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Abstract 

We identify a weak critical set in each cyclic latin square of order greater 
than 5. This provides the first example of an infinite family of weak 
critical sets. The proof uses several constructions for latin interchanges 
which are generalisations of those introduced by Donovan and Cooper. 

1 Introduction 

A latin square of order n is an n x n array with entries chosen from a set N of size n 
such that each element of N occurs exactly once in each row and column. We shall 
use N = {O, 1, ... , n - I} and label the rows and columns from 0 to n - 1. We may 
also represent a latin square by the set of n2 triples (i, j, k) where k is the element 
in row i and column j. 

A partial latin square of order n is an n x n array with entries chosen from a set 
N of size n such that each element of N occurs at most once in each row and column. 
We shall also use the corresponding set of triples to represent a partial latin square. 

A partial latin square, P, of order n is uniquely completable (UC) if there is only 
one latin square, L, of order n that contains P. 

The addition of a triple t = (i,j, k) to a partial latin square, P, is said to be 
forced if one of the following holds. 

1. Vh =I- i,:3z such that (h,j,z) or (h,z,k) E P. 

2. Vh =I- j,:3z such that (z, h, k) or (i, h, z) E P. 

3. Vh =I- k,:3z such that (i, z, h) or (z,j, h) E P. 
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Figure 1: Strong critical set for 0 5 Figure 2: Weak DC set for 0 6 

A DC set, U, is strong if we can find a sequence of sets of triples U = 81 C 82 C 
... C 8 r = L such that each triple t E 8 V+l - Sv is forced in Sv. A DC set that is 
not strong is weak. A DC set that contains no smaller DC set is called critical. 

We will represent a cyclic latin square of order n by the set of triples 

On = {(i, j, i + j) I i = 0,1, ... , n - 1; j = 0,1, ... , n - I} 

where addition is modulo n. 
A family of strong DC sets of cyclic latin squares identified by Neider [5] have 

been shown to be critical by Donovan and Cooper [2]; Figure 1 shows the set for 0 5 , 

(. represents an empty cell). In [4] Keedwell showed that weak DC sets do not exist 
in latin squares of order less than 5 . In [1] we reported that a computer search had 
found that no weak DC set exists in the cyclic latin square of order 5, and described 
weak DC sets for all cyclic latin squares of higher orders; Figure 2 shows the set 
for 0 6 , In this paper we identify critical subsets of these DC sets by extending the 
techniques used by Donovan and Cooper in [2]. 

2 Latin interchanges 

The number of filled cells in a partial latin square defines its size; their positions 
define its shape. Two partial latin squares, PI and P2 , of the same order, shape 
and size are mutually balanced if the entries in each row (and column) of PI are the 
same as those in the corresponding row (and column) of P2 • They are disjoint if no 
cell of PI has the same entry as the corresponding cell of P2 • If they are mutually 
balanced and disjoint they are called disjoint mates. A latin interchange is a partial 
latin square for which there exists a disjoint mate. Examples of a latin interchange 
and its disjoint mate are shown, superimposed in a single array, in Figure 3. 

The motivation for studying latin interchanges arises from the fact that a partial 
latin square, P, is a DC set for a latin square, L, if and only if P intersects all latin 
interchanges contained in L. 

An entry of a DC set for L is crucial if there is a latin interchange in L that 
intersects the DC set in that entry only; the latin interchange in Figure 3 intersects 
the critical set of 0 5 shown in Figure 1 only in the cell (0,2). It is easy to see that 
a DC set is critical if and only if each of its entries is crucial. 

The following lemma about latin interchanges in cyclic latin squares is from [2]. 
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Figure 3: A latin interchange and its disjoint mate 

Lemma 1 If PI is a latin interchange in en, then its transpose 

p'{ = {(j, i, k) I (i, j, k) E PI} 

and, for any integers a and (3, 

Q1 = {(i+a,j+(3,k+a+(3) I (i,j,k) E PI} 

are also latin interchanges. 

Proof: If P2 is a disjoint mate of PI, then pi is a disjoint mate of P,{, and Q2 = 
{(i + a,j + /3, k + a + (3) I (i,j, k) E P2} is a disjoint mate of Q1. 0 

We note in passing that the above Lemma generalises easily to latin squares based 
on abelian groups. 

