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Abstract )
We show that a necessary and sufficient condition for the existence of a

Kp,2q - factorization of the symmetric complete tripartite digraph K . -
is (i) ny = ny = ng =0 (mod p) for p = ¢, (ii) ny = n2 = n3 = 0 (mod
dp'q'(p' + 2¢')) for p # ¢ and p’ odd, (iii) n, = ny = ny = 0 (mod
dp'q'(p’ + 2¢')/2) for p # q and p' even, where d = (p,q), ¢ = p/d,
¢ =q/d.

1. Introduction

Let K3, ., n, denote the symmetric complete tripartite digraph with partite sets

V1, Va, Va of ny, ny, ng vertices each, and let K, 5, denote the evenly partite directed bi-
graph in which all arcs are directed away from p start-vertices to 2¢ end-vertices such
that the start-vertices are in V; and ¢ end-vertices are in V}; and ¢ end-vertices are
in Vj, with {i, j1, j2} = {1,2,3}. A spanning subgraph F of K, . . is called a K},
- factor if each component of F' is Kpag. If K ., ., is expressed as an arc-disjoint
sum of K, - factors, then this sum is called a Kj o, - factorization of Ky . ...
In this paper, it is shown that a necessary and sufficient condition for the existence of
such a factorization is (i) ny =n2a=n3 =0 (mod p) forp=g¢, (i) n; =ny = nz =0
(mod dp'q'(p'+2¢')) for p # qand p’ odd, (iii) n; = ny = n3 = 0 (mod dp'q’(p'+2¢') /2)
for p # q and p’ even, where d = (p,q), p' = p/d, ¢ = ¢/d.

Let Knynys Kiyy ngs Kninames Ky namg» and Ky o0 denote the complete bipartite
graph, the symmetric complete bipartite digraph, the complete tripartite graph, the
symmetric complete tripartite digraph, and the symmetric complete multipartite di-
graph, respectively. Let C’k, S‘k, f’k, and Kp,q denote the cycle or the directed cycle,
the star or the directed star, the path or the directed path, and the complete bi-
partite graph or the complete bipartite digraph, respectively, on two partite sets V;

and V;. Let Sy and Sy denote the evenly partite star and semi-evenly partite star,
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respectively, on three partite sets V;, Vj,, Vj,. Then the problems of giving neces-
sary and sufficient conditions for Cj - factorization of Kp, n,, K3 s Knynang » and
K na...nm have been completely solved by Enomoto, Miyamoto and Ushlo[ ] and
Ush10[12 15] 8y, - factorizations of Ky ns Kny oy and K5 have been studied by
Du[2], Martin[5,6], Ushio and Tsuruno[9], Ush10[14] and Wang[18] Ushio[11] gives

a necessary and sufficient condition for S, - factorization of K} Ushio[16,17]

1,n2°
gives necessary and sufficient conditions of S, - factorization and Sy - factorization
for Ky s ons- By - factorization of Ky, ., and K}, np have been studied by Ushio

and Tsuruno[8], and Ushio[7,10]. K, - factorization of K, ,, has been studied by
Martin[5]. Ushio[13] gives a necessary and sufficient condition for K, , - factorization
of K} For graph theoretical terms, see [1,4]:

ni,ng’

7 *
2. Ky, - factorization of K , ..

Notation. Given a K, - factorization of K} ,, .., let

r be the number of factors

t be the number of components of each factor

b be the total number of components.

Among r components having vertex z in V;, let r;; be the number of components
whose start-vertices are in Vj.

Among t components of each factor, let ¢; be the number of components whose start-

vertices are in V;.

We give the following necessary condition for the existence of a K, o, - factorization
of K,

n1,n2,n3"

Theorem 1. If K} | . hasa K, 2, - factorization, then (i) n; = ny = n3 =0 (mod
p) for p = g, (ii) n; = ny = nz = 0 (mod dp'q'(p’ + 2¢')) for p # ¢ and p’ odd, (iii)
ny =ny = ng =0 (mod dp'q’(p' + 2¢')/2) for p # ¢ and p’ even, where d = (p,q),

=p/d, ¢ =q/d.

Proof. Suppose that K7, ,, .. has a K, - factorization. Then b = (nqng + ning +
nang)/pg, t = (ny+na+nz)/(p+2q), r = b/t = (p+2¢)(n1ny +ninz +nans) /pg(n; +
ng + ng).

For a vertex z in V;, we have 711q = ng = ns, r19p = Ng, T13p = ng, and 713 + 712 +
r13 = r. For a vertex z in V,, we have g = ny = ng, T91p = Ny, T3P = N3, and
To1+Too+To3 = r. For a vertex z in Vi, we have raz3q = ny = no, 7310 = nq, T390 = No,
and T3; + 732 + 733 = 7. Therefore, we have ny = ng = n3. Put ny =ng =ng =n.
Then 74 = n/q, 145 = n/p (j # 1), b= 3n?/pg, t = 3n/(p+2q), and 7 — n(p+27)/pq.
Moreover, in a factor, we have pt; + gta + gtz = gty +pto +qt3 = qt1 +qlo +ptz =n
and t; + to + t3 = t. Therefore, we have t;, = t; = t3 = n/(p + 2¢) for p # q.

