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Abstract 

Dirac and Ore-type degree conditions are given for a bipartite graph to 
contain vertex disjoint cycles each of which contains a previously specified 
edge. This solves a conjecture of Wang in [6]. 

1 Introduction 

In this paper, we only consider finite undirected graphs without loops and multiple 
edges. For a vertex x of a graph G, the neighborhood of x in G is denoted by Nc(x), 
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and dc(x) = INc(x)1 is the degree of x in G. For a subgraph H of G and a vertex 
x E V(G) - V(H), we also denote NH(x) = Nc(x)nV(H) and dH(x) = INH(x)l. For 
a subgraph H and a subset 8 of V(G), define dH(8) = LXES dH(x). The subgraph 
induced by 8 is denoted by (8), and define G - 8 = (V(G) - S) and G - H = 
(G - V(H)). For a graph G, IGI = IV(G)1 is the order of G, 8(G) is the minimum 
degree of G, and 

(}2(G) = min{da(x) + dc(Y) I x, Y E V(G), xi- y, xy ¢ E(G)} 

is the minimum degree sum of nonadjacent vertices. (When G is a complete graph, 
we define (}2 (G) = 00.) For a bipartite graph G with partite sets VI and V2 , 

81,1 (G) = min{dc(x) + da(y) I x E Vi, Y E V2} 

and 
O"l,l(G) = min{dc(x) + dc(Y) I x E Vb Y E V2, xy ~ E(G)}. 

(When G is a complete bipartite graph, we define O"l,I(G) = 00.) Two edges e and 
f are adjacent if they have a common endvertex, and they are independent if they 
are nonadjacent. A set F of independent edges in G is a perfect matching when 
IFI = IGI/2. 

In this paper, "disjoint" means "vertex-disjoint," since we only deal with parti­
tions of the vertex set. 

Suppose HI,' . " Hk are disjoint cycles of G such that V(G) = U~=I V(Hi). Then 
the union of these Hi is a 2-factor of G with k components. A sufficient condition 
for the existence of a 2-factor with a specified number of components was given by 
Brandt et al. [1]. 

Theorem A Suppose IGI = n ~ 4k and 0"2(G) ~ n. Then G can be partitioned 
into k cycles, that is, G contains k disjoint cycles HI,"', Hk satisfying V(G) = 
Uf=l V(Hi)' 

Wang [4] considered partitioning a graph into cycles passing through specified 
edges, and conjectured that if k ::2: 2, n is sufficiently large compared with k, and 
0"2(G) ::2: n + 2k - 2, then for any independent edges el,"', ek, G can be partitioned 
into cycles H1 , .•• ,Hk such that ei E E(Hi). This conjecture was completely solved 
by Egawa et al. [3]. 

Theorem B Suppose k ::2: 2, IGI = n ~ 3k and either 

0"2(G) ~ max {n + 2k - 2, l~J + 4k - 2} 

or 

o(C) ~ max {r~l +k -1, r n ~ 5k 1-1} 
Then for any independent edges el,' .. , ek, G can be partitioned into cycles HI, ... , Hk 
such that ei E E(Hi)' 
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In this paper, we consider analogous results for a bipartite graph, and in the 
rest of this paper, G denotes a bipartite graph with partite sets VI and V2 satisfying 
IV11 = 1\121 = n. 

Wang [5] proved the following analogue of Theorem A for bipartite graphs. 

Theorem C Suppose n 2: 2k + 1 and 8( G) 2: n/2 + 1. Then G can be partitioned 
into k cycles. 

The assumption 8( G) 2': n/2 + 1 is sharp when n = 2k + 1. However, a weaker 
condition is sufficient when n is large. 

Theorem D (Chen et al. [2]) Suppose n 2: max{51, k2/2 + I} and 81,1 (G) 2: n + 1. 
Then G can be partitioned into k cycles. 

Wang [6] conjectured that if k 2: 2, n is sufficiently large compared with k, and 
0"1,1 (G) 2: n + k, then for any independent edges el, ... , ek, G can be partitioned into 
cycles H b · .. ,Hk such that ei E E(Hi), and verified it when k :::; 3. 

In this paper, we solve this conjecture affirmatively. 

Theorem 1 Suppose k 2: 2, n 2: 2k, and either 

O"l,l(G) 2': max {n + k, [2n; 11 + 2k} 

or 

Then for any independent edges el, ... ,ek, G can be partitioned into cycles Hi, ... , Hk 
such that ei E E(Hi). 

