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Abstract 

A digraph D is round if the vertices of D can be circularly ordered as 
VI, V2, ... , Vn so that, for each vertex Vi, the out-neighbours of Vi appear 
consecutively following Vi and the in-neighbours of Vi appear consecu­
tively preceding Vi in the ordering. We characterize round digraphs in 
terms of forbidden substructures. Our proof implies a polynomial algo­
rithm to decide if a digraph is round. 

1 The theorem 

We assume that a digraph has no loops or multiple arcs but may contain a cycle of 
length 2. If it contains no cycle of length 2, then it is an oriented graph. 

Let D be a digraph. We say that a vertex x is adjacent to a vertex y in D if 
there is at least one arc between x and y. If xy is an arc of D, then we say that 
x dominates y and use the notation x -t y to denote this. If x -t y, then y is an 
out-neighbour of x and x is an in-neighbour of y. The set O(x) of all out-neighbours 
of x is called the outset of x and the set I(x) of all in-neighbour of x is called the 
inset of x. We shall let d+(x) = IO(x)1 and d-(x) II(x)1 and call d+(x) (resp. 
d- (x)) the outdegree (resp. the in degree ) of x. 

A digraph D is round if the vertices of D can be circularly ordered as VI, V2, ... , Vn 

so that, for each vertex Vi, the out-neighbours of Vi appear consecutively following 
Vi and the in-neighbours of Vi appear consecutively preceding Vi in the ordering. We 
shall refer to the ordering Vb V2, ... ,Vn as a round enumeration of D. 

A digraph is semicomplete if there is at least one arc between any pair of vertices. 
A tournament is thus a semicomplete oriented graph. A digraph is called locally 
semicomplete if the outset as well as the inset of each vertex induces a semicomplete 
digraph, [1]. A locally semicomplete oriented graph is called a local tournament, [4]. 
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Suppose that D is a round digraph and that VI, V2, ... , Vn a round enumeration 
of D. We claim that D is a locally semicomplete digraph. To see this, consider an 
arbitrary vertex, say Vi. Let x and y be two out-neighbours of Vi. Assume without 
loss of generality that Vi, x, Y appear in the circular order in the round enumeration. 
Since Vi -+ Y and the in-neighbours of y appear consecutively preceding y, we must 
have x -+ y. Thus the out-neighbours of Vi are pairwise adjacent. Similarly, we can 
show that the in-neighbours of Vi are also pairwise adjacent. Hence D is a locally 
semicomplete digraph. In the case when D is a round oriented graph, D is a local 
tournament. 

There is an intimate relation between locally semicomplete digraphs and circular 
arc graphs. A graph G is a circular arc graph if there is a one-to-one correspondence 
between the vertex set of G and a family of circular arcs on a circle so that two 
vertices are adjacent in G if and only if the corresponding circular arcs intersect. 
A circular arc graph is proper if the family can be chosen so that no arc contains 
any other arc. It is proved [5] that a connected graph can be oriented as a local 
tournament if and only if it is a proper circular arc graph. Round local tournaments 
are particularly useful in finding a corresponding circular arc family and in designing 
efficient algorithms to solve problems related to proper circular arc graphs, cf. [2, 3]. 

If x -+ y but y -1+ x, then the arc xy is called a simple arc. A path (resp. cycle) 
consisting of simple arcs is called a simple path (resp cycle). For a vertex x of D, let 
B(x) = O(x) n I(x), O'(x) = O(x) - B(x), and I'{x) = I(x) - B(x). A digraph is 
connected if its underlying graph is connected. 

Bang-Jensen [1] showed that a connected local tournament D is round if and only 
if for each vertex x, O(x) and I(x) induce transitive tournaments, i.e., tournaments 
which contain no cycles. The main theorem of this paper is a generalization of this 
result. 

Theorem 1.1 Let D be a connected locally semicompleted digraph. Then D is 
round if and only if for each vertex x, 0' (x) and I' (x) induce transitive tournaments 
and B{x) induces a (semicomplete) subdigraph containing no simple cycles. 

