221

n = 2n−4 − 1.

5 Patterns of the form τ1-τ2

Theorem 9. Let p = τ1-τ2 be a generalized pattern such that |τ1| = k1 and |τ2| =
k2. Suppose k = �log2(k1 + k2 − 1)�. The following denote the number of occur-
rences of the subwords τ1 and τ2 in the certain kernels: aτ1 = mk1(τ1, Dk1Ck),
aτ2 = mk2(τ2, Dk1Ck), bτ1 = mk1(τ1, Dk2Ck), and bτ2 = mk2(τ2, Dk2Ck). Also, let
ra
1 (resp. ra

2 , rb
1, rb

2) denote the number of occurrences of overlapping subwords τ1

and τ2 in the word Dk1Ck (resp. Dk1Ck, Dk2Ck, Dk2Ck), where τ1 ∈ Kk1(Dk1Ck)
and τ2 ∈ Ck (resp. τ1 ∈ Dk and τ2 ∈ Kk2(Dk1Ck), τ1 ∈ Kk1(Dk2Ck) and τ2 ∈ Ck,
τ1 ∈ Dk and τ2 ∈ Kk2(Dk2Ck)). Besides, we assume that we know cτi

n and dτi
n for

n > ni, i = 1, 2. Then for n > max(k + 1, n1 + 1, n2 + 1), cτ
n and dτ

n are given by the
following recurrence:(

cτ
n

dτ
n

)
=

(
1 1

1 1

)(
cτ
n−1

dτ
n−1

)
+

(
αn

βn

)
,

where
αn = (cτ1

n−1 + aτ1 − ra
1)d

τ2
n−1 + (aτ2 − ra

2)c
τ1
n−1

and
βn = (cτ1

n−1 + bτ1 − rb
1)d

τ2
n−1 + (bτ2 − rb

2)c
τ1
n−1.

Proof. Suppose n > max(k + 1, n1 + 1, n2 + 1). Let us find a recurrence for the
number cτ

n (one can use the same considerations for dτ
n).

An occurrence of the pattern τ in Cn = Cn−11Dn−1 is either inside Cn−1, or inside
Dn−1, or begins in Cn−1 or the letter 1 between Cn−1 and Dn−1 and ends in Dn−1 or
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the letter 1. The first two cases obviously give cn−1 and dn−1 occurrences of τ . To
count the contribution of the last to cases, we work with words instead of patterns.
We do it to take in account the situations when τ1 or τ2 consists of copies of only
one letter. In this case, we cannot count occurrence of these patterns separately, and
then use this information, since, for instance, occurrences of the pattern τ1 = 111
are subwords 111 and 222 (the last one of these subwords we do not need), whereas
occurrences of the pattern τ1 = 222 are not defined at all (222 is not a pattern).

If an occurrence of τ1-τ2 does not entirely belong to Cn−1 or Dn−1 then we only
have one of the following possibilities:

(a) the subword τ1 entirely belongs to Cn−1 and the subword τ2 entirely belongs to
Dn−1;

(b) the subword τ1 belongs entirely to Cn−1 and the subword τ2 belongs to the
kernel Kk2(Dk1Ck), where k = �log2(k1 + k2 − 1)� is the least number that
allow to control, in Cn (n > k), overlapping occurrences of subwords τ1 and τ2

where τ1 is entirely from Cn−1 and τ2 ∈ Kk2(Dk1Ck);

(c) the subword τ2 belongs entirely to Dn−1 and the subword τ1 belongs to the
kernel Kk1(Dk1Ck).

In (a) we obviously have cτ1
n−1 · dτ2

n−1 possibilities.

In (b) we have cτ1
n−1 · aτ2 − cτ1

n−1 · ra
2 possibilities, since we need to subtract those

occurrences of τ1 and τ2 that overlap.

Similarly to (b), in (c) we have dτ2
n−1 · aτ1 − dτ2

n−1 · ra
1 possibilities, which completes

the proof.

Remark 10. For using Theorem 9, one needs to know cτ
n and dτ

n for patterns τ
without internal dashes. These numbers could be obtained by using Theorem 4.

The following corollary to Theorem 9 is straitforward to prove, using the fact
that for non-overlapping patterns τ1 and τ2, ra

1 = ra
2 = rb

1 = rb
2 = 0.

Corollary 11. We make the same assumptions as those in Theorem 9. Suppose
additionally that the words τ1 and τ2 are not overlapping in the following sense: no
one suffix of τ1 is a prefix of τ2. Then for n > max(k + 1, n1 + 1, n2 + 1), cτ

n and dτ
n

are given by the same recurrence as that in Theorem 9 with

αn = (cτ1
n−1 + aτ1)d

τ2
n−1 + aτ2c

τ1
n−1

and
βn = (cτ1

n−1 + bτ1)d
τ2
n−1 + bτ2c

τ1
n−1.