Note that n + k 2: f2n;11 + 2k if and only if n 2: 3k - 1, and f n!k 1 2: f2nt4k 1 if 
and only if n = 3k - 5, n = 3k - 3 or n 2: 3k - 1. 

Theorem 1 is an immediate corollary of the following two theorems: One solves 
the packing problem, and the other one extends a packing to a partition. 

Theorem 2 Suppose n 2: 2k, and either 

0"1,1 (G) 2: max {n + k, r2n
; 11 + 2k} 

or 

8 (G) ~ max {f n ; k 1 ' r 2n ; 4k l} . 
Then for any independent edges e1,' ", ek, G contains k disjoint cycles Gl ," " Gk 

such that ei E E(Gi) and IGil :::; 6. 

Theorem 3 Suppose k 2: 2, O"l,l(G) 2: n + k, Gl,"', Gk are disjoint cycles and 
ei E E(Gi). Then there exist disjoint cycles HI,"', Hk satisfying V(G) = U~=l V(Hi) 
and ei E E(Hi). 
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The sharpness of the assumptions will be discussed in the final section. 
We will use the notation C[u, v] to denote the segment of the cycle C from u 

to v (including u and v) under some orientation of C, and C[u, v) = C[u, v] - {v} 
and C(u,v) = C[u,v] - {u,v}. Given a cycle C with an orientation, we let v+ 
(resp. v-) denote the successor (resp. the predecessor) of v along G according to 
this orientation, and v++ = (v+)+ (resp. v-- = (v-)-). 

Let F = {el' ... , ed be a set of independent edges, where ei = XiYi, Xi E Vb Yi E 

V2 , and set T = {xl,Yl,"·,xk,yd. A set of disjoint cycles {G}'''·,Gr } is called 
admissible for F if IE(Gd n FI = 1 and IV(Ci) n TI = 2 for 1 :::; i :::; r. 

2 Proof of Theorem 2 

The following lemma will be used several times in the proof of Theorem 2. 

Lemma 4 Suppose G is a cycle in G, e E E(C), u E V(G-C)nVl' v E V(G-G)nV2 
and de(u) + de(v) ~ IGI/2 + 2. Then, either (V(C) U {v}) contains a shorter cycle 
than G passing through e, or there exists wE Ne(u) such that (V(C) U {v} - {w}) 
contains a cycle passing through e. 

Proof If de (v) ~ 3, (V (G) U {v}) contains a shorter cycle than G passing through 
e. Hence we may assume that de(v) :::; 2. Then de(v) = 2 and de(u) = IGI/2, that 
is, Ne(u) = V(C) n V2 • We may assume that Ne(v) = {a, b} with e E E(G[b, a]). 
If IC ( a, b) I > 1, (V (G) U {v}) contains a shorter cycle than C passing through e. 
Hence we may assume that G(a, b) = {w}. Then w E Ne ( u) and (V(G) U {v} - {w}) 
contains a (spanning) cycle passing through e. I 

Let G be an edge-maximal counterexample of Theorem 2, and set F = {el,"', ek}. 
In the rest of the proof, 'admissible' means 'admissible for F,' and a cycle is called 
short if its length is equal to 4 or 6. If G is a complete bipartite graph, G contains 
k admissible cycles of length 4. Hence G is not complete bipartite. Let x E VI and 
Y E V2 be nonadjacent vertices of G, and define G' = G + Xv, the graph obtained 
from G by adding the edge Xv. Then G' is not a counterexample by the maximality 
of G, and so G' contains admissible short cycles Gl ,"', Ck. Without loss of gen­
erality, we may assume that xy rt u~::-l E(Ci ). This means that G contains k - 1 
admissible short cycles Gl , .. " Ck - 1 such that 2:~::-lICil ::; 2n - 4. We choose those 
admissible short cycles Gll •• " Ck - 1 so that Ef;llCil is as small as possible. Let L 
be the subgraph of G induced by u:::-l V(Ci ). 

We may assume that ei E E( Ci), 1 :::; i :::; k - 1. Let ei = XiYi with Xi E VI and 
Yi E V2 for 1 :::; i :::; k, M = G - L, IMI = 2m, and D = M - {Xk' yd. Note that 
IDI ~ 2 and IV(D) n VII = IV(D) n V21. In most parts of the proof, we only use the 
assumption that (jl,l (G) ~ n + k. 