3 Strong critical sets in cyclic latin squares 

The following Lemma is well known. 

Lemma 2 The set of triples 

Sn = {(i,j, i + j) Ii = 0, ... , n - 2; j = 0, ... , n - 2 - i} 

is a strong UC set for en, for all n ;::: 2. 

Proof: Consider the columns 0 to n -1 in order. The triples (n - 1 - i,j,j - i-I) 
are forced as i ranges from j to o. 0 

In the rest of this section we briefly describe Donovan and Cooper's proof that 
Sn is critical [2]. They showed that every entry in Sn is crucial by constructing a 
latin interchange in en that intersects Sn in only that entry. The bulk of the proof 
comprises several constructions that are used to show that each entry in row 0 of 
each Sn is crucial. Lemma 1 is then used to prove that the remaining entries are 
crucial. 

Theorem 1 (Donovan and Cooper) Sn is a strong critical set for en. 
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Proof: We shall construct a latin interchange Sr,c,n that intersects Sn in only cell 
(r, c). Figure 3 displayed SO,2,5 and its disjoint mate. 

There are seven different constructions that we use to prove entries in row 0 and, 
for all c E {O, ... ,n - 2}, column c of each Sn are crucial. First we define x, U and v: 

x = n - 1 - c; x == u mod (c + 1), 0 ~ u ~ Cj n == v mod x, 0 :::; v < x. 

We now choose a construction for finding each SO,c,n' 

1. If c = 0, use Construction 1. 

2. If c = n - 2, use Construction 2. 

3. If 1 ~ c ~ n/2 - 1 and u = 0, use Construction 3. 

4. If n/2 ::; c ~ n - 3 and v = 0, use Construction 4. 

5. If 1 ~ c ::; n/2 - 1 and 0 < u ~ (n - x)/2, use Construction 5. 

6. If 1 ~ c ::; n/2 - 1 and u > (n - x)/2, use Construction 6. 

7. If n/2 ::; c ~ n - 3 and v =1= 0, use Construction 7. 

Construction 1 

The partial latin square comprising all the entries of ° and n -:- 1 in en is a latin 
interchange intersecting Sn in only (0,0). Formally SO,O,n is the set 

{(i, n - i, 0), (i, n - i-I, n - 1) I i = 0, ... ,n - I}. 

Construction 2 

A latin interchange intersecting Sn in only (0, n - 2) is formed by the set 

{(i, n - 2, i - 2), (i, n - 1, i-I) Ii = 0, ... , n - I}. 

This is the partial latin square comprising all entries in the last two columns of Cn. 

Construction 3 

For 1 ::; c ::; n/2 - 1 and u = 0, a latin interchange exists which intersects Sn in 
only (0, c) with cells containing either cor n - 1. SO,c,n is the set 

{(i(c+ 1), n-1- (i-l)(c+ 1), c), (i(c+ 1), n-l-i(c+ 1), n-l) Ii = 0, ... , x/(c+ I)}. 

Construction 4 

For n/2 ::; c ~ n - 3 and v = 0, a latin interchange intersecting Sn in only (0, c) 
and containing entries in only columns c and n - 1 can be found. SO,c,n is the set 

{ ( ix, c, ix + c), (ix, n - 1, ix - I) I i = 0, ... , (n / x) - I}. 
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Construction 5 

For 1 ~ c ~ n/2 - 1 and ° < U ~ (n - x)/2 we construct a partial latin square 
similar to that in Construction 3, but because U =1= 0, we "add" the latin interchange 
SO,c-u,c+l' Note that 0 ~ c - U ~ C - 1, and c + 1 < n so we can choose one of the 
seven constructions to obtain SO,c-u,c+1' 

Define p = Lx/(c + l)J and 

R = {(i + u,j + x, i + j + U + x) I (i,j, k) E So,c-u,c+l}' 

SO,c,n is the set 

{(O, c, c), (0, n - 1, n - I)} U R u 
{(u + m(c + 1), n - 1 - u - m(c + 1), n -1), 

(u +m(c+ I),n -1- u - (m -l)(c+ l),c) I m = 1, ... ,pl. 

