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Abstract

Dirac and Ore-type degree conditions are given for a bipartite graph to
contain vertex disjoint cycles each of which contains a previously specified
edge. This solves a conjecture of Wang in [6].

1 Introduction

In this paper, we only consider finite undirected graphs without loops and multiple
edges. For a vertex z of a graph G, the neighborhood of z in G is denoted by Ng(z),
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and dg(z) = |Ng(z)| is the degree of  in G. For a subgraph H of G and a vertex
2 € V(G) - V(H), we also denote Ny (z) = Na(z)NV (H) and dy(z) = | Nx(z)|. For
a subgraph H and a subset S of V(G), define dy(S) = Lzes dn(z). The subgraph
induced by S is denoted by (S), and define G =S = (V(G) - S) and G — H =
(G — V(H)). For a graph G, |G| = [V(G)] is the order of G, §(Q) is the minimum
degree of G, and

02(G) = min{dg(z) + de(y) | 2,9 € V(G), z #y, oy ¢ B(G)}

is the minimum degree sum of nonadjacent vertices. (When G is a complete graph,
we define 02(G) = c0.) For a bipartite graph G with partite sets V1 and V5,

6.1(G) = min{dg(z) + dg(y) |z € V1, y € Va}

and
011(G) = min{dg(z) + de(y) | z € V1, y € V3, 2y ¢ E(G)}.

(When G is a complete bipartite graph, we define 011(G) = 00.) Two edges e and
f are adjacent if they have a common endvertex, and they are independent if they
are nonadjacent. A set F' of independent edges in G is a perfect matching when
IF| = [Gl/2.

In this paper, “disjoint” means “vertex-disjoint,” since we only deal with parti-
tions of the vertex set.

Suppose Hy, - -, Hy, are disjoint cycles of G such that V(G) = UL, V(H;). Then
the union of these H; is a 2-factor of G with k components. A sufficient condition
for the existence of a 2-factor with a specified number of components was given by
Brandt et al. [1].

Theorem A Suppose |G| = n > 4k and 03(G) > n. Then G can be partitioned
into k cycles, that is, G contains k disjoint cycles Hy,- -, H satisfying V(G) =
kL V(H).
=1 1

Wang [4] considered partitioning a graph into cycles passing through specified
edges, and conjectured that if k > 2, n is sufficiently large compared with £, and
02(G) > n+ 2k — 2, then for any independent edges ei, - -, e, G can be partitioned
into cycles Hy, -+, Hy such that e; € E(H;). This conjecture was completely solved
by Egawa et al. [3].

Theorem B Suppose k > 2, |G| = n 2 3k and either

02(G) 2 max {n+ 2k — 2, l%J + 4k — 2}

5(G) > max{[—g +h-1, {";5"’1 - 1}.

Then for any independent edges e1,- - - , ex, G can be partitioned into cycles Hy, - - -, Hy
such that e; € E(H,).

or
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In this paper, we consider analogous results for a bipartite graph, and in the
rest of this paper, G denotes a bipartite graph with partite sets ; and V; satisfying
Vil = [Va| = .

Wang [5] proved the following analogue of Theorem A for bipartite graphs.

Theorem C Suppose n > 2k + 1 and §(G) > n/2 + 1. Then G can be partitioned
into k cycles.

The assumption 6(G) > n/2 + 1 is sharp when n = 2k + 1. However, a weaker
condition is sufficient when n is large.

Theorem D (Chen et al. [2]) Suppose n > max{51,k?/2+1} and 6,,,(G) > n+1.
Then G can be partitioned into k cycles.

Wang [6] conjectured that if k > 2, n is sufficiently large compared with k, and
011(G) =2 n+k, then for any independent edges e;, - - -, ek, G can be partitioned into
cycles Hy, - -+, Hy such that e; € E(H;), and verified it when &k < 3.

In this paper, we solve this conjecture affirmatively.

Theorem 1 Suppose k > 2, n > 2k, and either

01,1(G) > max {n+ k, [?.n;l] + Zk}

3
or
5(G) > max{i'rw—k'! ’ Pn+4k]}.
2 5
Then for any independent edges ey, - - -, ex, G can be partitioned into cycles Hy, -+, H

such that e; € E(H;).

