Which Digraphs Are Round?

Jing Huang*

Department of Mathematics and Statistics, University of Victoria, P.O. Box 3045, Victoria, B.C., V8W 3P4, Canada

Abstract

A digraph D is round if the vertices of D can be circularly ordered as v_1, v_2, \ldots, v_n so that, for each vertex v_i , the out-neighbours of v_i appear consecutively following v_i and the in-neighbours of v_i appear consecutively preceding v_i in the ordering. We characterize round digraphs in terms of forbidden substructures. Our proof implies a polynomial algorithm to decide if a digraph is round.

1 The theorem

We assume that a digraph has no loops or multiple arcs but may contain a cycle of length 2. If it contains no cycle of length 2, then it is an *oriented graph*.

Let D be a digraph. We say that a vertex x is adjacent to a vertex y in D if there is at least one arc between x and y. If xy is an arc of D, then we say that x dominates y and use the notation $x \to y$ to denote this. If $x \to y$, then y is an out-neighbour of x and x is an in-neighbour of y. The set O(x) of all out-neighbours of x is called the outset of x and the set I(x) of all in-neighbour of x is called the inset of x. We shall let $d^+(x) = |O(x)|$ and $d^-(x) = |I(x)|$ and call $d^+(x)$ (resp. $d^-(x)$) the outdegree (resp. the indegree) of x.

A digraph D is round if the vertices of D can be circularly ordered as v_1, v_2, \ldots, v_n so that, for each vertex v_i , the out-neighbours of v_i appear consecutively following v_i and the in-neighbours of v_i appear consecutively preceding v_i in the ordering. We shall refer to the ordering v_1, v_2, \ldots, v_n as a round enumeration of D.

A digraph is *semicomplete* if there is at least one arc between any pair of vertices. A *tournament* is thus a semicomplete oriented graph. A digraph is called *locally semicomplete* if the outset as well as the inset of each vertex induces a semicomplete digraph, [1]. A locally semicomplete oriented graph is called a *local tournament*, [4].

^{*}Research supported by NSERC

Suppose that D is a round digraph and that v_1, v_2, \ldots, v_n a round enumeration of D. We claim that D is a locally semicomplete digraph. To see this, consider an arbitrary vertex, say v_i . Let x and y be two out-neighbours of v_i . Assume without loss of generality that v_i, x, y appear in the circular order in the round enumeration. Since $v_i \to y$ and the in-neighbours of y appear consecutively preceding y, we must have $x \to y$. Thus the out-neighbours of v_i are pairwise adjacent. Similarly, we can show that the in-neighbours of v_i are also pairwise adjacent. Hence D is a locally semicomplete digraph. In the case when D is a round oriented graph, D is a local tournament.

There is an intimate relation between locally semicomplete digraphs and circular arc graphs. A graph G is a circular arc graph if there is a one-to-one correspondence between the vertex set of G and a family of circular arcs on a circle so that two vertices are adjacent in G if and only if the corresponding circular arcs intersect. A circular arc graph is proper if the family can be chosen so that no arc contains any other arc. It is proved [5] that a connected graph can be oriented as a local tournament if and only if it is a proper circular arc graph. Round local tournaments are particularly useful in finding a corresponding circular arc family and in designing efficient algorithms to solve problems related to proper circular arc graphs, cf. [2, 3].

If $x \to y$ but $y \not\to x$, then the arc xy is called a *simple* arc. A path (resp. cycle) consisting of simple arcs is called a *simple* path (resp cycle). For a vertex x of D, let $B(x) = O(x) \cap I(x)$, O'(x) = O(x) - B(x), and I'(x) = I(x) - B(x). A digraph is connected if its underlying graph is connected.

Bang-Jensen [1] showed that a connected local tournament D is round if and only if for each vertex x, O(x) and I(x) induce transitive tournaments, i.e., tournaments which contain no cycles. The main theorem of this paper is a generalization of this result.

Theorem 1.1 Let D be a connected locally semicompleted digraph. Then D is round if and only if for each vertex x, O'(x) and I'(x) induce transitive tournaments and B(x) induces a (semicomplete) subdigraph containing no simple cycles.

2 The proof

Let D be a round digraph and let v_1, v_2, \ldots, v_n be a round enumeration of D. For each vertex v_i , the definition of a round enumeration implies that the vertices in $I'(v_i)$ appear consecutively preceding v_i and the vertices in $O'(v_i)$ appear consecutively following v_i . Thus the vertices in $B(v_i)$ also appear consecutively between vertices of $I'(v_i)$ and the vertices of $O'(v_i)$. So, when $B(v_i) \neq \emptyset$, if we traverse beginning at v_i in the circular order of the round enumeration, we encounter first the vertices in $O'(v_i)$, then the vertices in $B(v_i)$, and finally the vertices in $I'(v_i)$. In this section, we shall prove Theorem 1.1. But first we have some lemmas.