Construction 6 
For 1 ~ c ~ n/2 -1 and u > (n - x)/2 we use a method similar to that employed 

in the previous construction. We require the latin interchange SO,u-l,c+l, note that 
this can be obtained using one of the seven constructions and c + 1 < n. Define 
P = lx/(c + l)J and 

R = {i + 1,j - 1 - u, i + j - u) I (i,j, k) E S6,U-l,C+l}' 

SO,c,n is the set 

{(O,c,c),(0,n-I,n-1)}UR U 
{(u + m(c + 1), n - 1 - u - (m - l)(c + 1), c), 

(u + m( c + 1), n - 1 - u - m( c + 1), n - 1) I m = 1, ... ,p}. 

Construction 7 

For n/2 ~ c ~ n - 3 and v =1= ° use a latin interchange SO,x-l,x+v' Note that 
this can be obtained using one of the seven constructions and x + v < n. Define 
q = l(n - x)/xJ and 

R = {Ceq - l)x + i + 1, c + j, (q - 2)x + i + j) I (i,j, k) E S~-l,x+v}' 

Sc,n is the set 

R U {( mx, c, mx + C), (mx, n - 1, mx - 1) I m = 0, ... , q - I}. 

In [2], each of these constructions was shown to be a latin interchange by the 
construction of a disjoint mate. As the latin interchanges required for the last three 
constructions are of order less than n, we can prove by induction that we can con­
struct SO,c,n for all c, for all n. It was also shown that all the latin interchanges 
produced with these constructions have no entries in columns 0 to c - 1; and, if 
c ::; n/2 - 1, all entries are in rows ° to x; if c > n/2 - 1, all entries are in rows 0 to 
c + 1. 
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Figure 4: W6 

We complete the proof using Lemma 1. If c :::; n/2 - 1 and 1 ~ s ::; c, or if 
c > n/2 - 1 and 1 ::; s :::; n - c - 2, then 

Ss,c,n = {(i + s,j, k + s) I (i,j, k) E SO,c,n}' 

The remaining entries of Sn are all in cells ( r, c) such that the entry in (c, r) has 
been shown to be crucial. Therefore we can define 

Sr,c,n = {(j, i, k) I (i,j, k) E Sc,r,n}' 

As SJ = Sn this will be a latin interchange that intersects Sn in only cell (r, c). 0 

4 Weak critical sets in cyclic latin squares 

Lemma 3 The set of triples Wn = Pn U Qn URn, where 

Pn = {(i, j, i + j) Ii = 0, ... , n - 4; j = 0, ... , n - 4 - i} 

Qn = {(i, n - 2 - i, n - 2) Ii = 1, ... , n - 3} 

Rn = {(2, n - 1,1), (n - 2, n - 1, n - 3), (n - 1, n - 2, n - 3)} 

is a weak UC set for en. 

Proof: The triples (i, n - 3 - i, n - 3), i = 0, ... , n - 3 are forced; the resulting set 
is the weak UC set for en obtained in [1]. 0 

Wn is a subset of the weak UC set introduced in [1]; compare Figures 2 and 4. 
The principal result of this paper will now be proved. 

Theorem 2 Wn is a critical set. 

The proof of this theorem uses the constructions of the previous section where possi­
ble. Some further constructions are required. We define Wr,c,n as a latin interchange 
in en that intersects Wn only in the cell (r, c). 

We first consider entries in row 0 of Pn. If SO,c,n intersects Rn we cannot let 
Wr,c,n = Sr,c,n' However, SO,c,n will only intersect {(n - 2, n - 1), (n - 1, n - 2)} if 
c = n - 2 or c = n - 1, and neither of these entries are in Wn . Therefore we need 
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only consider whether Sr,c,n intersects (2, n - 1). Constructions 8-12 deal with all 
such cases. 

For squares of all orders, SO,l,n intersects Wn in the cell (2, n - 1, 1), so we must 
define a distinct WO,l,n' For even n we use Construction 8; for odd n Construction 9. 

Construction 8 

WO,I,n = {(n + 1 - 2i, 2i, 1), (n - 1 - 2i, 2i, n - 1) Ii = 1, ... ,n/2 - 2} U 
{(n - 2, i + 2, i), (n - 1, i + 2, i + 1), (i + 2, n - 2, i), 

(i + 2, n - 1, i + 1) Ii = 1, ... , n - 5} U 
{(O, 1, 1), (0, n - 2, n - 2), (0, n - 1, n - 1), (n - 2,0, n - 2), 

(n - 2, 1, n - 1), (n - 2, n - 2, n - 4), 
(n - 1,0, n - 1), (n - 1, n - 1, n - 2)}. 

