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Abstract

A graph G of order n is k-factor-critical, where k is an integer of the
same parity as n with 0 < k < n, if G — X has a perfect matching
for any set X of k vertices of G. A k—factor-critical graph G is called
minimal if for any edge e € E(G), G — e is not k—factor-critical. In this
paper we study some properties of minimally k—factor-critical graphs, in
particular a bound on the minimum degree, and characterize (n — 4)—
and minimally (n — 4)—factor-critical graphs.

1. Introduction

The graphs G = (V(G), E(G)) we consider here are undirected, simple and finite
of order |[V(G)| = n. A graph is even if its order is even and odd if its order is odd.
The neighborhood of a vertex z is N(z) = {y;y € V(G) and zy € E(G)}, its closed
neighborhood is N[z] = N(z) U {z}, and its degree is the integer dg(z) = |N(z)|.
The minimum degree of G is 6(G) = min{dg(z);z € V(G)}. When no confusion
may arise, we write V' and d(z) instead of V{G) and dg(z). For any set A C V, G[4]
denotes the subgraph induced by A in G, G — A stands for G[V — A]. Similarly, if
e = uv is an edge of G, G —e or G — wv stands for (V(G), E(G) —{e}). A claw of G
is an induced subgraph isomorphic to the star K 3. If G — A is not connected, that
is if A is a cutset of G, we denote by ¢,(G — A) the number of odd components of
G — A. A matching F of G is a set of independent edges and a perfect matching is
a matching covering all the vertices of G. Clearly if G has a perfect matching F, its
order n is even and F' consists of 5 edges. We adopt the convention that a graph of
order 0 has a perfect matching. A graph G of even order n is g—extendable [9], where
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¢ is an integer with 1 < ¢ < %, if G is connected, has a perfect matching and every
set of ¢ independent edges is contained in a perfect matching. A graph G of order n
is k—factor-critical [5], where k is an integer of same parity as n with 0 < k < n, if
G — X has a perfect matching for any set X of k vertices of G. Graphs which are
O—factor-critical, 1—factor-critical, 2—factor-critical are respectively graphs with a
perfect matching, factor-critical graphs as defined in [6], bicritical graphs as defined
in [7]. For k and thus n even, a k—factor-critical graph is clearly £ —extendable. A
k—factor-critical (g—extendable resp.) graph G is called minimal if for every edge
e € E(G), G ~ e is not k—factor-critical (g—extendable resp.).

Minimally bicritical graphs have been extensively studied (see [8]). In [1], [2]
and [3], Anunchuen and Caccetta gave general properties of minimal g—extendable
graphs and characterized g—extendable and minimally g—extendable graphs of even
ordernforq:%—landng—l

Our purpose is to study some properties of minimally k—factor-critical graphs
and to characterize (n — 4)— and minimally (n — 4)—factor-critical graphs.

2. Basic properties of minimally k—factor-critical graphs

Let us first recall some properties of k—factor-critical graphs:

Lemma 1 [2] If G is k—factor-critical for some 1 < k < n with n+k even, then G
is k-connected, (k + 1)-edge-connected (and thus & > k + 1 which is still true when
k = 0), and (k — 2)—factor-critical if k > 2.

Definition : A graph G has Property Qy if ¢,(G — B) < |B| — k for every BC V
with |B| > k.

Lemma 2 [2] A graph G is k—factor-critical if and only if it has Property Q.

The following Lemma 3 and Theorem 2.1 are simple adaptations of similar results
for k =1 or 2 (cf [8]).

Lemma 3 Let G be a k—factor-critical graph. Then G is minimal if and only if
for each e = uv € E(G), there exists S, C V — {u,v} with |S,| = k such that every
perfect matching of G — S, contains e.

Proof 1. Let G be a minimally k—factor-critical graph, then for each e = uv €
E(G), G — e is not k—factor-critical. Therefore, there exists S, C V with [Sel =k
such that G — e — S has no perfect matching. But G — S, has a perfect matching
since G is k—factor-critical. Hence neither u nor v belong to S, and any perfect
matching of G — S, contains e.