Lemma 2.1 Let D be a digraph and let D' be a induced subdigraph of D. If D is round, then D' is round.

Proof: Let v_1, v_2, \ldots, v_n be a round enumeration of D. Suppose that $v_{j_1}, v_{j_2}, \ldots, v_{j_k}$ $(j_1 < j_2 < \ldots < j_k)$ are the vertices of D'. Then $v_{j_1}, v_{j_2}, \ldots, v_{j_k}$ is a round enumeration of D'.

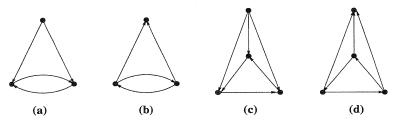


Figure 1: Some forbidden substructures for round digraphs.

Lemma 2.2 If D is a round digraph, then none of the digraphs in Fig. 1 is an induced subdigraph of D.

Proof: The statement follows from Lemma 2.1 and the fact that none of digraphs in Fig. 1 is round. \Box

Lemma 2.3 Let D be a round digraph. Then, for each vertex x of D, the subdigraphs induced by I'(x) and O'(x) contain no cycle.

Proof: The statement follows from Lemma 2.2 and the fact that if the subdigraph induced by I'(x) or O'(x) contains a cycle then D would contain one of the digraphs in Fig. 1 as an induced subdigraph.

Lemma 2.4 Let D be a round digraph. Then, for each vertex x of D, the subdigraph induced by B(x) contains no simple cycle.

Proof: Suppose the subdigraph induced by some B(x) contains a simple cycle C. Let v_1, v_2, \ldots, v_n be a round enumeration of D. Without loss of generality, assume that $x = v_1$. Then the simple cycle C must contains a simple arc $v_a v_b$ with a > b. Now $v_1 \in I(v_a)$ but $v_b \notin I(v_a)$, contradicting the assumption that v_1, v_2, \ldots, v_n is a round enumeration of D.

Proof of Theorem 1.1:

The necessity follows from lemmas 2.3 and 2.4. For sufficiency, we first consider the case when D contains a simple cycle. We claim that $O'(x) \neq \emptyset$ for each vertex x of D. To prove this, it suffices to show that there is a simple cycle containing all vertices of D. Let $C: x_1 \to x_2 \to \ldots \to x_l \to x_1$ be a longest simple cycle in D. Suppose that C does not contain all vertices of D. Then there is a vertex v which is not in C and v is adjacent to some vertex of C.

Assume that there is a simple arc between v and some vertex, say x_1 , of C. Assume further that the simple arc is from x_1 to v. (A similar discussion applies if the simple arc is from v to x_1 .) Thus v and x_2 are in $O'(x_1)$ and hence v and x_2 are adjacent. The arc between v and x_2 must be simple as D contains no Fig. 1(a). However the choice of x_2 implies that $v \in O'(x_2)$. Now both v and x_3 are in $O'(x_2)$, implying that v and x_3 are adjacent by a simple arc. Again we must have $v \in O'(x_3)$. Continuing this way, we see that v is in $O'(x_i)$ for each $i=1,2,\ldots,l$. Hence I'(v) contains all vertices of C, which contradicts the assumption that I'(v) induces a transitive tournament. So we may assume that x_1 is in B(v) and further that there is no simple arc between v and C. Vertices v and v are adjacent because both are out-neighbours of v. Thus v is v in v

We apply the following algorithm to find a round enumeration of D: Begin with an arbitrary vertex, say y_1 , and, for each $i=1,2,\ldots$, let y_{i+1} be the vertex of indegree 0 in the (transitive) tournament induced by $O'(y_i)$. Let y_1,y_2,\ldots,y_r be distinct vertices produced by the algorithm such that the vertex w of indegree 0 in the tournament induced by $O'(y_r)$ is in $\{y_1,y_2,\ldots,y_{r-2}\}$. We first show that $w=y_1$. If $w=y_j$ with j>1, then y_{j-1} and y_r are both in $I'(y_j)$ and hence adjacent by a simple arc. But either $y_r \in O'(y_{j-1})$ or $y_r \in I'(y_{j-1})$ would contradict the fact that y_j is the vertex of indegree 0 in the (transitive) tournaments induced by $O'(y_{j-1})$ and $O'(y_r)$. So $w=y_1$ and $C':y_1\to y_2\to\ldots\to y_r\to y_1$ is a simple cycle. We next show that r=|V(D)|. Suppose not. Then there is a vertex u which is not in C' and is adjacent to some y_i of C'.