Note that n+ k > [2—”3‘—11 + 2k if and only if n > 3k — 1, and [E—;—E] > [2”2—4'“] if
andonlyifn=3k—-5n=3k—-3o0rn>3k-1

Theorem 1 is an immediate corollary of the following two theorems: One solves
the packing problem, and the other one extends a packing to a partition.

Theorem 2 Suppose n > 2k, and either

01,1(G) > max {n+ k, [271 — 1] +2k}

3
or
5G) > max{[n-}-k} , [2n+4k‘|} .
2 5
Then for any independent edges ey, --, e, G contains k disjoint cycles Cy,- -+, Cy

such that e; € E(C;) and |C;| < 6.

Theorem 3 Suppose k > 2, 01,1(G) > n+ k, Cy,-++,Cy are disjoint cycles and
e; € E(C;). Then there ezist disjoint cycles Hy, - - -, Hy, satisfying V(G) = UL, V(H,)
and e; € E(H;).
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The sharpness of the assumptions will be discussed in the final section.

We will use the notation Clu,v] to denote the segment of the cycle C' from u
to v (including u and v) under some orientation of C, and Clu,v) = Clu,v] — {v}
and C(u,v) = Clu,v] — {u,v}. Given a cycle C' with an orientation, we let v
(resp. v~) denote the successor (resp. the predecessor) of v along C according to
this orientation, and vt = (vt)¥ (resp. v~ = (v7)7).

Let F = {e1,+ -, ex} be aset of independent edges, where e; = z;yi, T; € V1, 4i €
Vy, and set T = {x1,%1, ", Tk, Yk} A set of disjoint cycles {Cy,+-+,C,} is called
admissible for F if |E(C;)NF|=1and |[V(C;)NT|=2for 1 <i <7

2 Proof of Theorem 2

The following lemma will be used several times in the proof of Theorem 2.

Lemma 4 Suppose C isa cyclein G, e € E(C), u € V(G-C)NV1, v € V(G=C)NV;
and do(u) + de(v) > |C]/2 + 2. Then, either (V(C) U {v}) contains a shorter cycle
than C passing through e, or there ezists w € Ng(u) such that (V(C)U {v} - {w}h)
contains a cycle passing through e.

Proof. If de(v) > 3, (V(C) U {v}) contains a shorter cycle than C passing through
e. Hence we may assume that do(v) < 2. Then do(v) = 2 and d¢(u) = |C|/2, that
is, No(u) = V(C) N V,. We may assume that Nc(v) = {a,b} with e € E(C[b,a]).
If |C(a,b)| > 1, (V(C) U {v}) contains a shorter cycle than C passing through e.
Hence we may assume that C(a,b) = {w}. Then w € N¢(u) and (V(C)U{v}—{w})
contains a (spanning) cycle passing through e. il

Let G be an edge-maximal counterexample of Theorem 2, and set F={e, ek}
In the rest of the proof, ‘admissible’ means ‘admissible for F,” and a cycle is called
short if its length is equal to 4 or 6. If G is a complete bipartite graph, G contains
k admissible cycles of length 4. Hence G is not complete bipartite. Let z € V; and
y € V, be nonadjacent vertices of G, and define G' = G + zy, the graph obtained
from G by adding the edge zy. Then G’ is not a counterexample by the maximality
of G, and so G’ contains admissible short cycles Cy, - -, Cx. Without loss of gen-
erality, we may assume that zy ¢ U E(C;). This means that G contains k — 1
admissible short cycles Cy, - -, Ck—1 such that Y5 1|Ci| < 2n — 4. We choose those
admissible short cycles Cy, - - -, Cr—1 so that 57! |Ci| is as small as possible. Let L
be the subgraph of G induced by U= V(Cy).

We may assume that e; € E(C;), 1 <i < k—1. Let e; = 7y with z; € ¥} and
yeVofor1<i<k,M=G-L,|M|=2m,and D = M — {zk,yx}. Note that
|D| > 2 and |V(D) N V4| = [V(D) N V3| In most parts of the proof, we only use the
assumption that ¢1,,(G) > n + k.