Claim 2.1 We may assume that dD(Xk) > 0 and dD(Yk) > O. 
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Proof Suppose dD(Xk) = 0 and take any Z E V(D) n V2• Then 

dM(Xk) + dM(z) ~ 1 + (m - 1) = m. 

This implies that 

k-l IC'I k-l IC'I 
ddxk) + ddz) ~ n + k - m = k + L: _t > L:(-t + 1). 

i=l 2 i=l 2 

This means that for some i, 1 ~ i :::; k - 1, 

IC-I 
dCi(Xk) + dCi(z) ~ -t + 2. 

By Lemma 4, there exists w E NCi(Xk) such that (V(Ci ) U {z} - {w}) contains a 
cycle passing through ei. 

Similarly, by replacing cycles if necessary, we may assume that ND(Yk) =I- 0. I 

Take any z E ND(Xk) and z' E ND(Yk). Since M does not contain an admissible 
short cycle, z and z' are nonadjacent. 

We distinguish two cases according to the value IDI. 

Case 1. IDI ~ 4. 

Claim 2.2 We may assume that dD{z) > 0 and dD(z') > O. 

Proof Suppose ND{z) = 0 and take any w E V(D) n Vi - {z'}. Then 

dM(z) + dM(w) ~ 1 + (m - 1) = m. 

The rest of the proof is similar to that of Claim 2.1. I 

Take any w E ND{z) and w' E ND{z'). Let 

and 

Claim 2.3 We may assume that IDll + ID21 ~ m - 3. 

Proof Suppose IDll + ID21 ~ m - 2. Then Dl =I- 0 and D2 =I- 0. Take any u E D2 
and u' E Dl. Since NDl (u) = 0 and ND2 (U') = 0, 

By Lemma 4, we can replace the cycles to decrease IDll + ID21. I 
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Let 5 = {w, Z, Xk, Yk, Z', w'}. Since 

dM (5) = 10 + IE(5, 1\1- 5)1 ~ 10 + 1M - 51 + IDd + ID21 ~ 3m + 1, 

we get 

k-l 3 k-l 3 
dL (5) 2: 3(n + k) - 3m - 1 = L 2"IGi l + 3k - 1 > L(2"IGil + 3). 

i=l i=l 

This means that for some i, 

First, suppose Gi = xiYiaa'xi and dc;(S) ~ 10. If wa', Yka, Z'Yi, W'Xi are edges 
in G, (5 U V(Ci )) contains two admissible cycles xkYkaa'wzxk and XiYiZ'W'Xi. SO 
IE(G) n {wa',Yka,Z'Yi,W'Xi}1 ~ 3. Similarly, IE(G) n {w'a,xka',zxi,WYi}1 ~ 3. 
This means that za and z'a' are edges. If ZXi and Xka' are edges, (8 U V(Gi)) 
contains two admissible cycles xkYkz'a'xk and XiYiaZXi. SO IE(G) n {ZXi' xka'}1 ~ 1. 
Similarly, IE(G) n {Z'Yi,Yka}1 ~ 1. This means that wa',wYi,W'xi,w'a are edges. 
Then (5 U V(Ci)) contains two admissible cycles xkYkz'a'wzxk and XiYiaw'Xi. 

Next, suppose Ci = XiYiabb'a'xi and dc;(8) 2: 13. Note that dc;(s) ~ 2 for every 
s E 5 - {Xk, Yk} by the minimality of L. Hence dc; ({ Xk, Yk, Z, z'}) 2: 9. By symmetry, 
we may assume that dCi (Xk) = 3 and dc; (z') = 2. Then Xkb and z'b are edges, and 
XkYkZ'bxk is an admissible cycle shorter than C i . I 

Case 2. IDI = 2. 

Claim 2.4 For some i, IGil = 4 and dc;(z) = dCi(z') = 2. 

Proof. Since dM(z) = dM(z') = 1, 

k-l k-l k-l 

L dc;( {z, z'}) ~ n + k - 2 = L ICi l/2 + k > L:(IGi \/2 + 1). 
i=l i=l i=l 

This means that dc;({z,z'}) 2: IGil/2+2forsomei. Ontheotherhand,dc;({z,z'}) ~ 
4. Hence ICil = 4 and dc; (z) = dc; (z') = 2. I 

We may assume that dCk_ 1 (z) = dCk _ 1 (z') = 2 and Ck- 1 = Xk-lYk-lWW'Xk-l' Let 
L' = L - Gk- 1 , M' = G - L' and S = {W,Z,Xk,Yk,Z',W'}. 