2. Conversely, suppose that for each e = uv € E(G), there exists S, C V — {u,v}
with |S,| = k such that any perfect matching of G — S, contains e. So, G —e — S,
has no perfect matching and thus G — e is not k—factor-critical. Therefore, G is
minimally k—factor-critical. |

Theorem 2.1 Let G be a k—factor-critical graph. Then G is minimal if and only
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if for each e = uv € F(Q), there exists B, C V — {u,v} with |B,] > k such that
¢o(G — B, — €) = |B,| — k + 2 and u and v belong respectively to two different odd
components of G — B, — e.

Proof 1. If G is a minimally k—factor-critical graph, then for each e = uv € E(Q),
G — e is not k—factor-critical. By Lemma 2, there exists B, C V with |B,| > k such
that ¢,(G — e — B,) > |Be| — k and by parity, ¢,(G — B. — €) > |B.] — k + 2. Since
G is k—factor-critical, by Lemma 2, ¢,(G — B.) < |B.| — k and thus v and v do
not belong to B,. But ¢,(G — B, — e) < ¢,(G — B,) + 2 < |Be| — k + 2. Therefore,
Co(G — By — €) = |Be| — k+ 2, ¢o(G — Be) = |Be| — k, and e is an edge connecting
two odd components of G — B, — e. So u and v belong respectively to two different
odd components of G — B, —e.

2. Conversely if for each e € E(G) there exists B, C V with |B.| > k and such that
co(G — By — €) = | Be| — k + 2, then B, contradicts Property @ for the graph G —e
and G — e is not k—factor-critical. ]

For n > k + 4, the classes of minimally k—factor-critical graphs and of (k +
2)—factor-critical graphs are both contained in the class of k—factor-critical graphs
(cf Lemma 1). The next result shows that these two classes are disjoint.

Theorem 2.2 Let G be a minimally k—factor-critical graph of order n > k + 4.
Then G is not (k + 2)—factor-critical.

Proof Let e = uv be an edge of a minimally k—factor-critical graph G of order
n > k+ 4, and B, a subset of V" as in Theorem 2.1.
Case 1 |B.|>k+2. Let B= B,, then |B| > k+2 and ¢,(G — B) = |B,| — k >
|B] = (k +2).
Case 2 |B,] = k+1. Let B = B, U {u}, then |B| > k+ 2 and ¢,(G — B) >
€olG—B.)+1=|B|-k+1=|B|—k>|B|—-(k+2).
Case 3 |B,| = k. If G — B, has more than one even component, let w belong to
an even component which does not contain the edge e and B = B, U {w,u}. Then
|Bl =k+2and co(G—B) 2 ¢,(G—Be)+2 = |Be|-k+2 = |B|—=k > |B|— (k+2). If
G — B, has just one even component, then G — B, —e has exactly two components, say
C,, which contains u and C, which contains v, and both are odd. Since n > k+ 2, we
may assume |Cy,| > 1. By parity, |C,| > 3. Let w € C,, — {u} and B = B, U {w, u}.
Then |B| = k+2 and ¢,(G~B) > ¢,(G—B.)+2 = |Be|-k+2 = |B|-k > |B|—(k+2).
In the three cases above, we have |B| > k+ 2 and ¢,{(G — B) > |B| — (k +2). By
Lemma 2, G is not (k + 2)—factor-critical. E

3. Minimally k—factor-critical graphs and degrees

Theorem 3.1 Let G be a minimally k—factor-critical graph of order n. Then
for each e = uv € E(G), there exists S C V — {u,v} with |S,| = k such that
de(u) +de(v) < n+ |N(u)N N(w)NS,|. In particular, dg(u) + dg(v) < n + k.

Proof Since G is a minimally k—factor-critical graph, for each e = uwv € E(QG),
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there exists by Lemma 3 a set S, C V — {u, v} with |S.| = k such that any perfect
matching of G — S, contains e.