Claim 2.1 We may assume that dp(zx) > 0 and dp(yx) > 0.
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Proof. Suppose dp(zx) = 0 and take any z € V(D) N V,. Then
dy(zr) +du(z) <1+ (m—-1) =
This implies that
dp(oe) +dp(z) >n+k-m=k+ i—%—

i Gl |
This means that for some i, 1 <i< k-1,
C.
dCs(wk) + dC.'(z) > l—id + 2.
By Lemma 4, there exists w € Ng¢,(zx) such that (V(C;) U {z} — {w}) contains a
cycle passing through e;.
Similarly, by replacing cycles if necessary, we may assume that Np(yz) # 0. 1
Take any z € Np(zy) and 2’ € Np(yx). Since M does not contain an admissible
short cycle, z and 2’ are nonadjacent.
We distinguish two cases according to the value |D|.
Case 1. |D| > 4.
Claim 2.2 We may assume that dp(z) > 0 and dp(2') > 0.
Proof. Suppose Np(z) =0 and take any w € V(D)NV; — {z'}. Then
dM(z) + dM(w) <1+ (m - 1) =
The rest of the proof is similar to that of Claim 2.1. &
Take any w € Np(z) and w' € Np(2'). Let
Dy = Np(y) N Np(w') — {'},

and
= Np(zx) N Np(w) — {z}.

Claim 2.3 We may assume that |Dy| + |Dy] <m - 3.

Proof. Suppose |D;| + |Dy| > m — 2. Then D; # 0 and D, # @. Take any u € D,
and u' € D;. Since Np, (u) =@ and Np,(v') =0,

By Lemma 4, we can replace the cycles to decrease |Dq] + |Dsl. |
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Let S = {w, z, Tk, yx, 2, w'}. Since
dy(S) =10+ |E(S,M = S)| £ 10+ |[M — S|+ |D1| + |Dof < 3m +1,
we get

k-1 3 k—1 3
dL(S) > 3(n+ k) -3Im-1= Z -2-|C,| +3k—-1> Z(élal + 3)
i=1 i=1
This means that for some 4,
3

First, suppose C; = zyaa'z; and dg,(S) > 10. If wa',yra, 2'y;, w's; are edges
in G, (SUV(C;)) contains two admissible cycles Trypoo'wzzy and zy2'w'z;. So
|E(G) N {wd', yxa, 2'ys, w'z;}| < 3. Similarly, |E(G) N {w'a, zxd, zzi, wy;}| < 3.
This means that za and z'a’ are edges. If zx; and zxa’ are edges, (S U V(i)
contains two admissible cycles zyyp2'a'zy and z;y;a2z;. So |E(G) N {zx;, zpa'}| < 1.
Similarly, |E(G) 0 {z'yi, yea}| < 1. This means that wa' , wy;, w'z;, wa are edges.
Then (S U V/(C;)) contains two admissible cycles Tryr? dwzzy, and z;y;0w'T;.

Next, suppose C; = z;y;abb'a’z; and dg;(S) > 13. Note that dc, (s) < 2 for every
s € S—{xx,yx} by the minimality of L. Hence dc,({z, yx, 2, 2'}) 2 9. By symmetry,
we may assume that dg,(zx) = 3 and dg,(2') = 2. Then b and 2'b are edges, and
zxyk2' bz is an admissible cycle shorter than C;. i

Case 2. |D|=2.
Claim 2.4 For some i, |Ci| =4 and d¢,(z) = d¢,(2') = 2.
Proof. Since dp(2) = du(2) =1,

i ~ ]
S dal(e ) 2 n k- 2= TG+ k> S22

1

This means that d¢, ({2, 2'}) > |Ci|/2+2 for some i. On the other hand, d¢,({2,2'}) <
4. Hence |Cy| = 4 and d¢,(2) = d¢,(2') = 2. 1