Remark 12. Corollary 11 is valid under weaker assumptions, namely we only need
the property of non-overlapping of the patterns τ1 and τ2 when one of them is in its
kernel and the other one is not in its kernel. Example 15 deals with the pattern τ
that has overlapping blocks τ1 and τ2, but Corollary 11 can be applied. However,
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from practical point of view, checking the fact if two subwords are non-overlapping
is more easy than considering the kernels and checking the non-overlapping of the
subwords there.

Example 13. Suppose τ = 12-21. We have that |τ1| = |τ2| = 2. Now, in the
statement of Theorem 9 we have that k = 2, aτ1 = 0, aτ2 = 1, bτ1 = 0 and bτ2 =
1. Also, since there are no overlapping occurrences of the subwords 12 and 21 in
K3(1221112) and K3(1222112), we have ra

1 = 0, ra
2 = 0, rb

1 = 0 and rb
2 = 0. Besides,

from example 5, c12
n = d12

n = 2n−2 and c21
n = d21

n = 2n−2 − 1. Thus, αn = βn = 4n−3.
Using the fact that c12-21

3 = 0 and d12-21
3 = 1, this allows us to get an explicit formula

for c12-21
n and d12-21

n for n > 3:

c12-21
n = d12-21

n =
1

2
4n−2 − 3 · 2n−4.

In particular c12-21
4 = 5.

Example 14. Suppose τ = 1-221. We have that |τ1| = 1 and |τ2| = 3. Moreover,
the words τ1 and τ2 are not overlapping, hence we can use Corollary 11. We have
that k = 2, aτ1 = 1, aτ2 = 1, bτ1 = 0 and bτ2 = 1. From example 7, d221

n = 3 ·2n−4−1.
Also, the number of occurrences of the letter 1 (the subword τ1 = 1) is given by
Lemma 1: c1

n = 2n−1. So, αn = 6 · 4n−4 + 3 · 2n−5 − 1 and βn = 6 · 4n−4. One can get
now an explicit formula for c1-221

n and d1-221
n for n > 4:

c1-221
n = 1

2
4n−2 + 27 · 2n−5 − n − 7,

d1-221
n = 1

2
4n−2 + 21 · 2n−5 − 8.

In particular, c1-221
5 = 47.

Example 15. Suppose τ = 112-21. We have that |τ1| = k1 = 3 and |τ2| = k2 = 2.
The other parameters in Theorem 9 are k = 3, aτ1 = 0, aτ2 = 1, bτ1 = 0, bτ2 = 1,
ra
1 = ra

2 = rb
1 = rb

2 = 0. From Example 6, for n ≥ 4, c112
n = 3 · 2n−4, and from

Example 5, d21
n = 2n−2−1. Thus, in Theorem 9, αn = βn = c112

n−1(d
21
n−1 +1) = 3 ·4n−4.

Now, we solve the recurrence relation from the theorem to get, that for n > 3

c112-21
n = d112-21

n =
3

2
· 4n−3 − 2n−4.

6 Counting occurrences of τ1-τ2- · · · -τk

In this section we study the number of occurrences of a pattern τ = τ1-τ2- · · · -τk,
where τi are patterns without internal dashes. We say that τ consists of k blocks.
We assume that for i = 1, 2, . . . , k − 1, the pattern τi does not overlap with the
patterns τi−1 and τi+1. In this case we give a recurrence relation for the number of
occurrences of τ , provided we know the number of occurrences of certain patterns
consisting of less than, or equal to, k − 1 blocks, as well as 2k certain numbers
which can be calculated by considering the words D�1C� and C�2D�, where � is the
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maximum number such that � ≤ maxi�log2 |τi|�. The cases of k = 1 and k = 2 are
studied in the previous sections; they give the bases for our calculations. However,
the case of overlapping patterns τi is not solved, and it remains as a challenging
problem, since an answer to this problem gives the way to count occurrences of an
arbitrary generalized pattern, or an arbitrary subsequence, in σ-words.