Now we use the assumption that Ol,l(G) ~ 2n
3
-1 + 2k or 8(G) ~ 2nt4k. First, 

suppose Ol,l(G) ~ 2n;1 + 2k. Since WYk, ZZ',XkW' ~ E(G), 

da (5) ~ 301,1(G) ~ 2n + 6k - 1. 

Since dM1(S) ~ 18, 

k-2 k-2 
du (5) ~ 2n + 6k - 19 = L lei + 6k - 11 > L(IGil + 6). 

i=l i=l 
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This means that dc; (S) 2: ICd + 7 for some i, 1 ~ i ~ k - 2. 
Suppose Ci = xiYiaa'xi and dc;(5) ~ 11. By symmetry, we may assume that 

dCi(Xk) = dCi(z') = dCi(w') = 2. IfYka is an edge, (V(M') UV(Ci)) contains three 
admissible cycles xkYkaa'xk, Xk-lYk-lWZXk-I and XiYiZ'W'Xi. On the other hand, if 
ZXi and za are edges, (V(M') U V(Ci)) contains three admissible cycles xkYkz'a'xk, 
Xk-IYk-lWW'Xk-I and XiYiaZXi. 

Suppose Ci = XiYiabb'a'xi and dCi (5) ~ 13. By symmetry, we may assume that 
dCi (Xk) = 3 and dCi (ZI) = 2. Then Xkb and z'b are edges, and XkYkZ'bxk is an 
admissible cycle shorter than Ci . 

Next, suppose 8(G) 2: 2nt4k, and let 5' = {Xk' Yk, Z, z'}. Then 

du({w,w'}) + 2du (5') ~ 108(G) - 30 2: 4n+8k - 30 
k-2 k-2 

= 2 L ICil + 8k - 14 > L(2ICil + 8). 
i=I i=I 

This means that 
dc; ({ w, w'}) + 2dci (5') ~ 21Ci l + 9 

for some i, 1 ~ i ~ k - 2. Suppose Ci = xiYiaa'xi and dCi ({ w, w'}) + 2dci (5') 2: 
17. In particular, dc;(5') 2: 7. By symmetry, we may assume that dC;(Xk) = 
dCi (z') = 2. If ZXi and za are edges, (V(M') U V(Ci )) contains three admissible 
cycles. Similarly, if W'Xi and w'a are edges, (V(M')UV(Ci )) contains three admissible 
cycles. Hence IE(G) n {ZXi' za}1 ~ 1 and IE(G) n {W'Xi, w'a}1 ~ 1. This means 
wa', WYi, Yka are edges. Furthermore, either ZXi or za is an edge, but in either case 
(V(M') U V(Ci)) contains three admissible cycles. Suppose Ci = XiYiabb'a'xi and 
dci({w,w'}) + 2dc;(S') 2: 21. By symmetry, we may assume that dC;(Xk) = 3 and 
dCi (z') = 2. Then Xkb and z'b are edges, and XkYkZ'bxk is an admissible cycle shorter 
than Ci . 

This completes the proof of Theorem 2. 

3 Proof of Theorem 3 

We prepare several lemmas before proving Theorem 3. 

Lemma 5 Suppose k 2: 2, G is not complete bipartite, and O"I,I(G) 2: n + k. Then 
G is (k + I)-connected. 

Proof Suppose G is not (k + I)-connected. Then G - 5 is disconnected for some 5 
with 151 ~ k. Let A be a component of G - 5, and B = V(G) - (5 U A). We may 
assume that IA n VII + IB n V2 1 ~ IA n V21 + IB n VII. First, suppose A n VI =J 0 and 
B n V2 =I- 0, and take u E A n VI and v E B n V2. Then 

dc(u) + dc(v) ~ IA n V21 + IB n Vii + 151 
~ IG - 81/2 + 181 
:::; n + k/2, 
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but this contradicts the assumption. Next, suppose A n VI = 0 or B n 112 = 0. By 
symmetry, we may assume that A n VI = 0. If B n VI (/J, n = IVII ::; lSI::; k. On 
the other hand, k ::; n - 2, since aI,I (G) ::; 2n - 2 when G is not complete bipartite. 
This is a contradiction. Hence B n VI =1= 0. Take U E B n VI and v E An V2 . 