If N(u)NN(v) C S, then [N(u) N N(v) N S,| = |N(u) N N(v)| and thus dg(u) +
dg(v) = [N(u) UN(®)| +|N(u) N N(@v)| < n+|N(w)n N(v) N S,|. Otherwise, let
F" be a perfect matching of G — S,. For each w € N(u) N N (v) — S, there exists
w' € V — S, — {u, v} such that ww' € E(F). If v’ € N(u) U N(v), say w' € N(v),
then F” = (F —{uv, ww'})U{uw, vw'} is a perfect matching of G — S, which does not
contain e, in contradiction to the definition of S,. Hence w' ¢ N(u) U N (v). Since
F'is a matching, we have |N(u) U N(v)| < n — |(N(u) N N@)\Se|=n—|Nu)n
N()| + [N(u) N N(v) N S,|. Therefore, dg(u) + do(v) <n+|[N@uw)NN@®)NS,| &

Corollary 3.2 Let G be a k—factor-critical graph of order » and maximum degree
A(G) = n —1. Then G is minimal if and only if G contains one vertex of degree
n—1 and n — 1 vertices of degree k + 1.

Proof Let G be a k—factor-critical graph of order n, and u € V such that de(u) =
n — 1. Then for any v € V'\ {u}, we have e = uv € E(G).
If G is minimal, then for any v € V'\ {u}, by Theorem 2.3, dg(u)+dg(v) < n+k.
S0dg(v) < n+k—(n—1) = k+1. By Lemma 1, 6(G) > k-+1 and thus dg(v) = k+1.
Conversely, if G has n — 1 vertices of degree k + 1, then for any e € E(G), we
have 6(G —e) < k + 1 and thus G — e is not k—factor-critical. |

Theorem 3.3 In a minimally k—factor-critical graph G of order n > k+4, §(G) <

n;—k—l. If moreover n > k + 6, then §(G) < n+k—2.

Proof Let G be k—factor-critical of order n > k + 4. By [4], if 6(G) > ntk then

G is k-hamiltonian, i.e. G — X contains a hamiltonian cycle for every set of at most
k vertices of G. Let e be any edge of G and X any set of k vertices of G. Since
G — X contains an even hamiltonian cycle, G — X — e contains a hamiltonian path of
even order, and thus a perfect matching. Therefore G — e is k-factor-critical. Hence

if G is minimally k-factor-critical then & (G) < ntk — 1, which is the first part of

the theorem. To show the second part, we give another and direct proof of the first
part, without using the result of [4], in order to point out all the possible cases of
equality 6(G) = ntk_ 1. Since G is a minimally k—factor-critical graph, for each
e = uv € E(G) there exists by Theorem 2.1 a set B, C V — {u,v} with |B,| > k&
such that ¢,(G — e — B,) = |B,| — k + 2. Let Cy, Cs, - - -, Gy, Cy, and C,, be the odd
components of G — e — B,, where p = |B,| — k, C,, is the component which contains
u and C, the component which contains v. We may assume |C;| < |Co| < -+ < |Gy
and |Cy| < |C,|. We note that §(G) < |B,|+|C;|—1 and that 8(G) < |Be|+1Cu| -1
if |Cu] > 1 (ie. by parity |Cy| > 3), §(G) < |Be| + 1 if |Cy| = 1.
Case 1. [B|>k-+2 ie p>2.