We may assume that d¢,_, (z) = d¢,_,(?)) = 2 and Cy—1 = Tp_1Yk—1WW'Tp—1. Let
L'=L~Cry, M =G —L and S = {w, 2, Tk, Y, 2, w'}.
Now we use the assumption that 01,(G) > 242 + 2k or §(G) > Itk First,
suppose 01,(G) > =L + 2k. Since wyx, 22, zxw’ € E(G),
dg(S) > 30‘1_1(G) > 2n+ 6k — 1.
Since dp(S) < 18,

k—2 k=2
dp(S) > 2n+6k—19= Y |Ci| + 6k — 11> > (|Ci| +6).

i=1 i=1
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This means that d¢,(S) > |Ci| + 7 for some 4, 1 < i<k — 2.

Suppose C; = z;y;0a'z; and dg,(S) > 11. By symmetry, we may assume that
de,(zk) = dg,(2') = dc,(w') = 2. If yra is an edge, (V(M') UV(C;)) contains three
admissible cycles zyyraa'Ty, Tr-1yp—1w2Tk—1 and z;y;2'w'z;. On the other hand, if
zz; and za are edges, (V(M') U V(C;)) contains three admissible cycles zxyxz'a'zy,
Tp_1Yk—1wWw'Tg_y and z;y;027;.

Suppose C; = z;y;abb'a’z; and dg,(S) > 13. By symmetry, we may assume that
de.(zr) = 3 and dg, (7)) = 2. Then b and 2'b are edges, and zyx2'bxy is an
admissible cycle shorter than C;.

Next, suppose 6(G) > 222 and let S’ = {zx, ys, 2, 2'}. Then

dp({w,w'}) + 2d(S") > 106(G) — 30 > 4n + 8k — 30

k-2 k-2
=2 |Ci| +8k— 14> Y (2|Ci| + 8).
i=1 i=1

This means that
dc‘.({w,w'}) + ZdCi(S’) Z 2]Cz| + 9

for some i, 1 < i < k — 2. Suppose C; = z;y;0a's; and de, ({w, w'}) + 2dc,(S') >
17. In particular, dg,(S') > 7. By symmetry, we may assume that dc,(zx) =
de,(?') = 2. If zz; and za are edges, (V(M') U V(C;)) contains three admissible
cycles. Similarly, if w'z; and w'a are edges, (V (M')UV (C;)) contains three admissible
cycles. Hence |E(G) N {zz;,2a}| < 1 and |E(G) N {w'z;,w'a}| < 1. This means
wa', wy;, yxa are edges. Furthermore, either 2z; or za is an edge, but in either case
(V(M'"YU V(C;)) contains three admissible cycles. Suppose C; = z;y;abb'a’z; and
do, ({w,w'}) + 2d¢,(S") > 21. By symmetry, we may assume that d¢,(zx) = 3 and
de,(2') = 2. Then zxb and 2'b are edges, and z,yx2'bz; is an admissible cycle shorter
than C;.
This completes the proof of Theorem 2.

3 Proof of Theorem 3

We prepare several lemmas before proving Theorem 3.

Lemma 5 Suppose k > 2, G is not complete bipartite, and 01,(G) > n+ k. Then
G is (k +1)-connected.

Proof. Suppose G is not (k + 1)-connected. Then G — S is disconnected for some S
with |S| < k. Let A be a component of G — S, and B = V(G) — (SU A). We may
assume that |[ANV}| +|BNV;| > |ANV,| + |BNV,|. First, suppose ANV; # 0 and
BNV, #0, and take ue ANV; and v € BN V,. Then

da(u) + da(v) < [ANV;| + BN VA| + |S]
<G - S|/2+19
<n+k/2
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but this contradicts the assumption. Next, suppose ANV; =0 or BNV, = §. By
symmetry, we may assume that ANV =0. f BNV =0, n = |Vi| < |S] < k. On
the other hand, k < n — 2, since 011(G) < 2n —2 when G is not complete bipartite.
This is a contradiction. Hence BNV, # 0. Take w € BNV, and v € AN V2.
Then dg(u) < n — 1 and dg(v) < |S| < k. This contradicts the assumption that
0’1,1(6) >n+k i

Lemma 6 Suppose C is a cycle in G, e € E(C), ue V(G-C)NV, v e V(G-C)
N Vy, and G contains no cycle D satisfying e € E(D) and V(D) properly contains
V(C). Then

(1) de(u) + de(v) < |Cl/2+ 1.