Then dc(u) ::; n - 1 and dc(v) ::; lSI::; k. This contradicts the assumption that 
al,I(G) ~ n + k. I 

Lemma 6 Suppose C is a cycle in G, e E E(C), U E V(G - C) n VII v E V(G - C) 
n V2, and G contains no cycle D satisfying e E E(D) and V(D) properly contains 
V(C). Then 
(1) dc(u) + dc(v) ::; ICI/2 + 1. 
(2) If dc(u) + dc(v) = ICI/2 + 1, u and v belong to different components of G - C. 

Proof. We may assume that C = WIW2'" WrWl with e = WIWr and WI E VI' 
(1) If dc(u) + dc(v) 2:: ICI/2 + 2, there exist i and j (1 ::; i < j ::; r - 1) with 
VWi, UWi+ll VWj, UWj+1 E E(G). Then the cycle 

passes through e and properly contains V ( G). 
(2) Suppose dc(u) + dc(v) = ICI/2 + 1 and U and v belong to the same component 
of G - C. Then there exists i (1 ::; i ::; r - 1) with VWi, UWi+1 E E(G), and a path 
P connecting u and v in G - C. By joining P and UWi+1 ... Wr~1 .. , WiV, we get a 
cycle that passes through e and properly contains V ( G). I 

A set of admissible cycles {Cl , ... ,Cr } is called maximal if there are no admissible 
cycles Dl,"', Dr such that Ui=l V(Di) properly contains Ui=l V(Gi). 

Lemma 7 Suppose {Gll ... ,Cd is a maximal set of admissible cycles, and al,l (G) ~ 
n + k. Then G - U7=1 V(Gi ) is connected. 

Proof. Suppose M = G - Uf=l V(Ci ) is not connected. Let Ma be a component of 
M and set MI = M - Ma. We may assume that IV(Ma) n Vi I ~ IV(Ma) n 1121. Then 
IV(M1) n VII::; IV(M1 ) n V21. Take u E VeMa) n VI and v E V(Mt} n V2. Then 

dM(u) + dM(v) ::; IV(Ma) n V21 + IV(MI) n VII ~ IMI/2. 

Hence 
k k 

I)dci(u) + dc;(v)) ~ n + k -IMI/2 = I::CICi l/2 + 1). 
i=l i=l 

If dCi (u) + dCi (v) 2:: IGi l/2 + 2 for some i, there exists a cycle D in (V(Gi ) U V(M)) 
that passes through ei and properly contains V (Gi ) by Lemma 6. This contra­
dicts the maximality of {Gl ," " Ck}. Hence dc; (u) + dCi (v) = ICi l/2 + 1 for all 
i and dM(u) + dM(v) = IMI/2. This means that IV(Ma) n Vd = IV(Mo) n V2\, 
IV(MI)nVII IV(Mdnv2\, and dM(u) = V(Ma)nV2 and dM(v) = V(MI)nVI. This 
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holds for any u E V(Mo) n VI and v E V(Mt} n V2. Hence Mo and Ml are complete 
bipartite. Take any u' E V(Mo) n V2 and v' E V(Md n VI. By the same arguments 
as above, dc;(u') + dc;(v') = IGi l/2 + 1 for all i. Then dC1({u,u',v,v'}) = IGll + 2. 
By symmetry, we may assume that dC1 (u) + dC1 (u') ~ IG11/2 + 1. Since u and u' 
belong to the same component of M, there exists a cycle D in (V(G1) U V(M) that 
passes through el and properly contains V(G1) by Lemma 6. This contradicts the 
maximality of {GI ,···, Gk }. I 

Proof of Theorem 3. Let F = {el,"', ed, ei = XiYi, Xi E VI, Yi E V2 , and in 
the rest of the proof, 'admissible' means 'admissible for F.' 

Choose admissible cycles Gt,' . " Gk such that L:~=I IGil takes the maximum value, 
and set C = {GI ,"', Gk }. Let L = (U:=l V(Gi» and M = G-L. Since C is maximal, 
M is connected by Lemma 7. 

Claim 3.1 Either Nc; (M) n VI = 0 or Nc; (M) n V2 = 0 for every i, 1 ~ i ::; k. 