It has the disjoint mate 

{(n + 1 - 2i, 2i, n - 1), (n - 1 - 2i, 2i, 1) Ii = 1, ... , n/2 - 2} U 
{(n - 2, i + 2, i + 1), (n - 1, i + 2, i), (i + 2, n - 2, i + 1), 

(i + 2, n - 1, i) I i = 2, ... , n - 5} U 
{(O, 1, n - 1), (0, n - 2,1), (0, n - 1, n - 2), (3, n - 2,2), (3, n - 1, n - 1), 

(n - 2,0, n - 1), (n - 2,1,1), (n - 2,3,2), (n - 2, n - 2, n - 2), 
(n - 1,0, n - 2), (n - 1,3,1), (n - 1, n - 1, n - 4)}. 

Example 1 WO,1,l2 and its disjoint mate are displayed in Figure 6. 

Construction 9 

WO,I,n = {(2i + 1, n - 2 - 2i, n - 1), (2i + 1, n - 2i, 1) Ii = 1, ... , (n - 3)/2} U 
{en - 2, i + 2, i), (n - 1, i + 1, i), (i + 2, n - 2, i), 

(i + 1, n - 1, i) I i = 2, ... , n - 4} U 
{(O, 1, 1), (0, n - 2, n - 2), (0, n - 1, n - l)(n - 2,0, n - 2), 

(n - 2, 1, n - 1), (n - 1,0, n - 1), (n - 1, n - 1, n - 2)}. 

It has the disjoint mate 

{(2i + 1, n - 2 - 2i, 1), (2i + 1, n - 2i, n - 1) Ii = 2, ... , (n - 5)/2} U 
{(n - 2, i + 1, i), (n - 1, i + 2, i), (i + 2, n - 1, i), 

(i + 1, n - 2, i) Ii = 2, ... , n - 5} U 
{(O, 1, n - 1), (0, n - 2,1), (0, n - 1, n - 2), (3, n - 4,1), (3, n - 1, n - 1), 

(n - 3, n - 2, n - 4), (n - 2,0, n - 1), (n - 2,1,1), (n - 2, n - 3, n - 4), 
(n - 2, n - 2, n - 2), (n - 1,0, n - 2), (n - 1,3, n - 1), (n - 1, n - 1, n - 4)}. 

Example 2 Wo,l,n and its disjoint mate are displayed in Figure 7. 

When Construction 5 is used to obtain SO,c,n and u = 1 we cannot let WO,c,n = 
SO,c,n as SO,c,n includes an entry in cell (2, n - 1,1). Instead we use the following 
construction. 
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Construction 10 
Let p = lx/(n - x)J and then 

WO,c,n {(O, e, e), (0, n - 2, n - 2), (0, n - 1, n - 1), (n - 1, n - 1, n - 2)} U 
{ (1 + m( e + 1), e(p + 1 - m) + (p - m), n - 1), 

(1 + m (e + 1), e(p + 2 - m) + (p + 1 - m) , e) I m = 1, ... p} U 
{(i, n - 1, i-I), (i + 1, n - 2, i-I) Ii = e + 2, ... , n - 3} U 

{(n - 2, i, i - 2), (n - 1, i, i-I) Ii = 0, ... , n - 3}. 

It has the disjoint mate 

{(O, e, n - 1), (0, n - 2, e), (0, n - 1, n - 2)} U 
{(I + m(e + 1), e(p + 1 - m) + (p - m), e), 

(1 + m(e + 1), e(p + 2 - m) + (p + 1 - m), n - 1) 1m = 2, .. . p} U 
{( i, n - 2, i-I), (i + 1, n - 1, i-I) I i = e + 2, ... , n - 4} U 
{(n - 2, i, i-I), (n - 1, i, i - 2) Ii = 0, ... , n - 3} U 
{(e+ 2,p(e+ 1) -l,e), (e+ 2,n -l,n -1), (n - 2,n - 2,n - 2), 

(n - 3 n - 2 n - 4) (n - 1 n - 1 n - 4)} , , , , , . 

