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Abstract

A digraph D is round if the vertices of D can be circularly ordered as
V1,7V, ..., Vp SO that, for each vertex v;, the out-neighbours of v; appear
consecutively following v; and the in-neighbours of v; appear consecu-
tively preceding v; in the ordering. We characterize round digraphs in
terms of forbidden substructures. Our proof implies a polynomial algo-
rithm to decide if a digraph is round.

1 The theorem

We assume that a digraph has no loops or multiple arcs but may contain a cycle of
length 2. If it contains no cycle of length 2, then it is an oriented graph.

Let D be a digraph. We say that a vertex z is adjacent to a vertex y in D if
there is at least one arc between z and y. If zy is an arc of D, then we say that
x dominates y and use the notation z — y to denote this. If x — y, then y is an
out-neighbour of x and 7 is an in-neighbour of y. The set O(x) of all out-neighbours
of z is called the outset of z and the set I(z) of all in-neighbour of x is called the
inset of x. We shall let d*(z) = |O(z)| and d~(z) = |I(z)| and call d*(z) (resp.
d~(z)) the outdegree (resp. the indegree) of z.

A digraph D is round if the vertices of D can be circularly ordered as vy, vo,. .., v
so that, for each vertex v;, the out-neighbours of v; appear consecutively following
v; and the in-neighbours of v; appear consecutively preceding v; in the ordering. We
shall refer to the ordering v, vy, ..., v, as a round enumeration of D.

A digraph is semicomplete if there is at least one arc between any pair of vertices.
A tournament is thus a semicomplete oriented graph. A digraph is called locally
semicomplete if the outset as well as the inset of each vertex induces a semicomplete
digraph, [1]. A locally semicomplete oriented graph is called a local tournament, [4].
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Suppose that D is a round digraph and that vy, vs,...,v, a round enumeration
of D. We claim that D is a locally semicomplete digraph. To see this, consider an
arbitrary vertex, say v;. Let £ and y be two out-neighbours of v;. Assume without
loss of generality that v;, z,y appear in the circular order in the round enumeration.
Since v; — y and the in-neighbours of y appear consecutively preceding y, we must
have z — y. Thus the out-neighbours of v; are pairwise adjacent. Similarly, we can
show that the in-neighbours of v; are also pairwise adjacent. Hence D is a locally
semicomplete digraph. In the case when D is a round oriented graph, D is a local
tournament.

There is an intimate relation between locally semicomplete digraphs and circular
arc graphs. A graph G is a circular arc graph if there is a one-to-one correspondence
between the vertex set of G and a family of circular arcs on a circle so that two
vertices are adjacent in G if and only if the corresponding circular arcs intersect.
A circular arc graph is proper if the family can be chosen so that no arc contains
any other arc. It is proved [5] that a connected graph can be oriented as a local
tournament if and only if it is a proper circular arc graph. Round local tournaments
are particularly useful in finding a corresponding circular arc family and in designing
efficient algorithms to solve problems related to proper circular arc graphs, cf. [2, 3].

If £ — y but y /4 =, then the arc zy is called a simple arc. A path (resp. cycle)
consisting of simple arcs is called a simple path (resp cycle). For a vertex z of D, let
B(z) = O(z) N I(z), O'(z) = O(z) — B(z), and I'(z) = I(z) — B(z). A digraph is
connected if its underlying graph is connected.

Bang-Jensen [1] showed that a connected local tournament D is round if and only
if for each vertex z, O(z) and I(z) induce transitive tournaments, i.e., tournaments
which contain no cycles. The main theorem of this paper is a generalization of this
result.

Theorem 1.1 Let D be a connected locally semicompleted digraph. Then D is
round if and only if for each vertez z, O'(z) and I'(z) induce transitive tournaments
and B(z) induces a (semicomplete) subdigraph containing no simple cycles.