(2) If do(u) + de(v) = |C|/2+ 1, u and v belong to different components of G — C.

Proof. We may assume that C' = wyws - - w,w; with e = wyw, and w, € V5.
(1) If de(u) + de(v) > |C|/2 + 2, there exist 4 and j (1 < i < j < 7 —1) with
VWi, YW, VW, uwjp € E(G). Then the cycle

Wy WPWj - Wi UWj4p - Wy

passes through e and properly contains V'(C).

(2) Suppose d¢(u) + de(v) =|C|/2+ 1 and u and v belong to the same component
of G — C. Then there exists i (1 <4 <7 — 1) with vw;, vw;4, € E(G), and a path
P connecting v and v in G — C. By joining P and w1 -+ - wywy - - wiv, We get a
cycle that passes through e and properly contains V/(C). i

A set of admissible cycles {Cy, - -, C,} is called mazimal if there are no admissible
cycles Dy, -+, D, such that Uj_; V(D;) properly contains U, V(C;).

Lemma 7 Suppose {C,---,Ci} is a mazimal set of admissible cycles, and 011(G) 2
n+ k. Then G — U, V(C;) is connected.

Proof. Suppose M = G — UL, V(C;) is not connected. Let My be a component of
M and set M; = M — M,. We may assume that |V (M) NVi| > |V (Mg) NVz|. Then
|V (M) N V4| < [V(M;) N Vy|. Take u € V(M) N Vi and v € V(M) N Va. Then

dus(u) + dar(v) < [V(Mo) N V| + V(M) N VA < |M|/2.

Hence

M?r

k

(dey(u) + de, (v) 2 n o+ k = |M|/2 =3 _(ICil/2+1).

i=1 i=1

If d¢, (u) + de, (v) > |Ci|/2 + 2 for some i, there exists a cycle D in (V(C))uV(M))
that passes through e; and properly contains V(C;) by Lemma 6. This contra-
dicts the maximality of {Cy,--+,Cx}. Hence dg,(u) + dg;(v) = |Ci|/2 + 1 for all
i and dy(u) + dp(v) = |M|/2. This means that [V(Mo) N Vi| = [V(My) N Val,
[V (My)NVi| = [V(M)NVa|, and dpr(u) = V(Mp)NV; and dar(v) = V(M;)NV;. This

1]
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holds for any u € V(M) NV; and v € V(M) N Vs. Hence My and M; are complete
bipartite. Take any u’ € V(M) NV and o' € V(M;) N V4. By the same arguments
as above, dg,(v') + dg; (v') = |C;]/2 + 1 for all i. Then dg, ({u,v',v,v'}) = |C1| + 2.
By symmetry, we may assume that dc, (u) + de, (v') > |C1|/2 + 1. Since u and v’
belong to the same component of M, there exists a cycle D in (V(Cy) UV (M)) that
passes through e; and properly contains V(C;) by Lemma 6. This contradicts the
maximality of {Cy,---,Ck}. I

Proof of Theorem 3. Let F = {e1,---,ex}, € = Tili, T € Vi, y¥; € V3, and in
the rest of the proof, ‘admissible’ means ‘admissible for F.’

Choose admissible cycles Cy, - - -, Cy such that ¥¥_, |C;| takes the maximum value,
and set C = {C},+++,Cx}. Let L = (UL, V(C;)) and M = G—L. Since C is maximal,
M is connected by Lemma 7.

Claim 3.1 Either Ng,(M)NVy =0 or Ne,(M)NVy =0 for everyi, 1 <i < k.