Theorem 16. Let τ = τ1-τ2- · · · -τk be a generalized pattern such that |τi| = ki for
i = 1, 2, . . . , k. We assume that for i = 1, 2, . . . , k−1, the subword τi does not overlap
with the subwords τi−1 and τi+1 in the following sense: no one suffix of τi−1 is a prefix
of τi and no one suffix of τi is a prefix of τi+1. Suppose �i = �log2 ki�, � = maxi �i,
and for the subwords τi we have ai = mki

(τi, D�i
1C�i

) and bi = mki
(τi, D�i

2C�i
), for

i = 1, 2, . . . , k. We assume that we know cτ1-···-τi
n−1 and d

τi+1-···-τk

n−1 for each 1 ≤ i ≤ k−1
and for all n > n�. Then for all n > max(� + 1, n� + 1), cτ

n and dτ
n are given by the

following recurrence:(
cτ
n

dτ
n

)
=

(
1 1

1 1

)(
cτ
n−1

dτ
n−1

)
+

k−1∑
i=1

(
cτ1-···-τi
n−1 · dτi+1-···-τk

n−1

cτ1-···-τi
n−1 · dτi+1-···-τk

n−1

)

+

k∑
i=1

(
ai · cτ1-···-τi−1

n−1 · dτi+1-···-τk

n−1

bi · cτ1-···-τi−1

n−1 · dτi+1-···-τk

n−1

)
.

Proof. We consider only cτ
n, since the same arguments can be applied to dτ

n. We use
the considerations similar to those in Theorem 9.

An occurrence of the pattern τ in Cn = Cn−11Dn−1 can be entirely in Cn or Dn.
The first term counts such occurrences. Otherwise, we have two possibilities: either
the letter 1 between the words Cn−1 and Dn−1 does not belong to an occurrence of
τ , or it does do it, in which case there exist i (exactly one) such that the subword τi

occurs in its kernel. The first sum in the statement is obviously responsible for the
first of this cases, whereas the second sum is responsible for the second case (in the
last case we use the fact that subwords τi are not overlapping).

As a corollary to Theorem 16, we have Corollary 11.

The following example is another corollary to Theorem 16.

Example 17. Suppose τ = 2 − 1 − 221, that is, τ1 = 2, τ2 = 1 and τ3 = 221. So,
parameters in Theorem 16 are the following: k1 = k2 = 1, k3 = 3, �1 = �2 = 1,
�3 = 2, � = 2. From D11C1 = 211 we obtain a1 = 0, a2 = 1. From D21C2 = 1221112
we obtain a3 = 1. From D12C1 = 221 we get b1 = 1, b2 = 0. From D22C2 = 1222112
we get b3 = 1. Besides, from Proposition 3, Examples 7 and 14, we have

cτ1-τ2
n = c2−1

n = 2 · 4n−2 − n · 2n−2, for n > 1;

dτ3
n = d221

n = 3 · 2n−4 − 1, for n > 3;

dτ2-τ3
n = d1-221

n = 1
2
· 4n−2 + 21 · 2n−5 − 8, for n > 4.

Also, the number of occurrences of the subword τ1 = 2 in Cn is given by Proposition 2:
cτ1
n = c2

n = 2n−1 − 1. So, the number of occurrences of the pattern τ in Cn and Dn,
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for n > 5, satisfies the following recurrence relation:(
cτ
n

dτ
n

)
=

(
1 1

1 1

)(
cτ
n−1

dτ
n−1

)
+

(
5

1024
8n + 25−3n

256
4n − 171

64
2n + 9

5
1024

8n + 21−3n
256

4n − 2n+1

)
,

with initial conditions cτ
5 = 70 and dτ

5 = 74.

7 Patterns of the form [τ1-τ2- · · · -τk], [τ1-τ2- · · · -τk) and
(τ1-τ2- · · · -τk]

We recall that according to Babson and Steingŕımsson notation for generalized pat-
terns, if we use ”[” in a pattern, for example if we write p = [1-2), we indicate that in
an occurrence of p, the letter corresponding to the 1 must be the first letter of a word
under consideration, whereas if we write, say, p = (1-2], then the letter corresponding
to 2 must be the last (rightmost) letter of the word.

In the theorems of this section, we assume that we can find the numbers cτ1-τ2-···-τk
n

and dτ1-τ2-···-τk
n for any patterns τi, i = 1, 2, . . . , k, without internal dashes. For certain

special cases, these numbers can be obtained using the theorems of Sections 5 and 6.