So we have (i) n; = ny = n3 = 0 (mod p) for p = ¢, (ii) n; = ng = nz = 0 (mod
dp'q' (v’ + 2¢')) for p # g and p' odd, (m) ny =ng =nz = 0 (mod dp'q'(p' + 2¢)/2)
for p # q and p’ even, where d = (p,q), ' = p/d, ¢ = q/d.
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We shall need the following lemma.

Lemma 2. Let G, H and K be digraphs. If G has an H - factorization and H has
a K - factorization, then G has a K - factorization.

Proof. Let E(G) = U, F(F;) be an H - factorization of G. Let H](i) 1<j<)
be the components of F;. And let E(H @y = s, E(K")) be a K - factorization of
H](»i). Then E(G) = U, Ui=; E(Uj=s K("J)) is a K - factorization of G.

We prove the following extension theorem, which we use throughout the remainder
of this paper.

Theorem 3. If K}, . , has a K, 5, - factorization, then K3, ., ., has a K, 5, - factor-
ization.

Proof. Let K, 4,04, denote the tripartite digraph with partite sets Uy,U;,Us of
a1, 92, g3 vertices such that all arcs are directed away from ¢; start-vertices in U; to

go end-vertices in U, and g3 end-vertices in Us. Then K3, can be denoted by K geq-
When K, , has a R',,,zq - factorization, K3, , ., has a Kyp sqasq - factorization. Ob-
viously Ks,,,sq@sq has a K2, - factorlzatlon Therefore, by Lemma 2 K7, ., ., has a
K, 2, - factorization.

We use the following notation for a K 2.

Notation. For a I_(,,,gq with start-vertices uy, ug, ..., 4, and end-vertices vy, vg, ...vq, W1,
Wy, ..., Wg, We denote it by (uy, ug, ..., Up; V1, Vg, ...Ug, W1, W, ..., Wq).

We give the following sufficient conditions for the existence of a K, 5, - factorization
of K

n,n,n’

Theorem 4. When n = 0 (mod p), K, , has a K, 5, - factorization.

Proof. Put n = sp. When s = 1, let V; = {1,2,..,p}, Va = {1’ 2,..,7}, and
Vs = {1",2",...,p"}. Construct Kpgp - factors Fy = (V1; Vo, V3), Fy = (Va; V1, Vi),
F; = (Vs V1,V2) Then they comprise a K, 5, - factorization of K » Applying
Theorem 3, K , , has a K, 5 - factorization.

Theorem 5. Letd—-( ) p = p/d, ¢ = q/dfor p # ¢q. When n = 0 (mod
dp'q (v’ +2¢')) and p’ 0odd, K, , has a K, 5, - factorization.
Proof. Put n = sdp'¢’(p' + 2¢') and N = dp'¢(p' + 2¢'). When s = 1, let
Vi={1,2,.,N},Va={1,2,..,N'}, and V5 = {1",2",..., N"}. Construct (p'+2¢')?
Kpoq - factors Fij (1 =1,2,..,p' +2¢;5 =1,2,..,p + 2¢') as follows:
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Fi={(A+1,.,A+p)(B+f+1,..B+f+q),(C+g+1,..,C+g+q))
((A+p+1,..,A+2p);(B+f+qg+1,..B+f+2¢),(C+g+g+1,..,C+g+2q)
(A+@d -p+1,.,A+pdp);(B+f+ (¢ - 1)g+1,..B+ f+0dq,C+
g+ Wed -1)g+1,..,C+g+0dq)
(B+1,..B+p)(C+f+1,.,C+f+q,(A+g+1,..., A+ g+q)

(B+p+1,...,B+2p);(C+ f+q+1,..,.C+f+29),(A+g+q+1,..,A+g+2q))
(B+@¢d —-Dp+1,.,B+pdp)i(C+f+@d~-1g+1,...,C+ f+pqdq,(A+
g+ {@d -1)g+1,..,A+g+p7q)

(C+1,.,.C+p)i(A+f+1,., A+ f+q,(B+g+1,.,B+g+q)) .
(C+p+1,...C+2p);(A+ f+q+1,...,A+ f+29),(B+g+q+1,..,B+g+2q)
(C+@d-Dp+1,.,C+pdp)i(A+f+@d -1g+1,...,A+ f+7dq),(B+
g+ ®d -1)g+1,...,B+g+pdq) },

where f = p'dp'¢’, g = (v + ¢)dp'd', A = (1 — 1)dp'¢, B = (j — 1)dp'¢’, C =
(1 +j — 2)dp'q, and the additions are taken modulo N with residues 1,2,..., N, and
(A+ 1), (B+1), (C+z) means (A + 1), (B+z), (C+ z)’, respectively.