2 The proof 

Let D be a round digraph and let Vb V2, ... , Vn be a round enumeration of D. For each 
vertex Vi, the definition of a round enumeration implies that the vertices in I'(Vi) 
appear consecutively preceding Vi and the vertices in 0'( Vi) appear consecutively 
following Vi. Thus the vertices in B{ Vi) also appear consecutively between vertices 
of I'(Vi) and the vertices of O'(Vi). So, when B(Vi) =I- 0, if we traverse beginning at 
Vi in the circular order of the round enumeration, we encounter first the vertices in 
O'(Vi), then the vertices in B(Vi), and finally the vertices in I'(vJ In this section, 
we shall prove Theorem 1.1. But first we have some lemmas. 

Lemma 2.1 Let D be a digraph and let D' be a induced subdigraph of D. If D 
is round, then D' is round. 
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Proof: Let VI, V2,' .. , Vn be a round enumeration of D. Suppose that Vjll vi2"'" 
Vjk (j1 < j2 < ... < jk) are the vertices of D'. Then Vjl' vh, ... ,Vjk is a round 
enumeration of D'. 0 

(a) (b) (c) (d) 

Figure 1: Some forbidden substructures for round digraphs. 

Lemma 2.2 If D is a round digraph, then none of the digraphs in Fig. 1 is an 
induced subdigraph of D. 

Proof: The statement follows from Lemma 2.1 and the fact that none of digraphs 
in Fig. 1 is round. 0 

Lemma 2.3 Let D be a round digraph. Then, for each vertex x of D, the subdi­
graphs induced by I'(x) and Q'(x) contain no cycle. 

Proof: The statement follows from Lemma 2.2 and the fact that if the subdigraph 
induced by I'(x) or Q'(x) contains a cycle then D would contain one of the digraphs 
in Fig. 1 as an induced subdigraph. 0 

Lemma 2.4 Let D be a round digraph. Then, for each vertex x of D, the subdi­
graph induced by B (x) contains no simple cycle. 

Proof: Suppose the subdigraph induced by some B(x) contains a simple cycle C. 
Let VI, V2, . .. , Vn be a round enumeration of D. Without loss of generality, assume 
that x = VI. Then the simple cycle C must contains a simple arc VaVb with a > b. 
Now VI E I(va ) but Vb tf- I(va ), contradicting the assumption that VI, V2, ... , Vn is a 
round enumeration of D. 0 

Proof of Theorem 1.1: 

The necessity follows from lemmas 2.3 and 2.4. For sufficiency, we first consider 
the case when D contains a simple cycle. We claim that O'(x) ::j:. 0 for each vertex 
x of D. To prove this, it suffices to show that there is a simple cycle containing all 
vertices of D. Let C : Xl -t X2 -t ... -t Xl -t Xl be a longest simple cycle in D. 
Suppose that C does not contain all vertices of D. Then there is a vertex V which is 
not in C and V is adjacent to some vertex of C. 

Assume that there is a simple arc between V and some vertex, say Xl, of C. 
Assume further that the simple arc is from Xl to v. (A similar discussion applies if 
the simple arc is from V to Xl') Thus V and X2 are in O'(XI) and hence v and X2 
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are adjacent. The arc between v and X2 must be simple as D contains no Fig. l(a). 
However the choice of X2 implies that v E O'(X2)' Now both v and X3 are in O'(X2), 
implying that v and X3 are adjacent by a simple arc. Again we must have v E O'(X3)' 
Continuing this way, we see that v is in O'(Xi) for each i = 1,2, ... , l. Hence I'(v) 
contains all vertices of C, which contradicts the assumption that I'(v) induces a 
transitive tournament. So we may assume that Xl is in B(v) and further that there 
is no simple arc between v and C. Vertices v and X2 are adjacent because both 
are out-neighbours of Xl. Thus X2 E B(v). Continuing this way, we see that B(v) 
contains all vertices of C, contradicting the assumption that the sub digraph induced 
by B(v) contains no simple cycle. Therefore the cycle C contains all vertices of D, 
which implies that Of (X) =10 for each vertex X of D. 

We apply the following algorithm to find a round enumeration of D: Begin with 
an arbitrary vertex, say Yb and, for each i = 1,2, ... , let Yi+l be the vertex of 
indegree 0 in the (transitive) tournament induced by O'(Yi). Let YI, Y2, ... , Yr be 
distinct vertices produced by the algorithm such that the vertex w of indegree 0 in 
the tournament induced by O'(Yr) is in {YI, Y2, .. ·, Yr-2}. We first show that w = YI' 
If w = Yj with j > 1, then Yj-l and Yr are both in I'(Yj) and hence adjacent by a 
simple arc. But either Yr E O'(Yj-d or Yr E I'(Yj-l) would contradict the fact that 
Yj is the vertex of indegree 0 in the (transitive) tournaments induced by O'(Yj-l) 
and Of (Yr). So w = YI and C

f 
: YI -t Y2 -t ... -t Yr -t Yl is a simple cycle. We next 

show that r = IV(D)I. Suppose not. Then there is a vertex u which is not in C f and 
is adjacent to some Yi of Cf. 