Example 3 WO,3,13 and its disjoint mate are displayed in Figure 8. 

If u = 2 we cannot use Constructions 5 or 6 as they intersect the cell (2, n - 1). 
The alternative construction used depends on whether e is odd or even. For odd e, 
we use Construction 11; for even c we use Construction 12. 

Construction 11 

Again, letp= lx/(n-x)J, 

WO,c,n = {(2 + m(c + 1), n - 3 - (m - l)(e + 1), c), 
(2 + m(c + 1), n - 3 - m(c + 1), n - 1) 1m = 1, ... ,p} U 

{(i, n - 1 - i, n - 1), (i + 1, n - 1 - i, 0) I i = 0,1, 2} U 
{(2i + 1, n - 1, 2i), (2i + 3, n - 3, 2i) Ii = 1, ... , (c - 1)/2} U 
{( 0, c, c), (c + 1, n - 1 , e), (c + 1, n - 2, c - 1), (c + 2, n - 2, c)}. 

It has the disjoint mate 

WO,c,n = {(2+m(c+1),n-3-(m-1)(c+1),n-1), 
(2 + m(c + 1), n - 3 - m(c + 1), c) 1m = 1, ... ,p} U 

{(i,n -1- i,O), (i,n - i,n -1), (e+ i,n -1- i,c), 
(c+i,n-i,c-1) li=1,2}U 
{(2i + 1, n - 3, 2i), (2i + 1, n - 1, 2i - 2) Ii = 1, ... , (c - 1)/2} U 
{(O,c,n - l),(O,n- 1,c)}. 

Example 4 WO,3,14 and its disjoint mate are displayed in Figure 9. 
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Construction 12 
Let p = Lx / (n - x) J , 

WO,c,n = {(2 + m(c + 1), n - 3 - (m - l)(c + 1), c), 
(2 + m(c + 1), n - 3 - m(c + 1), n - 1) 1m = 1, ... ,p} U 

{(i, n - 1 - i, n - 1), (i + 1, n - 1 - i, 0) I i = 0, 1, 2} U 
{(2i + 1, n - 1, 2i), (2i + 3, n - 3, 2i) I i = 1, ... , (c - 2)/2} U 
{(O, c, c), (c + 1, n - 1, cn. 

It has the disjoint mate 

WO,c,n = {(2 + m(c + 1), n - 3 - (m - l)(c + 1), n - 1), 
(2 + m(c + 1), n - 3 - m(c + 1), c) 1m = 1, ... , p} U 

{(i, n - 1 - i, 0), (i, n - i, n - 1) I i = 1, 2} U 
{(2i + 1, n - 3, 2i), (2i + 1, n - 1, 2i 2) I i = 1, ... ,c/2} U 
{(O, c, n - 1), (0, n - 1, cn. 

Example 5 WO,6,16 and its disjoint mate are displayed in Figure 10. 

We now look at the entries of Qn. For such entries Sr,c,n is constructed using Con­
struction 4 or 7, and "translating" it using Lemma 1. S2,n-4,n will always intersect 
(2, n -1); Constructions 13, 14 and 15 present an alternative. As regards the other 
entries of Rn there is a possibility that Sr,c,n will intersect {(n-2, n-l), (n-1, n-2n. 
This possibility is removed by adapting Construction 7 (Construction 4 will never 
intersect these two cells). To construct a latin interchange using Construction 7 a 
smaller construction is required, and that itself may have been based on a smaller 
construction and so on. Only if the "basic" construction was an instance of Con­
struction 2 will Sr,~,n intersect those two cells. Therefore we replace Construction 2 
with the set 

{(i, n - 2, i - 2), (i, n - 1, i-I), (n - 2, i, i - 2), 
(n - 1, i, i-I) I i = 0, ... ,n 3} U 

{(n - 2, n - 2, n - 4), (n - 1, n - 1, n - 2)}. 

The entry in cell (2, n-4) is a particularly awkward case requiring three construc­
tions. If n == ° mod 3 we use Construction 13; if n == 1 mod 3 we use Construction 14; 
if n == 2 mod 3 we use Construction 15. 