Then they comprise a Kp,gq - factorization of K}y  y. Applying Theorem 3, Knnn
has a K3, - factorization.

Theorem 6. Let d = (p,q), p' = p/d, ¢ = g/d for p # q. When n = 0 (mod
dp'q'(p’ +24')/2) and p’ even, K, , , has a K, 5, - factorization.

Proof. Put n = sdp'q'(p' + 2¢')/2 and N = dp'¢'(p' + 2¢')/2. When s = 1,
let Vi = {1,2,..,N}, Vo = {1,2,..,N'}, and V5 = {1”,2",..., N"}. Construct
(' +29')2/2 Ky - factors Fy), FY (i=1,2,..., (' +2¢)/2; 5 = 1,2, ..., (' +2¢)/2)
as follows:

FP={(A+1,.n A+p)i(B+f+1,.,B+f+q,(C+g+1,..,C+g+q))
(A+p+1,..,A+2p);(B+f+g+1,.,B+f+2¢),(C+g+qg+1,..,C+g+2)
(A+(P'q/2=1)p+1,..., A+ (/¢ /2)p);(B+ f+(P'd /2-1)g+1, .., B+ f+(p'¢'/2)q),
C+g+(@d/2-1)g+1,...C+g+(pq/2)q))
(B41,...B+p);(C+f+1,.,C+f4+,(A+g+1,..,A+9g+4q))
((B+p+1,..B+2p);(C+f+qg+1,..C+f+2¢),(A+g+qg+1,...,A+g+2q))

(B+(P'd/2-1)p+1,...,B+(p'q/2)p);(C+f+(p'd'/2-1)g+1, ..., C+f+(P'q'/2)q),
(A+g+@d/2-1)g+1,...,A+ g+ (¥'¢/2)9))
(C+1,....C+p)y(A+Ff+1,...,A+f+q),(B+g+1,...,B+g+q)
((C+p+1,..C+2p))(A+f+q+1,., A+ F+29),(B+g+g+1,..,B+g+2q)
(C+W@d/2-1)p+1,..,C+(P'¢/2)p))(A+ F+ (W' /2-1)g+1, ..., A+ f+(p'd /2)q),
(B+g+®@d/2-1)g+1,...,B+g+(r'¢/2)q)) },

FP={(A+1,.s A+p);(C+ f+1,.,C+ f+q),(B+g+1,...,B+g+q))
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((A+p+1,...,A+2p);(C+f+q+1,...,C+f+2q),(B+g+q+1,...,B+g+2q))
(A+(@'¢ /2= D)p+1, .., A+ (0'd /2)p);(C+ f+ (¢ /2-1)g+1,...C+ f+(¥'d'/2)q),
(B+g+(pd/2-1)qg+1,..,B+g+(©d/2)q9)
(B+1,..B+p);(A+ f+1,., A+ f+0,(C+g+1,.,C+g+q))
((B+p+1,...,B+2p);(A+f+q+1,...,A+f+2q),(C+g+q+1,...,c+g+2q))

(B+(pq /2= 1)p+1,... B+(@d/2)p);(A+ f+ (/¢ /2= 1)g+1, ... A+ f+(P'd'/2)q),
C+g+@d/2-1)a+1,...,C+g+(Pd/2)q))

(C+1,.,.C+p);(B+ f+1,...,B+f+q),(A+g+1,..,A+g+q))
(C+p+1,...,C+2p)i(B+ f+q+1,.. B+f+20),(A+g+q+1,.., A+g+29)
(C+@d /2= )p+1,...,C+(@'¢/2)p);(B+f+(p'd /2= 1)g+1,... B+ f+(0'T/2)q),
(A+g+@d/2-Dg+1,...,A+g+(@d/2)4q) },

where f = (p'/2)dp'q, g = (' +¢)/2)dp'd’, A = (i — 1)dp'q, B = (j — 1)dp'd,
C = (i+j~2)dp'q’, and the additions are taken modulo N with residues 1,2, ..., N,
and (A +z), (B +z), (C +z) means (A +z), (B+z), (C + z)", respectively.
Then they comprise a Kp, - factorization of K} y . Applying Theorem 3, K7, ,
has a K, - factorization.

Main Theorem. K, . . has a K,a, - factorization if and only if (i) ny = ng =
ng = 0 (mod p) for p = g, (ii) ny = ng = ng = 0 (mod dp'¢'(p’ + 2¢')) for p # g and
P’ odd, (iil) ny = ny = ng = 0 (mod dp'q'(p" + 2¢')/2) for p # g and p' even, where
d=(p,q), ¥ =p/d, ¢ = q/d.

Denote K 1,2¢ a8 S, for k = 2¢ + 1. Then we have the following corollary.

Corollary([16]. K}, ,, n, has an S - factorization if and only if (i) ny = ny = nj for

k=3, (ii) ny = ny = ng =0 (mod k(k — 1)/2) for k > 5 and k odd.
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