2 The proof

Let D be around digraph and let vq, vs, .. ., v, be a round enumeration of D. For each
vertex v;, the definition of a round enumeration implies that the vertices in I'(v;)
appear consecutively preceding v; and the vertices in O'(v;) appear consecutively
following v;. Thus the vertices in B(v;) also appear consecutively between vertices
of I'(v;) and the vertices of O'(v;). So, when B(v;) # 0, if we traverse beginning at
v; in the circular order of the round enumeration, we encounter first the vertices in
O'(v;), then the vertices in B(v;), and finally the vertices in I'(v;). In this section,
we shall prove Theorem 1.1. But first we have some lemmas.

Lemma 2.1 Let D be a digraph and let D’ be a induced subdigraph of D. If D
is round, then D' is round.
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Proof: Let v1,vs,...,u, be around enumeration of D. Suppose that v, vj,,. ..,
vy, (J1 < ja < ... < Ji) are the vertices of D'. Then vj;,vj,,...,j, is a round
enumeration of D'

AAAA

Figure 1: Some forbidden substructures for round digraphs.

Lemma 2.2 If D is a round digraph, then none of the digraphs in Fig. 1 is an
induced subdigraph of D.

Proof: The statement follows from Lemma 2.1 and the fact that none of digraphs
in Fig. 1 is round. a

Lemma 2.3 Let D be a round digraph. Then, for each vertex x of D, the subdi-
graphs induced by I'(z) and O'(z) contain no cycle.

Proof: The statement follows from Lemma 2.2 and the fact that if the subdigraph
induced by I'(z) or O'(z) contains a cycle then D would contain one of the digraphs
in Fig. 1 as an induced subdigraph. O

Lemma 2.4 Let D be a round digraph. Then, for each vertex x of D, the subdi-
graph induced by B(z) contains no simple cycle.

Proof: Suppose the subdigraph induced by some B(z) contains a simple cycle C.
Let v1,v9,...,%, be a round enumeration of D. Without loss of generality, assume
that z = v;. Then the simple cycle C must contains a simple arc v,v, with a > b.
Now vy € I{v,) but v, ¢ I(v,), contradicting the assumption that vy, v2,...,v, 18 a
round enumeration of D. a

Proof of Theorem 1.1:

The necessity follows from lemmas 2.3 and 2.4. For sufficiency, we first consider
the case when D contains a simple cycle. We claim that O'(z) # @ for each vertex
z of D. To prove this, it suffices to show that there is a simple cycle containing all
vertices of D. Let C : 27 — 2o — ... = 7; — 7 be a longest simple cycle in D.
Suppose that C does not contain all vertices of D. Then there is a vertex v which is
not in C and v is adjacent to some vertex of C.

Assume that there is a simple arc between v and some vertex, say zi, of C.
Assume further that the simple arc is from z; to v. (A similar discussion applies if
the simple arc is from v to z;.) Thus v and 7z are in O'(z;) and hence v and z,
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are adjacent. The arc between v and x; must be simple as D contains no Fig. 1(a).
However the choice of z; implies that v € O'(z3). Now both v and z; are in O'(z,),
implying that v and z3 are adjacent by a simple arc. Again we must have v € O'(z3).
Continuing this way, we see that v is in O’(z;) for each 7 = 1,2,...,1. Hence I'(v)
contains all vertices of C, which contradicts the assumption that I'(v) induces a
transitive tournament. So we may assume that z; is in B(v) and further that there
is no simple arc between v and C. Vertices v and z, are adjacent because both
are out-neighbours of x;. Thus z; € B(v). Continuing this way, we see that B(v)
contains all vertices of C, contradicting the assumption that the subdigraph induced
by B(v) contains no simple cycle. Therefore the cycle C contains all vertices of D,
which implies that O'(z) # § for each vertex z of D.

We apply the following algorithm to find a round enumeration of D: Begin with
an arbitrary vertex, say y;, and, for each ¢ = 1,2,..., let y;4, be the vertex of
indegree 0 in the (transitive) tournament induced by O'(y;). Let y1,%,...,y, be
distinct vertices produced by the algorithm such that the vertex w of indegree 0 in
the tournament induced by O'(y,) is in {y1, 2, ..., ¥r—2}. We first show that w = y.
If w = y; with j > 1, then y;_; and y, are both in I'(y;) and hence adjacent by a
simple arc. But either g, € O'(y;_1) or y, € I'(y;—1) would contradict the fact that
y; is the vertex of indegree 0 in the (transitive) tournaments induced by O'(y;_)
and O'(y,). Sow =1y, and C' : y; = ya — ... = y, — y; is a simple cycle. We next
show that 7 = |[V(D)|. Suppose not. Then there is a vertex u which is not in C’ and
is adjacent to some y; of C".