Proof Suppose Nc;(M) n VI =1= 0 and Nc;(M) n V2 =1= 0. We may assume i = 1, and 
choose uw and vz E E(G) with u E V(M) n Vl, v E V(M) n V2 , and w, z E V(G I ) 

satisfying el E E(Gdz,w)) and N(M) n Gl(w,z) = 0. If z = w+, there exists a 
longer admissible cycle than G1 in (V(Gd U V(M)), which contradicts the choice of 
C. Hence IG1(w, z)1 ~ 2. Let D be the cycle obtained by joining Gdz, w], a path P 
connecting u and v in M, and the two edges uw and vz. If 

Gdw+, z-] can be inserted into D, and (V (D) U Gdw+, z-]) contains a spanning 
cycle passing through el. This contradicts the choice of C. Hence 

Similarly, if 
dc;({w+, z-}) ~ IGi l/2 + 1 

for some i (2 ~ i ~ k), (V(Gi ) U G1 [w+, z-]) contains a spanning cycle passing 
through ei, and this contradicts the choice of C. Hence 

On the other hand, if 

dCt!z,wj( {u, v}) ~ IGdz, wll/2 + 2, 

P can be inserted into G l , and (V(G1) U V(P) contains a spanning cycle passing 
through el, a contradiction. Also, 
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by Lemma 6. Since dCl(w,z)({u, v}) = 0, dCl(w,z)({w+,z-})::; IC1(w,z)j, dM({u,v}):S 
IMI and dM({w+,z-}) = 0, 

k 

dc({u, v, w+, z-}):S IMI + L IGil + 2 = 2n + 2. 
i=l 

This is not possible when k ~ 2, since dc(u) +dc(z-) ~ n+ k and dc(v) +dc(w+) 2:: 
n + k. I 

By Lemma 5, INdM)1 ~ k + 1. This means INci(M)1 ~ 2 for some i, and 
we may assume that i = 1. Choose two vertices wand z in NC l (M) such that 
el E E(Cdz, w]) and N(M) n C1(w, z) = 0. By Claim 3.1, we may assume that 
w,z E V2 . 

Claim 3.2 IC1(w, z)1 ~ 3. 

Proof. Suppose C1(w, z) = {a}. Then (Cdz, w] U V(M)) contains an admissible 
cycle D such that V(D) properly contains Gdz, w]. Since NM(a) = 0, G - (V (D) U 

Uf=2 V(Ci )) is disconnected, and {D, C2 ,"', Gk } is not maximal by Lemma 7. This 
contradicts the choice of C. I 

Take anyu E NM(w), u' E NM(z) and v E V(M)nv;, and set S = {w+,z--,u,v}. 
Note that z-- E G1(W,Z)nV2 by Claim 3.2. Ife!"# aa+ and {a,a+} C N({w+,z--}) 
for some a E Gdz, w), then there is an admissible cycle that contains (V(Cd 
{z-} ) U { u, u'}. If u "# u', this contradicts the maximality of the choice of C. Even if 
u = u', let D be the admissible cycle such that V(D) = (V(Ct} - {z-}) U {u}. Since 
NM(z-) = 0, G - V(D) - Uf=2 V(Gi ) is disconnected. By Lemma 7, {D, C2,"', Cd 
is not maximal, but this contradicts the choice of C. Hence dct[z,w] ( {w+, z--}) :S 
(lC1 [z, w]l + 1)/2. Also, dc!(z,w](v) = ° by Claim 3.1, dC1[z,w](u) :S (ICdz, w]l + 1)/2, 
dC1(w,z)(S) = dC1(w,z)({w+,z--}) ::; IC1 (w,z)1, dM(S) = dM({u,v}) :S 1M!, and 
dc;({w+, z--}) ::; ICd/2 and dc;({u,v}) :S ICi l/2 for 2::; i ::; k. Summing up these 
inequali ties, 

k 

dc(S) :S IMI + IC1(w, z)1 + ICdz, w]l + 1 + L ICil = 2n + 1. 
i=2 

On the other hand, dc(S) 2:: 2(n + k) since w+v, z--u rf. E(G). This is a contradic­
tion. 

This completes the proof of Theorem 3. 

4 Examples 

The degree conditions of Theorem 2 are sharp in the following sense. (In the follow­
ing examples, Ei,j = {xy I x E Vi, Y E Vj}.) 
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Example 1. Suppose n 2:: 2k, and let V(G) = VI U V2 U \13 U V4 , where IVII = k, 
1\121 = 2k - 1, IV31 = n - k and IV41 = n - 2k + 1, and E(G) = E I ,2 U E2 ,3 U E3 ,4. 