Construction 13 
W2,n-4,n = {(0,n-2,n-2),(0,n-1,n-l),(1,n-2,n-l), 

(1, n - 1,0), (2, n - 4, n - 2), (2, n - 2,0), (3, n - 3,0), 
(3, n - 1,2), (4, n - 4,0), (4, n - 3, 1), (5, n - 4,1), 
(5, n - 3,2), (5, n - 1, 4n u 

{(5 + 3i, n - 4, 1 + 3i), (5 + 3i, n - 1,4 + 3i) I i = 0, ... , (n - 6)/3}. 

It has the disjoint mate 

{(O, n - 2, n - 1), (0, n - 1, n - 2), (1, n - 2,0), 
(1, n - 1, n - 1), (2, n - 4,0), (2, n - 2, n - 2), (3, n - 3,2), 
(3, n - 1,0), (4, n - 4, 1), (4, n - 3,0), (5, n - 4,4), 
(5, n - 3,1), (5, n - 1, 2n u 

{(5 + 3i, n - 4,4 + 3i), (5 + 3i, n - 1,1 + 3i) Ii = 1, ... , (n - 6)/3}. 
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Example 6 W2 ,8,12 is displayed in Figure 11. 

Construction 14 

W 2,n-4,n = {(O, n - 2, n - 2), (0, n - 1, n - 1), (1, n - 2, n - 1), 
(1, n - 1,0), (2, n - 4, n - 2), (2, n - 2,0), (3, n - 3,0), 
(3, n - 2, 1), (3, n - 1,2), (4, n - 4,0), (4, n - 3,1), 
(4, n - 2, 2)} U 

{(6 + 3i, n - 4,2 + 3i), (6 + 3i, n - 1,5 + 3i) Ii = 0, ... , (n - 7)/3}. 

It has the disjoint mate 

{(O, n - 2, n - 1), (0, n - 1, n - 2), (1, n - 2,0), 
(1, n - 1, n - 1), (2, n - 4,0), (2, n - 2, n - 2), (3, n - 3, 1), 
(3, n - 2,2), (3, n - 1,0), (4, n - 4,2), (4, n - 3,0), (4, n - 2, I)} U 

{(6 + 3i, n - 4,5 + 3i), (6 + 3i, n - 1,2 + 3i) I i = 0, ... , (n - 7)/3}. 

Example 7 W 2,9,13 is displayed in Figure 12. 

Construction 15 

W2,n-4,n = {(O, n - 2, n - 2), (0, n - 1, n - 1), (1, n - 2, n - 1), 
(l,n- 1,0),(2,n- 4,n - 2),(2,n- 2,0)} U 

{( 4 + 3i, n - 4, 3i), (4 + 3i, n - 1, 3( i + 1)) I i = 0, ... , (n - 5) /3}. 

It has the disjoint mate 

{(O,n - 2,n -1), (O,n -1,n - 2), (l,n - 2,0), 
(1, n - 1, n - 1), (2, n - 4,0), (2, n - 2, n - 2)} U 

{(4 + 3i, n - 4, 3(i + 1)), (4 + 3i, n - 1, 3i) Ii = 0, ... , (n - 5)/3}. 

Example 8 W 2,10,14 is displayed in Figure 13. 

The following constructions deal with the entries in Rn. 

Construction 16 

W 2,n-l,n is the set 

{(i, n - 2, i - 2), (i, n - 1, i-I), (n - 2, i, i - 2), 
(n - 1, i, i-I) I i = 0, ... ,n - 3} U 

{(n - 2, n - 2, n - 4), (n - 1, n - 1, n - 2)}. 

It has the disjoint mate 

{(i, n - 2, i-I), (i, n - 1, i - 2), (n - 2, i, i-I), 
(n - 1, i, i - 2) Ii = 0, ... , n - 3} U 

{(n - 2, n - 2, n - 2), (n - 1, n - 1, n - 4)}. 

Example 9 W 2,6,7 displayed in Figure 14. 
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76 • • • • • • 67 

Figure 5: W6,7,S 

The latin interchange that we use for the remaining two cells depends on whether 
n is even or odd. For even orders we use Construction 17; for odd orders Construc­
tion 18. 

Construction 17 
Wn - 2,n-l,n is the intercalate 

{(n/2 - 2, n/2 - 1, n - 3), (n/2 - 2, n - 1, n/2 - 3), 
(n - 2, n/2 - 1, n/2 - 3), (n - 2, n - 1, n - 3)}. 