Theorem 18. Suppose τ1 and τ2 are two patterns without internal dashes such that
|τ1| = k1 and |τ2| = k2. Also, suppose �1 = log2(k1 + 1), �2 = log2(k2 + 1) and
� = log2(k1 + k2 + 1). Let a(τ1, τ2) be the number of overlapping subwords τ1 and
τ2 in C� such that τ1 occurs as k1 leftmost letters of C�; b(τ1, τ2) is the number of
overlapping subwords τ1 and τ2 in C� such that τ2 occurs as k2 rightmost letters of
C�. We assume that we know cτi

n and dτi
n for i = 1, 2 and for all n > n�.

i. For n ≥ max(�1, n
�),

c[τ1-τ2)
n =

{
0, if C�1 does not begin with τ1,

cτ2
n − a(τ1, τ2), otherwise.

ii. For n ≥ max(�2, n
�),

c(τ1-τ2]
n =

{
0, if C�2 does not end with τ2,

cτ1
n − b(τ1, τ2), otherwise.

iii. For n ≥ �,

c[τ1-τ2]
n =

{
0, if C� does not begin with τ1 or end with τ2,

1, otherwise.

iv. For n ≥ max(�1, n
�),

d[τ1-τ2)
n =

{
0, if D�1 does not begin with τ1,

dτ2
n − a(τ1, τ2), otherwise.
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v. For n ≥ max(�2, n
�),

d(τ1-τ2]
n =

{
0, if D�2 does not end with τ2,

dτ1
n − b(τ1, τ2), otherwise.

vi. For n ≥ �,

d[τ1-τ2]
n =

{
0, if D� does not begin with τ1 or end with τ2,

1, otherwise.

Proof. We prove case i, all the other cases are then easy to see.

Clearly, if C�1 does not begin with τ1 then Cn does not begin with τ1 for all n ≥ �1,

which means that c
[τ1-τ2)
n = 0 in this case. Otherwise, to count occurrences of the

pattern [τ1-τ2) is the same as to find the number of occurrences of the pattern τ2 in
Cn and then subtract the number of such occurrences of τ2 that begin from the i-th
letter of Cn, where 1 ≤ i ≤ k1.

The following two examples are corollaries to Theorem 18.

Example 19. Suppose we have the patterns σ1 = [1122−21211) and σ2 = (21221−
12]. From Theorem 18, cσ1

n = dσ1
n = 0, since C3 does not begin with 1122 (�1 = 3).

Also, cσ2
n = dσ2

n = 0, since C3 does not end with 12 (�2 = 3).

Example 20. Suppose τ = [112-21). We have that k1 = 3, �1 = 2 and C2 begins with
the subword 112. Besides, a(112, 21) = 1 and, from Example 5, c21

n = d21
n = 2n−2−1.

Theorem 18 now yields, that for n > 3, we have c
[112-21)
n = cτ2

n − a(τ1, τ2) = 2n−2 − 2.

The following theorem is straightforward to prove under the assumption that
certain subwords do not overlap.

Theorem 21. Let {τ1, τ2, . . . , τk} be a set of generalized patterns without internal
dashes. Suppose |τ1| = s1, |τk| = sk, �1 = log2(s1 + 1) and �k = log2(sk + 1). Also,
� = max(�1, �k).

i. With the assumption that the subword τ1 does not overlap with the subword τ2,
that is, no one suffix of τ1 is a prefix of τ2, we have

(a)

c[τ1-τ2-···-τk)
n =

{
0, if C�1 does not begin with τ1,

cτ2-τ3-···-τk
n , otherwise.

(b)

d[τ1-τ2-···-τk)
n =

{
0, if D�1 does not begin with τ1,

dτ2-τ3-···-τk
n , otherwise.
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ii. With assumption that the subword τk−1 does not overlap with the subword τk,
that is, no one suffix of τk−1 is a prefix of τk, we have

(a)

c(τ1-τ2-···-τk]
n =

{
0, if C�k

does not end with τk,

c
τ1-τ2-···-τk−1
n , otherwise.

(b)

d(τ1-τ2-···-τk]
n =

{
0, if D�k

does not end with τk,

d
τ1-τ2-···-τk−1
n , otherwise.

iii. With the assumption that the subword τ1 does not overlap with the subword τ2,
and the subword τk−1 does not overlap with the subword τk, we have

(a)

c[τ1-τ2-···-τk]
n =

⎧⎪⎨
⎪⎩

0, if C� does not begin with τ1 or does not
end with τk,

c
τ2-τ3-···-τk−1
n , otherwise.

(b)

d[τ1-τ2-···-τk]
n =

⎧⎪⎨
⎪⎩

0, if D� does not begin with τ1 or does not
end with τk,

d
τ2-τ3-···-τk−1
n , otherwise.

The following example is a corollary to Theorem 21.

Example 22. Suppose τ = [112-1-221-22]. The parameters of Theorem 21 are
k1 = 3, k2 = 2, �1 = 2, �2 = 2, � = 2. C3 begins with the subword 112 and ends
with the subword 22. Thus by Theorem 21 and Example 14, c

[112-1-221-22]
n = c1-221

n =
1
2
4n−2 + 27 · 2n−5 − n − 7.
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