Then any k independent edges in (VI U V2 ) cannot be contained in k disjoint cycles, 
while O"I,l(G) = (2k - 1) + (n - k) = n + k - 1. 

Example 2. Suppose 2k ~ n ~ 3k - 2, and let V(G) = U~=I \Ii, where IVII = 
IV2 1 = n - 2k + 1, IV31 = IV6 1 = r(2n - 1)/31 - k, IV4 1 = 1V51 = n - r(2n - 1)/31 and 
IV7 1 = IVsI = 3k - 1- n, and E(G) = Uf=l Ei ,i+l U E6,1 U E7,s U U~=I (E7,2i U ES,2i-d· 

Let Fl be any perfect matching in (VI U V2) and F2 be any perfect matching in 
(V7 U Vs). Then IFI U F21 = k, but Fl U F2 cannot be contained in k disjoint cycles. 
(In fact, if such cycles exist, only edges in F2 can be contained in cycles of length 4. 
Hence n 2:: 3k - (3k - 1 - n) = n + 1, which is impossible.) On the other hand, 

0'1,1 (G) 2: 2n - max { n - 2k + 1 + n - r 2n ; 11 ,2 (r 2n ; 11 - k ) } 

= min {2k - 1 + r2n
; 11 ,2k + 2n - 2 f2n; 11} 

= 2k - 1 + r2n
; 11. 

Example 3. Suppose n 2:: 2k, and let V(G) = U~=l \Ii, where IVll = IV2 1 = f(n -
k + 1)/21, IV3 1 = IV4 1 = k - 1 and 1V51 = IV6 1 = l(n - k + 1)/2J, and E(G) = 
E1,2 U E1,4 U E2,3 U E3,4 U E3 ,6 U E4 ,5 U E5 ,6 U {uv}, where u E VI and v E V6 . Let 
F be any perfect matching in (V3 U V4). Then F U {uv} cannot be contained in k 
disjoint cycles, while 8(G) = l(n - k + 1)/2J + k - 1 = r(n + k)/21 1. 

Example 4. Suppose 2k ~ n ~ 3k - 2, n '# 3k - 3 and let 8 = r(3n - 4k + 1)/51, 
and V(G) = U~=l \Ii, where IV11 = IV2 1 = ... = IV6 1 = 8 and IV71 = IVsl = n - 38, 
and E(G) = U~=l Ei,i+l U E6,1 U E 7,s U U~=I (E7,2i U ES,2i-d. Let Fl be any per­
fect matching in (VI U V2 ) and F2 be any matching of size k - 8 in (V7 U Vs). 
(Note that n - 38 2:: k - 8.) Then FI U F2 cannot be contained in k disjoint cy­
cles. (In fact, if such cycles exist, the number of cycles of length 4 is at most 
2(n - k - 28) + (k - 8) = 2n - k - 58. Hence n 2:: 3k - (2n - k - 58), which is 
impossible.) On the other hand, 8(G) = n - s = r(2n + 4k)/51 - 1. 

The degree condition of Theorem 3 is sharp in the following sense. 

Example 5. Suppose n 2:: 2k + 1, and let V(G) = VI U V2 U V3 U V4, where IVII = 1, 
IV2 1 = k, IV3 1 = n - 1 and IV4 1 = n - k, and E(G) = El ,2 U E2 ,3 U E3 ,4. Then k 
independent edges in (V2 U \13) are contained in k disjoint cycles, but they cannot be 
extended to a partition. On the other hand, 0'1,1 (G) = k + (n - 1) = n + k - 1. 

Furthermore, the assumption k 2:: 2 in Theorem 1 and in Theorem 3 is necessary. 

Example 6. Let V(G) = U~=I \Ii, where IV1 1 = 11121 = m, IV3 1 = IV41 = 1, IV5 1 = 
IV6! = n - m - 1, and E(G) = E 1,2 U E I ,4 U E2 ,3 U E3,4 U E3,6 U E4,5 U E S,6. Then 
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0"1,1 (G) = n + 1 and the edge e in E3,4 is contained in a cycle, but there is no hamil­
tonian cycle containing e when 1 :s; m :s; n - 2. 

From this example, we also see that the assumption k 2:: 2 is necessary in Lemma 5. 
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