Proof. Suppose N¢,(M) NV, # 0 and Ng,(M) NV, # 0. We may assume ¢ = 1, and
choose uw and vz € E(G) withu € V(M) NV, v € V(M) NV, and w,z € V(Cy)
satisfying e; € E(Cy[z,w]) and N(M) N Cy(w,2) = 0. If 2 = w*, there exists a
longer admissible cycle than Cy in (V(C;) U V(M)), which contradicts the choice of
C. Hence |C)(w, z)| > 2. Let D be the cycle obtained by joining Cy[z, w], a path P
connecting u and v in M, and the two edges uw and vz. If

doyzw({w',27}) 2 [Cilz,w]l/2+ 2,

Ci[w™*,27] can be inserted into D, and (V(D) U Ci[w™,27]) contains a spanning
cycle passing through e;. This contradicts the choice of C. Hence

doyzm({w®,27}) < [Cilz,w]l/2+ 1.

Similarly, if
de,({w™,27}) 2 |Cil/2+ 1

for some i (2 < i < k), (V(C)) U C1{wt, 2z7]) contains a spanning cycle passing
through e;, and this contradicts the choice of C. Hence

de,({w*,27}) < |Cil/2.
On the other hand, if
doyfzwi({u, v}) 2 |Cilz,w]|/2 + 2,

P can be inserted into Cj, and (V(C;) U V(P)) contains a spanning cycle passing
through e;, a contradiction. Also,

de,({u,v}) < |Cil/2
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by Lemma 6. Since de, (w,2)({u,v}) =0, doyw)({wt, 27} < |C1(w, 2)], du({u, v}) £
|M| and dy({w*,27}) =0,

k
de({u,v,w*,27}) < M|+ X |Ci| +2=2n+2.
i=1

This is not possible when k > 2, since dg(u) +dg(z~) = n+k and de(v) +dg(w®) >
n+k 1

By Lemma 5, |[N.(M)| > k+ 1. This means |N¢,(M)| > 2 for some i, and
we may assume that i = 1. Choose two vertices w and z in N¢, (M) such that
1 € E(Ci[z,w)) and N(M) N Cy(w,z) = . By Claim 3.1, we may assume that
w,z € Va.

Claim 3.2 |Ci(w, z)| > 3.

Proof. Suppose Ci(w,2) = {a}. Then (Ci[z,w] UV (M)) contains an admissible
cycle D such that V(D) properly contains Cy[z, w]. Since Nas(a) =0, G — (V(D)U

k , V(Cy)) is disconnected, and {D, Cy, -+, Cy} is not maximal by Lemma 7. This
contradicts the choice of C. 1

Take any u € Nyr(w), v’ € Ny (z) and v € V(M)NVa, and set § = {w™*, 277, u,v}.
Note that 2=~ € Cy(w, z)NVa by Claim 3.2. If e, # aa™ and {a,a*} C N({w*,27"})
for some a € Cy[z,w), then there is an admissible cycle that contains V() -
{z=})u{u,u'}. If u# o/, this contradicts the maximality of the choice of C. Even if
w =o', let D be the admissible cycle such that V(D) = (V(C1) — {27}) U {u}. Since
Ny(z") =0,G-V(D) - UL, V(C) is disconnected. By Lemma 7, {D, Cs, -- -, Ci}
is not maximal, but this contradicts the choice of C. Hence d¢,pw({w?,277}) <
(IC1[z, w]| + 1)/2. Also, dc,zw)(v) = 0 by Claim 3.1, de,(zw)(u) < (|Ci[z, w]| +1)/2,
dortumy(S) = dosgus ({2~} < 1C1w, )], dar(S) = da({w,v}) < [M], and
de,({w*, z77}) < |Ci|/2 and dg,({u,v}) < |Cil/2 for 2 < i < k. Summing up these
inequalities,

k
dg(S) < [M|+|Ci(w,2)| + [Cilz,w]| + 1+ 3 |Ci| =2n+1.
i=2
On the other hand, dg(S) > 2(n + k) since w*v, 2"~ u ¢ E(G). This is a contradic-
tion.
This completes the proof of Theorem 3.