Suppose that u € O'(y;). Then u and y; 4, are adjacent as both are in O'(y;). Since
D contains no Fig. 1(a) and y;; is the vertex of indegree 0 in the subdigraph induced
by O'(y;), we must have v € O'(yi41). Now u and y;.» are adjacent. Similarly, we
must have u € O'(yiy2). Continuing this way, we see that u € O'(y) for each
k = 1,2,...,r. That is, C" is contained in the subdigraph induced by I'(u), a
contradiction. A similar argument applies for the case when u € I'(y;). So we
may assume u € B(y;) and there is no simple arc between u and C’. Using this
assumption and the definition of a locally semicomplete digraph, we can show that
C'" is contained in the subdigraph induced by B(u), which is again a contradiction.
Therefore r = |V(D)|, i.e., the algorithm enumerates all vertices of D.

We now complete our claim by showing that vy, ¥, . .., ¥, is a round enumeration.
Suppose not. Then there are three vertices y,, ¥s, ¥ listed in the circular order in
the enumeration such that one of the following two cases occurs:

L. 9 € O(ya) and y, ¢ O(va);

2. Yy € I(ya) and y. ¢ I(ya).
Assume that case 1 occurs. Assume that the three vertices were chosen so that the
number of vertices from y, to y. in the circular order is as small as possible. This

implies that ¢ = b+ 1, i.e., y. is next to y, in the circular order. Now y, and y,
are adjacent as both are in I(y.). Thus y, € O'(y;). Since we also have y, € O'(ys)
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and D contains no Fig. 1(a), y. € O'(y.). So y. is not the vertex of indegree 0 in
the (transitive) tournament induced by O'(y.-1), contradicting the choice of y.. A
similar argument applies when case 2 occurs.

It remains to consider the case when D contains no simple cycle. If D contains
no simple arcs, then it is easy to see that D is semicomplete. This means that there
is a cycle of length two between any pair of vertices. Thus any vertex ordering is a
round enumeration of D. So assume that D has at least one simple arc. Let 2z; be
a vertex with I'(z1) = # and O'(z;) # 0. Such a vertex exists because D contains a
simple arc but no simple cycle. We apply the following algorithm to find a path in
D: begin with 2y and, for each i = 1,2, ..., let z;1; be the vertex of indegree 0 in the
(transitive) tournament induced by O'(z;) unless O'(2;) = @. Clearly, this produces
apath P:2z; — 23 — ... — z, with O'(z,) = 0.

Using a similar argument as above, we can show that z;,2s,...,%; is a round
enumeration of the subdigraph induced by V(P). Thus if P contains all vertices of
D then 21,23, ...,2 is a round enumeration of D. So assume that there is a vertex
v which is not in P and is adjacent to some vertex of P. It is easy to see that there
is no simple arc between v and P. This implies that v € B(z;) each ¢ = 1,2,...,s.
In fact, it is not hard to see this is so for each vertex v € V(D) — V(P).

Therefore if we repeat the above algorithm for D — P we can find another path
consisting of simple arcs (if any). We can continue this process in the remaining
digraph until no simple arc left. Let Py : 2§ — 25 — ... = 2§, k=1,2,..., be the
paths produced by the algorithm. Let 20,23, ..., 2} be the remaining vertices. Then
it is easy to verify that

1,1 1.2 2 2 0,0 0
Ziy 2y ey 2y Bl By e e s Bjyy s B1s By e ey Bgg
is a round enumeration of D. This completes the proof. O

It is not difficult to see that the above proof implies a polynomial algorithm to
decide if a digraph is round and to to find a round enumeration of it if one exists.

Corollary 2.5 There is a polynomial algorithm to decide if a digraph is round
and to find a round enumeration of it if one ezits. m]
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