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Abstract

We present bounds concerning the number of Hartmanis partitions of
a finite set. An application of these inequalities improves the known
asymptotic lower bound on the number of linear spaces on n points. We
also present an upper bound for a certain class of these partitions which
bounds the number of Steiner triple and quadruple systems.

Recent work has extended the known numerical values for the number of linear
spaces on n points [1]. Upper and lower bounds of 2(n

3) and 2n, respectively, were
given in [2, 7]. We improve the lower bound by showing an inequality of Knuth
(see [5]) to hold for more general structures known as Hartmanis d-partitions. We
prove an upper bound for the number of these structures and also give an upper
bound for a certain class of these partitions. This last inequality gives asymptotic
upper bounds for the number of Steiner triple and quadruple systems.

A linear space is a collection of points and lines such that every pair of distinct
points are on a unique line and every line contains at least two points. Let Sn :=
{1, . . . , n} be a finite set of size n and Sd

n the collection of all d-element subsets of
Sn. We say that a collection of subsets P of Sn is a d-partition of Sn (to be more
specific, a Hartmanis d-partition, see [4]) if

• for all X ∈ P, |X | ≥ d,

• ⋃X∈P X = Sn,

• every d-element subset of Sn is contained in a unique X ∈ P .
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The one-to-one correspondence between linear spaces on n points and unlabeled 2-
partitions of Sn is easily seen by noting that the sets of the 2-partition correspond
to the lines. It is also apparent that a Steiner triple system is simply a 2-partition
whose sets have cardinality three and a Steiner quadruple system is a 3-partition
whose sets have cardinality four. Further details of Steiner systems may be found in
[6]. Notice that a 1-partition of Sn is what we normally refer to as a partition of Sn.

Let pn(d) denote the number of d-partitions of Sn and p�
n(d) the corresponding

number of unlabeled d-partitions. Let pn(d; a) denote the number of d-partitions
whose sets contain at most a elements and p�

n(d; a) the corresponding unlabeled
number. From their definitions we have that p�

n(d; a) ≤ p�
n(d) ≤ pn(d) and p�

n(d; a) ≤
pn(d; a) ≤ pn(d). The number of linear spaces on n points is given by p�

n(2).

Theorem 1 For all 0 < d < n, pn(d; d+1) ≥ 2( n
d+1)/2n and p�

n(d; d+1) ≥ 1

n!
2( n

d+1)/2n.

Proof: Let H be the n × k matrix whose ith row is the binary representation of
i for all 1 ≤ i ≤ n and k := �log2 n� + 1. For any X ∈ Sd+1

n , let �X be its binary
representation. Define the partition Uj of Sd+1

n by

Uj :=
{

X ∈ Sd+1
n | �XH = binary representation of j

}
for all 0 ≤ j < 2k. Now notice that if X, Y ∈ Uj and X �= Y , then |X\Y | ≥ 2.
Indeed, if |X\Y | = 1 then X = A ∪ {x}, Y = A ∪ {y}, with x �= y and x, y �∈ A.

Hence ( �A + �{x})H = ( �A + �{y})H, which is a contradiction since �{x}H is the binary
representation of x. Thus for any X, Y ∈ Uj, |X ∩Y | ≤ d− 1. Since the Uj partition
Sd+1

n , there exists some Uj with at least

|Uj | ≥
(

n

d + 1

)
/2k ≥

(
n

d + 1

)
/2n

sets. This particular Uj (and any collection of subsets of it), along with all the d-sets
not contained in any member of Uj, defines a d-partition. Thus there are at least

2|Uj | ≥ 2( n
d+1)/2n such d-partitions of Sn. Note that the fraction of d-element subsets

covered by the largest Uj is (n − d)/2n as
(

d+1
d

)(
n

d+1

)
/2n = ((n − d)/2n)

(
n
d

)
. The

second inequality holds by dividing this number by n! to rule out any isomorphisms.
�

The construction of the matrix H is indicative of Hamming codes and indeed
Knuth [5] elucidates this point in his particular d = [n/2] − 1 case. In our case it is
equivalent to finding the a collection of binary code words of length n with d + 1 1’s
which is single error-correcting.

Numerous computer computations with d = 2 and 10 ≤ n ≤ 30 showed the
largest of the U families, although only marginal, was always U0. For a special case
of d = 2 we may improve the bound in the previous theorem to 2n(n−1)/6 by explicitly
evaluating |U0|.
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Theorem 2 If d = 2 and n = 2m − 1 for some m > 1, then |U0| =
(

n
2

)
/3.