4 Examples

The degree conditions of Theorem 2 are sharp in the following sense. (In the follow-
ing examples, E; ; = {zy | z € V;,y € V;})
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Ezample 1. Suppose n > 2k, and let V(G) = V; U Vo U V3 U Vi, where |Vi| = &,
|‘/zl = 2k — 1, |‘/3| =n-—k and lw‘ =n -2k + 1, and E(G) = El,g U Eg’g U E374.
Then any k independent edges in (V; U V,) cannot be contained in k disjoint cycles,
while 011(G) =2k -1)+ (n—k)=n+k~—1.

Ezample 2. Suppose 2k < n < 3k — 2, and let V(G) = U, Vi, where |V}| =
Vo] =n—2k+1, V3 = V5| = [(2n - 1)/3] =k, |V4| = |[Vs| = n = [(2n—1)/3] and
‘Vﬂ = ‘Vg' =3k—1-n,and E(G) = U?:l Eiy1iUE; i UE;gU U:z’}:l(EW?i U Eg)gi_l).
Let F; be any perfect matching in (V; U V3) and F; be any perfect matching in
(Vs UVg). Then |Fy U Fy| = k, but Fy U F, cannot be contained in k disjoint cycles.
(In fact, if such cycles exist, only edges in F; can be contained in cycles of length 4.
Hence n > 3k — (3k — 1 — n) = n + 1, which is impossible.) On the other hand,

alyl(G)22n-—max{n—2k+1+n— [271:;— 1],2(1-271'_1., —k)}

3
2”;1],2k+2n—2{2n_1”

3
2n—1]

=min{2k~1+[

=2k—1+[

Ezample 3. Suppose n > 2k, and let V(G) = U, Vi, where |Vi| = |Va| = [(n —
kE+1)/2], [Vs| = |Va| = k=1 and |V5| = |V| = [(n — k + 1)/2], and E(G) =
El,g U E1’4 U E2‘3 U E3,4 ) Ea)s (@] E4,5 U E5,6 U {’UA]}, where u € V] and v € V5. Let
F be any perfect matching in (V3 U V,). Then F U {uv} cannot be contained in k
disjoint cycles, while §(G) = [(n—k+1)/2| +k~1=[(n+k)/2] - L.

Ezample 4. Suppose 2k < n < 3k -2, n # 3k - 3 and let s = [(3n — 4k + 1)/5],
and V(G) = Ui, Vi, where [Vi| = V| = --- = |V§| = s and [Vi] = |V = n - 3s,
and E(G) = Ui Eiiy1 U Eey U Erg U U (E72i U Egi-1). Let Fy be any per-
fect matching in (V) U V,) and F, be any matching of size k — s in (V7 U V).
(Note that n — 3s > k — s.) Then Fj} U F, cannot be contained in & disjoint cy-
cles. (In fact, if such cycles exist, the number of cycles of length 4 is at most
2(n -k —28)+ (k—s) = 2n — k — b5s. Hence n > 3k — (2n — k — 5s), which is
impossible.) On the other hand, §(G) = n — s = [(2n + 4k)/5] — 1.

The degree condition of Theorem 3 is sharp in the following sense.
Ezample 5. Suppose n > 2k + 1, and let V(GQ) = Vi UVo U V3 UV, where |Vy] = 1,
V] =k, V3l = n—1and |V4] = n—k, and E(G) = E1pU Ey3U E34. Then k
independent edges in {V, U V3) are contained in & disjoint cycles, but they cannot be
extended to a partition. On the other hand, 011(G)=k+ (n—1)=n+k - 1.

Furthermore, the assumption & > 2 in Theorem 1 and in Theorem 3 is necessary.

Ezample 6. Let V(G) = UL, Vi, where |Vi| = |Vo| = m, |V3] = V4| = 1, |V5] =
|V6| =n-m — 1, and E(G) = El‘g U E1,4 U E‘g,g U E3,4 U Eg,e U E4,5 V] E5,6. Then
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011(G) = n+1 and the edge e in Ejy4 is contained in a cycle, but there is no hamil-
tonian cycle containing e when 1 <m <n—2.

From this example, we also see that the assumption k > 2 is necessary in Lemma 5.
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