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Abstract

We prove that, for each p > 1, there exists a polynomial time algorithm
for finding a minimum dominating set in the class of all (K, Ps)-free
graphs.

Let G be a graph with vertex-set V(G) and edge-set E(G). The notation = ~ y
(respectively, x ¢ y) means that vertices z,y € V(G) are adjacent (respectively, non-
adjacent). Moreover, if X C V(G) and y € V(G)\X, we write y ~ X (respectively,
y o X) to indicate that y is adjacent (respectively, non-adjacent) to all vertices in
X. The neighborhood of a vertex x € V(G) is the set N(z) = Ng(z) = {y € V(G) :
x ~ y}; the closed neighborhood of x is N[z] = {z} U N(z). Similarly, for a set
X CV(G), N(X)= U N(z) and N[X] =X UN(X). We use the notation P, and

X

K, for a path and a C(E)mplete graph of order n > 1, respectively.

A set D C V(G) is a domination set in a graph G if every vertex of V(G)\D
is adjacent to a vertex of D. The domination number v(G) of a graph G is the
minimum cardinality of a dominating set in G. A dominating set G in G is minimum
it |D| = v(G). For a set X C V(G) we say that X dominates N[X].

Let Z be a set of graphs. A graph G is called Z-free if G does not contain any
graph of Z as an induced subgraph. It is well known (see Bertossi [1], Johnson [3],
and Korobitsin [4]) that the problem of finding a minimum dominating set is NP-
complete for both Ps-free graphs and K-free graphs (p > 3). We prove that this
problem can be solved in polynomial time for (K, Ps)-free graphs.
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Definition 1. Forn > m > 1 we define a graph H = S(n,m) as follows: V(H) =
AU B, where A = {u1,us,...,u,} and B = {v1,vq,...,v,} are disjoint sets, and

E(H) ={uwu;:i,j € {1,2,...,n}i# jtU{wwv; 11 =1,2,...,m}.

Any graph S(n,m) (n and m are not fived) will be called a simple split graph
(Figure 1).

All graph of the form S(n,m) are split graphs in sense of Foldes and Hammer

2].
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Figure 1. The simple split graph S(m,n)

Theorem 1. For each p > 1, there exists a polynomial time algorithm for finding a
minimum dominating set in the class of all (K, Ps)-free graphs.

Proof. Let G be an arbitrary (K, Ps)-free graph. Without loss of generality we may
assume that G is connected. Let us choose a subset D C V(G) such that

(1) D induces a simple split graph;

(2) D dominates the largest number of vertices among all subsets satisfying (1).

We denote by H the subgraph of G induced by D. We shall assume as in Defini-
tion 1 that V(H) = D = AUB, where A = {u1,ua,...,un} and B = {v1,va,...,0m}
are as in 1.

Suppose that D is not a dominating set in G. We consider a vertex x at distance

two from D. Clearly, D does not dominate by z. There exists a vertex w ¢ D such
that w ~ z and N(w) N D # 0.

Claim 1. N(w)N A # 0.

Proof. Suppose that N(w)NA = 0. Since N(w)ND # ), there exists a vertex v; € B
(1 <i < m) which is adjacent to w.
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If there is a vertex u; € A\{u;} then the set {u;,u;,v;,w,z} induces Ps, a
contradiction. Therefore n = i = 1, i.e., A = {u1} and B = {v;}. The set
D" = {uy,v1,w,z} induces P, = S5(2,2), D C D' and D' dominates more vertices
than D. This contradicts to the choice of D. d

We introduce a partition of A:
Ao={u;cu;fwandie{m+1,m+2,...,n}},

Ay ={u;cuyy~wandie {m+1,m+2,...,n}},
Ago = {wi s us A w,v; Lwandi €{1,2,...,m}},
Agr = {u; s u; A wy,v; ~wand i € {1,2,...,m}},
Ao = {u; s u; ~w,v; Lwandi€{1,2,...,m}},
Ay ={u; cus ~w, v, ~wand i € {1,2,...,m}},
and a partition of B:
Boo = {vi : u; € Ago},
By ={v; 1 u; € An },
Bio = {v; : u; € Ao},
By ={vi:u; € Ann}.

According to Claim 1, the vertex w is adjacent to a vertex u € A.

Claim 2. Aoo = Boo = (Z)

Proof. Tt sufficient to show that Agy = (). If there is a vertex u; € Agg then the set
{vi, us, u,w, z} induces Ps, a contradiction. O

We put
Al = A10 UA11 UAl @] {w} = (Aﬂ N(w)) @] {U)},
B' = By U{z} = (B\N(w)) U{z},
and
D'=AUB.

It is clear that D’ induces a simple split graph H’. The vertex u € N(w)NA C A’
dominates A. The vertex w € D' dominates the set By U By;. By Claim 2, B =
By U By U Byy. Since By € D', D' dominates D.

The set D' dominates z, but D does not. It follows from the choice of D that

there exists a vertex y that is dominated by D and not dominated by D’. Clearly,
ygDUD'.

Claim 3. y ¢ A.

97



Proof. Since Ajg U A;; U A; C D’ and D' does not dominate y, y ¢ Ajg U A U Ay

By Claim 2, A = (Ag U Ap1) U (A0 U A3 U Ay). Suppose that there exists a
vertex u; € Ag U Ag that is adjacent to y. We have y ¢ {w,z} C D’. Recall that
the vertex u € A is adjacent to w, therefore u & AgU Ag; and u # u;. Then the set
{y, ui, u, w,x} induces Ps, a contradiction. Thus, y # AU Ay and y £ A. a

Claim 4. (i) y ~ B,
(11) Bl() = @, and
(iii) B = Boy U By, # 0.
Proof. (i) The vertex y is dominated by D = AU B. By Claim 3, y ## A. Therefore
y is adjacent to a vertex v; € B. If there exists a vertex v; € B\{v;} that is
non-adjacent to y, then the set {v;, u;, u;,v;,y} induces Ps, a contradiction. Hence
y~ B.