Proof: If n = 2m − 1 then the rows of the matrix H will consist of all non-zero
binary vectors of length m (so that k = m.) Let �ri be the vector representing the ith

row of H. Since d = 2 we have

|U0| = #
{
X ∈ S3

n

∣∣ �XH = �0 mod 2
}

= #
{
{i, j, l} ⊆ Sn |�ri + �rj + �rl = �0 mod 2

}
.

Notice that if we have i, j, l such that �ri + �rj + �rl = �0 mod 2 then l is uniquely
determined by i and j as �rl = �ri + �rj mod 2. Similarly i can be determined from j
and l, and j from i and l. Thus |U0| will be the number of pairs in Sn, scaled down
by a factor of 3. Hence |U0| =

(
n
2

)
/3. �

Note that the above theorem holds for general d, the cardinality of |U0| will be(
n
d

)
/(d + 1) by using the same argument. We now give a short proof of an upper

bound on the number of d-partitions. The proof for d = 2 can be found in [2].

Theorem 3 For all 0 < d < n, pn(d) ≤ 2( n
d+1).

Proof: Let P be a d-partition of Sn and exclude from P any sets of size d. Define
f(P) := {X ∈ Sd+1

n |X ⊆ P ∈ P}. The map f is injective and we may easily
construct the inverse as follows: Let P ′ = f(P). If X, Y ∈ P ′ and |X ∩ Y | ≥ d
then replace X and Y in P ′ by X ∪ Y . Iterate this step until |X ∩ Y | < d for all
X, Y ∈ P ′. Insert into P ′ all d-element subsets of Sn not contained in members of
P ′. The collection P ′ is now the original collection P . Thus for each d partition P
we have a unique collection f(P) ⊆ Sd+1

n . The number of such collections is bounded

above by 2( n
d+1). �

Theorem 4 For all 1 < d < n, pn(d; d + 1) < 2n+1+(n+1)d(log2 e+log2(n−d)).

Proof: Let P = {H1, . . . , Hp} be a d-partition of Sn with d-element sets removed
and such that |H| = d+1 for all H ∈ P. The (d+1)p sets {X |X ⊂ H ∈ P and |X | =
d} are unique. Thus

(d + 1)p ≤
(

n

d

)
⇔ p ≤ 1

n + 1

(
n + 1

d + 1

)

Let N(n, d) :=
(

n+1
d+1

)
/(n + 1). Since

(
n
k

)
< ( en

k
)k for n ≥ k ≥ 1 (see p. 1077 of [3]),
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the number of such d-partitions is bounded by

N(n,d)∑
i=0

(( n
d+1

)
i

)
< (N(n, d) + 1)

( (
n

d+1

)
N(n, d)

)

< 2n+1

(
e
(

n
d+1

)
N(n, d)

)N(n,d)

< 2n+1(e(n − d))N(n,d)

and using N(n, d) < (n + 1)d for d > 1,

< 2n+1(e(n − d))(n+1)d

= 2n+1+(n+1)d(log2 e+log2(n−d)).

�

For n large, it is clear that the upper bound in the previous theorem can be
given by 2(n+1)d(log2 e+log2 n) by absorbing n + 1 into the log2(n − d) term. However,
attempting to use this technique to bound pn(d) yields log2 pn(d) = O(nd+1) which
is already apparent from Theorem 3. Inserting d = 2 in Theorems 1 and 4 yields the
following bounds on the number of linear spaces

1

n!
2(n−1)(n−2)/12 ≤ p�

n(2) ≤ 2(n
3)

and the number of linear spaces whose lines contain at most three points is bounded
by

pn(2; 3) < 2n+1+(n+1)2(log2 e+log(n−2)).

Theorem 4 is interesting from the point that it serves as an upper bound for the
number of Steiner triple/quadruple systems (d = 2, 3). Recall that f(n) = O(g(n))
(resp. Ω(g(n))) if there exist numbers C, n0 such that f(n) ≤ Cg(n) (resp. ≥) for
all n ≥ n0. The results in this paper may be summarized asymptotically (each is
readily apparent from the exponents of the bounds in Theorems 1–4):

log2 pn(d; d + 1) = Ω(nd)

log2 p�
n(d; d + 1) = Ω(nd − n log n)

log2 pn(d; d + 1) = O(nd log n)

log2 pn(d) = O(nd+1).

Achieving better asymptotics for the numbers pn(d) seems a difficult problem. At-
tempts at constructing classes containing all d-partitions on Sn resulted in log2 pn(d)
= O(nd+1).
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