Its transpose is W n - 1,n-2,n' 

Example 10 Figure 15 displays W S,9,lO and W 9,S,1O. 

We can not use this construction for the cell (6,7,5) in Cs because the intercalate 
includes (2,7,1) which is in W g • We display the latin interchange that we use instead 
in Figure 5. 

Construction 18 

Wn- 1,n-2,n is the set 

{(2i, n - 3 - 2i, n - 3), (2i, n - 1 - 2i, n - 1) Ii = 0, ... (n - 1)/2} U 
{(O, n - 2, n - 2), (n - 1, n - 1, n - 2)}. 

It has the disjoint mate 

{(2i, n - 3 - 2i, n - 1), (2i, n - 1 - 2i, n - 3) Ii = 1, ... (n - 3)/2} U 
{(O, n - 3, n - 1), (0, n - 2, n - 3), (0, n - 1, n - 2), 

(n - 1,0, n - 3), (n - 1, n - 2, n - 2), (n - 1, n - 1, n - I)}. 

Its transpose is Wn - 2,n-l,n' 

Example 11 In Figure 16 we display W S,7,9. 
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We can now prove Theorem 2. We have given constructions that show for each 
n, the entries of Qn and Rn, and the top row entries of Pn are crucial. We now deal 
with all entries of Pn outside row O. For entries in column 0, including that in cell 
(0,0), we let Wr,O,n = Sr,O,n' For entries in the set 

{(r, c) I r = 1, ... , n/2 - 2; c = i, ... , n - 4 - i} 

we define Wr,c,n as the set 

{(i + r,j - 1, k + r - 1) I (i,j, k) E SO,c+l,n} 

which, by Lemma 1 is a latin interchange in On. It can easily be seen that it does 
not intersect Pn or Qn except in cell (r, c). It can also be deduced that its entries are 
in columns c to n - 2. If c ::; n/2 entries are in rows r to n - c - 1, and as c is at least 
1, there are no entries in row n - 1. If c > n/2, entries are in rows 0 to r + c + 1. 
As r + c is at most n - 4, there are again no entries in row n - 1. Therefore this set 
does not intersect Rn. 

For the remainder of the entries in Pn outside row 0, Wr,c,n is the transpose of 
Wc,r,n' 0 
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A Examples 

III 101 1110 

111 12 211 

23 32 

111 III 34 43 

45 54 

111 111 56 6
5 

6 7 76 

111 111 78 8 7 

1011 lli 12 23 34 45 56 67 78 810 

1110 111 21 32 43 54 6 5 76 81 1°8 

Figure 6: WO,1,12 

110 g1 109 

101 12 210 

23 32 

1°1 110 34 43 

45 54 

101 110 56 65 

61 16 

910 101 12 23 34 45 56 61 19 

109 210 32 43 54 65 76 91 

Figure 7: Wo,l,n 
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123 3 4 412 

45 54 

56 65 

6 7 76 

123 3 12 78 87 

8 9 98 

1112 120 O2 12 23 34 45 56 6 7 78 89 9 11 

1211 112 10 21 32 43 54 6 5 76 87 98 119 

Figure 8: WO,3,13 

3 13 133 
130 0 13 

130 0 13 

O2 20 

23 32 

23 32 

133 313 

Figure 9: WO,3,14 

6 15 156 

150 0 15 

150 0 15 

O2 20 

24 42 

46 64 

156 615 

Figure 10: WO,6,16 
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1°11 11lD 

110 °11 

1°0 OlD 

°2 20 

°1 10 

14 21 42 

47 74 

710 1°7 

Figure 11: W2,8,12 

1112 1211 

120 °12 

110 °11 

01 12 20 

°2 10 21 

25 52 

58 85 

811 118 

Figure 12: W2,9,13 

1213 1312 

130 °13 

120 °12 

°3 30 

Figure 13: W2,lO,14 
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56 6 5 

60 06 

°1 10 

12 21 

23 3 2 

56 60 °1 12 23 35 

65 °6 10 21 32 53 

Figure 14: W2,6,7 

Figure 15: WS,9,10 and W9,S,lO 

68 76 87 

68 86 

68 86 

68 86 

86 6 7 78 

Figure 16: WS,7,9 
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