(ii) By Claim 2, B = By U Byg U Byy. Since By C D" and D’ does not dominate
Yy, y # Big. According to (i), y ~ Big. Hence Byg = 0.

(iii) It follows from (ii) that B = By U By;. The vertex y is dominated by the
set D' = A’ U (B()l U Bll)~ By Claim 3, Yy 7(‘ A. ‘ThUS7 B()l @] Bll 7é @ O

Since By = 0, we also have A,y = (). Now we consider two possible cases.

Case 1: |B| > 2.
Claim 5. |A| = |B| = 2.

Proof. Since |B| > 2, B contains two distinct vertices v; and v;. Then u;,u; € A
and |A| > 2. If there exists a vertex up € A\{w;,u;} then the set {v;,y, v, uj, up}
induces Ps, a contradiction. It follows that |A| =2 and |B| = 2. O

By Claim 5, we may assume that A = {u;,us} and B = {v;,v2}. By Claim 1, w
is adjacent to either u; or us. We may assume that w ~ us.

We consider the set Dy = {y,va, us, w,x}. Recall that z ¢ {us,v2} C D, y
{w,z} C D', and y # uy € A. Since D; does not induce Ps, vy is adjacent to w
and D; induces a subgraph H; = 5(3,2). The set D; dominates x, but D does not.
Hence there exists a vertex z that is dominated by D and not dominated by D;.
Clearly, z ¢ DU D; and z is adjacent to a vertex of {uy, v} = D\D;.

If z ~ u; then the set {z,u1,us,v2,y} induces Ps, a contradiction. So z o u;.
Then z ~ v and the set {z,v1,y, v2, us} induces Ps, a contradiction.

Case 2: |B| = 1.
Let B = {v1}. By Claim 4, y ~ v;.

Claim 6. w ~ v;.
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Proof. Suppose that w « v;. The set {x,w,u1,v1,y} can not induce Ps, therefore
w 70 uy. Recall that the vertex w is adjacent to the vertex u € A. We have u # u;
and the set {w,u,uy,v1,y} induces Ps, a contradiction. O

The set Dy = {u1,vi,w, xz} induces a subgraph H, isomorphic to either S(2,2)
(when w 2 uy) or S(3,1) (when w ~ wuy). Since Dy dominates = and D does not,
there exists a vertex z € DU Dy U {y} and z 4 {uj,v1,w,z}. If z ~ gy then the
set {z,y,v1,w,z} induces Ps, a contradiction. So z ¢ y. Since D dominates z, z
is adjacent to a vertex u; € A\{ui}. Then the set {z,u;, u1,v1,y} induces Ps, a
contradiction.

Thus, we have shown that D is a dominating set in G. Since G does not contain I,
as an induced subgraph, n = |A| < p—1. Soy(G) < |D| = |A|+|B]| < 2|4] < 2(p—1).
Since (@) is bounded above, a minimum domination set can be found by considering
all t-subsets of V(G) with ¢ < 2(p — 1) in polynomial time. O

Corollary 1. If G is a (K, P5)-free graph, then a minimum dominating set of G
can be found in time O(n?).

Proof. The statement follows from the proof of Theorem 1. a

Corollary 2. If G is a Ps-free graph and the largest clique in G has size w, then
v(G) < 2w.

Proof. The statement follows from the proof of Theorem 1. a

Corollary 3. Each (K,, Ps)-free graph contains a dominating set D with |D| < 2p—2
that induces a simple split graph.

However, a (K, Ps)-free graph may have a minimum dominating set that does
not induces a simple split graph. For example, any minimum dominating set in Cj
[a 5-cycle] induces Oy = K, [a graph with two non-adjacent vertices]. Clearly, O, is
not a simple split graph.

Corollary 4. The domination number of a Ps-free k-colorable graph can be found in
polynomial time.

Corollary 5. The domination number of a Ps-free planar graph can be found in
polynomial time.

By a result of Foldes and Hammer [2], the class of all split graphs coincides with

the class of all (2K, Cy, Cs)-free graphs. Since 2K is an induced subgraph of Ps, a
split graph must be Ps-free.
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Corollary 6. The domination number of a Ky-free split graph can be found in poly-
nomial time.

Open Problem 1. Find the maximum value of q such that the domination number
in the class of all (K, P,)-free graphs can be found in polynomial time.

For a graph G, the class of all G-free graphs is called a monogenic class. Koro-
bitsin [4] proved that the domination number of a graph in a monogenic class P of
all G-free graphs can be found in polynomial time if G is an induced subgraph of P,
with (possibly) isolated vertices. Otherwise the problem is NP-complete. For bigenic
classes, the problem is much more complicated. A bigenic class is a hereditary class
with exactly two minimal forbidden induced subgraphs.

Open Problem 2. Let S = {{G1,G3} : none of G, G, is an induced subgraph of
the other }. Find a partition S; U Sy = S such that

o for each pair {G1,Ge} € S1, the domination number in the bigenic class of all
{G1, Ga}-free graphs can be found in polynomial time, and

o for each pair {G1,Gs} € Sa, the domination number problem in the bigenic
class of all {G1,Ga}-free graphs is NP-complete.
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