Suppose that u E O'(Yi)' Then u and Yi+l are adjacent as both are in Of(Yi)' Since 
D contains no Fig. l(a) and Yi+l is the vertex of in degree 0 in the subdigraph induced 
by Of(Yi), we must have u E O'(Yi+l). Now u and Yi+2 are adjacent. Similarly, we 
must have u E Of(Yi+2)' Continuing this way, we see that u E Of(Yk) for each 
k = 1,2, ... , r. That is, C f is contained in the subdigraph induced by I'(u), a 
contradiction. A similar argument applies for the case when u E I'(Yi). So we 
may assume u E B(Yi) and there is no simple arc between u and C'. Using this 
assumption and the definition of a locally semicomplete digraph, we can show that 
Cf is contained in the sub digraph induced by B(u), which is again a contradiction. 
Therefore r = IV(D)I, i.e., the algorithm enumerates all vertices of D. 

We now complete our claim by showing that YI, Y2, ... , Yr is a round enumeration. 
Suppose not. Then there are three vertices Ya, Yb, Yc listed in the circular order in 
the enumeration such that one of the following two cases occurs: 

1. Yc E O(Ya) and Yb ¢ O(Ya); 

2. Yb E I(Ya) and Yc ¢ I(Ya). 

Assume that case 1 occurs. Assume that the three vertices were chosen so that the 
number of vertices from Yb to Yc in the circular order is as small as possible. This 
implies that c = b + 1, i.e., Yc is next to Yb in the circular order. Now Ya and Yb 
are adjacent as both are in I(yc). Thus Ya E O'(Yb). Since we also have Yc E O'(Yb) 
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and D contains no Fig. l(a), Ye E O'(Ya). So Ye is not the vertex of indegree 0 in 
the (transitive) tournament induced by Q'(Ye-l), contradicting the choice of Ye' A 
similar argument applies when case 2 occurs. 

It remains to consider the case when D contains no simple cycle. If D contains 
no simple arcs, then it is easy to see that D is semicomplete. This means that there 
is a cycle of length two between any pair of vertices. Thus any vertex ordering is a 
round enumeration of D. So assume that D has at least one simple arc. Let Zl be 
a vertex with I'(Zl) = 0 and O'(Zl) i= 0. Such a vertex exists because D contains a 
simple arc but no simple cycle. We apply the following algorithm to find a path in 
D: begin with Zl and, for each i = 1,2, ... , let Zi+1 be the vertex of indegree 0 in the 
(transitive) tournament induced by Q'(Zi) unless Q'(Zi) = 0. Clearly, this produces 
a path P: Zl -+ Z2 -+ ... -+ Zs with Q'(zs) = 0. 

Using a similar argument as above, we can show that ZI, Z2, . .. , Zs is a round 
enumeration of the sub digraph induced by V(P). Thus if P contains all vertices of 
D then Zl, Z2,' .. , Zs is a round enumeration of D. So assume that there is a vertex 
v which is not in P and is adjacent to some vertex of P. It is easy to see that there 
is no simple arc between v and P. This implies that v E B(Zi) each i = 1,2, ... , s. 
In fact, it is not hard to see this is so for each vertex v E V(D) - V(P). 

Therefore if we repeat the above algorithm for D - P we can find another path 
consisting of simple arcs (if any). We can continue this process in the remaining 
digraph until no simple arc left. Let Pk : zt -+ z~ -+ ... -+ ZJk' k = 1,2, ... , be the 
paths produced by the algorithm. Let z~, zg, ... ,zJo be the remaining vertices. Then 
it is easy to verify that 

is a round enumeration of D. This completes the proof. 0 

It is not difficult to see that the above proof implies a polynomial algorithm to 
decide if a digraph is round and to to find a round enumeration of it if one exists. 

Corollary 2.5 There is a polynomial algorithm to decide if a digraph is round 
and to find a round enumeration of it if one exits. 0 
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