Suppose that $u \in O'(y_i)$. Then u and y_{i+1} are adjacent as both are in $O'(y_i)$. Since D contains no Fig. 1(a) and y_{i+1} is the vertex of indegree 0 in the subdigraph induced by $O'(y_i)$, we must have $u \in O'(y_{i+1})$. Now u and y_{i+2} are adjacent. Similarly, we must have $u \in O'(y_{i+2})$. Containing this way, we see that $u \in O'(y_k)$ for each $k = 1, 2, \ldots, r$. That is, C' is contained in the subdigraph induced by I'(u), a contradiction. A similar argument applies for the case when $u \in I'(y_i)$. So we may assume $u \in B(y_i)$ and there is no simple arc between u and C'. Using this assumption and the definition of a locally semicomplete digraph, we can show that C' is contained in the subdigraph induced by B(u), which is again a contradiction. Therefore r = |V(D)|, i.e., the algorithm enumerates all vertices of D.

We now complete our claim by showing that y_1, y_2, \ldots, y_r is a round enumeration. Suppose not. Then there are three vertices y_a, y_b, y_c listed in the circular order in the enumeration such that one of the following two cases occurs:

- 1. $y_c \in O(y_a)$ and $y_b \notin O(y_a)$;
- 2. $y_b \in I(y_a)$ and $y_c \notin I(y_a)$.

Assume that case 1 occurs. Assume that the three vertices were chosen so that the number of vertices from y_b to y_c in the circular order is as small as possible. This implies that c = b + 1, i.e., y_c is next to y_b in the circular order. Now y_a and y_b are adjacent as both are in $I(y_c)$. Thus $y_a \in O'(y_b)$. Since we also have $y_c \in O'(y_b)$

and D contains no Fig. 1(a), $y_c \in O'(y_a)$. So y_c is not the vertex of indegree 0 in the (transitive) tournament induced by $O'(y_{c-1})$, contradicting the choice of y_c . A similar argument applies when case 2 occurs.

It remains to consider the case when D contains no simple cycle. If D contains no simple arcs, then it is easy to see that D is semicomplete. This means that there is a cycle of length two between any pair of vertices. Thus any vertex ordering is a round enumeration of D. So assume that D has at least one simple arc. Let z_1 be a vertex with $I'(z_1) = \emptyset$ and $O'(z_1) \neq \emptyset$. Such a vertex exists because D contains a simple arc but no simple cycle. We apply the following algorithm to find a path in D: begin with z_1 and, for each $i = 1, 2, \ldots$, let z_{i+1} be the vertex of indegree 0 in the (transitive) tournament induced by $O'(z_i)$ unless $O'(z_i) = \emptyset$. Clearly, this produces a path $P: z_1 \to z_2 \to \ldots \to z_s$ with $O'(z_s) = \emptyset$.

Using a similar argument as above, we can show that z_1, z_2, \ldots, z_s is a round enumeration of the subdigraph induced by V(P). Thus if P contains all vertices of D then z_1, z_2, \ldots, z_s is a round enumeration of D. So assume that there is a vertex v which is not in P and is adjacent to some vertex of P. It is easy to see that there is no simple arc between v and P. This implies that $v \in B(z_i)$ each $i = 1, 2, \ldots, s$. In fact, it is not hard to see this is so for each vertex $v \in V(D) - V(P)$.

Therefore if we repeat the above algorithm for D-P we can find another path consisting of simple arcs (if any). We can continue this process in the remaining digraph until no simple arc left. Let $P_k: z_1^k \to z_2^k \to \ldots \to z_{j_k}^k, \ k=1,2,\ldots$, be the paths produced by the algorithm. Let $z_1^0, z_2^0, \ldots, z_{j_0}^0$ be the remaining vertices. Then it is easy to verify that

$$z_1^1, z_2^1, \dots, z_{i_1}^1, z_1^2, z_2^2, \dots, z_{i_2}^2, \dots, z_1^0, z_2^0, \dots, z_{i_0}^0$$

is a round enumeration of D. This completes the proof.

It is not difficult to see that the above proof implies a polynomial algorithm to decide if a digraph is round and to to find a round enumeration of it if one exists.

Corollary 2.5 There is a polynomial algorithm to decide if a digraph is round and to find a round enumeration of it if one exits. \Box

Acknowledgment

The author wishes to thank the anonymous referee for helpful comments and suggestions.

References

- [1] J. Bang-Jensen, Locally semicomplete digraphs: a generalization of tournaments, J. Graph Theory 14 (1990) 371-390.
- [2] B. Bhattacharya, P. Hell and J. Huang, A Linear algorithm for maximum weighted cliques in proper circular arc graphs, SIAM Journal on Discrete Mathematics 9 (1996) 274 - 289.

- [3] X. Deng, P. Hell and J. Huang, Linear time representation algorithms for proper circular arc graphs and proper interval graphs, SIAM Journal on Computing 25 (1996) 390 403.
- [4] J. Huang, On the structure of local tournaments, J. Combinatorial Theory B 63 (1995) 200 221.
- [5] D.J. Skrien, A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular arc graphs, and nested interval graphs, J. Graph Theory, Vol. 6 (1982) 309 316.

(Received 17/6/98)