Since [Cp| > - -+ > |Cy| and |G| > |C,| > 1, we have n > | Be| + (| Be| = k)|Cy| +2,
that isn > |Be|+(|Be|—k)+2(|C1|—1)+(|Be|~k—2)(|C1 |- 1)+2, with |Be|—k—2 >0
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and |C1|—1 > 0. Hence 2(|B.|+|C1|) < n+k and §(G) < |Be|+|Ci|—1 < -—;—k—l

The equality §(G) = ntk_ 1 implies here that n = |B.| + (|Be] — k)|Cy| + 2,

(IBe| =k =2)(IC1| =1) = 0, |C1] = |Co] = -+ =G}, |Cu| = |Co| = 1, and G~ B, —e
contains no even component. If |Cy] > 1, that is |C1] > 3, then |B,| = k + 2 and
n > |Be|+8 = k+ 10. On the other hand, ——z—k——l =4(G) < |Be]+1=k+3and
thus n < k + 8, which yields a contradiction. Hence |Ci| = |Cy| = -+ = |Cp| = 1,
n=2|B|-k+2>k+6and |B]}= ntk —~1=4(G). So for 1 < i < p, the only
vertex z; of C; is adjacent to every vertex of B,, and each vertex u, v is adjacent to at

least | B,|—1 vertices of B. Therefore in this first case, the equality 6(G) = z _; k_ 1
implies n > k46, [N(u) \ N[v]| <1 and |[N(v) \ N[u]| < 1.
Case 2. |Be/=k+1 ie p=1.
Subcase 2.1 |Cy| < |Cyl.

1£[G1] 2 2E then |B.J+1G] < n-[Cul-[C4] < n=2/01] < n- " E = 2EE
Hence 6(G) < |Be| + ICll -1< ntk_ 1. The equality 6(G) = n—;—li — 1 requires

k

|Cu| = |Cy| = |Cy] = , and |Be|+|Ci| = n—|Cy|—|C,| and thus G — B, — e has

no even component. Therefore n = |B,|+3|Cy| = Ic+1+3( 4— k)’ that e kad
- —-k—2 _
It |Gy < = Fie. IC1| < "——4—— then 6(G) < |B|+|Ci|—1 < E‘L_i’i_% <
n+k

— 1, with a strict inequality.
Subcase 2.2 |C,| < |C1] and thus by parity, |Cy| > |C,| + 2.

2.2.1 If |C,] = 1 then n > |B,| + |Cy| + |Cy| + |C1] > k + 6 and thus §(G) <

n+k . n+k

: (@) =

|Cu] = |Cy| =1, |C1] =3, G — C; — € has no even component, u and v are adjacent

to every vertex of B, and each of the three vertices of C) is adjacent to at least k of
the k 4 1 vertices of B. In particular, N(u) \ N[v] = N(v) \ N[u] =

2.2.2 Suppose now |C,| > 3 (thus n > k + 12).

—~ 1 requires n = k + 6,

1[Gl > "5 2, then (B +1Cu < n— |Gl - Gl <n -T2 5o
n—;—k —1land §(G) < n—;k — 1, strictly.
If |Gy < ”——'—L’f—"—‘f then |Be| + |Cy| < k+1+";'C ~1= "23’“ and 6(G) <
n+ 3k n+k
- -1 ictly.
1 1< 5 , strictly.
. n—k
Case 3. |B.|=k ie. p=0and thus |C, .
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n+k

Subcase 3.1 If |C,| > 1 then §(Q) < |B| +|Cy| — 1 <
n+k

— 1. The equality

5(G) = il and thus n_k is odd > 3 and

n—k > 6, G — B, — e has no even component, C, and C, are cliques, every vertex of

Cu\ {u} and of C, \ {v} is adjacent to all the vertices of B,, u (v resp.) is adjacent

to all the vertices of B, except perhaps to one of them.

Subcase 3.2 If|C,| =1then §(G) < |Bof+1=k+1<
n+k

— 1 requires |Cy| = |C,| =

n+k

— 1 since n > k +4.

The equality 6(G) = —1lrequiresn=%k+4,|C,=|Cy] =1and G~ B, —¢

contains one even component of order 2, or |Cy,| = 1, |C,| = 3 and G — B, —e contains
no even component.

To summarize the study, when n > k + 6 the only possible cases of equality

§(G) = ntk_ 1 occur in 1, 2.2.1 and 3.1. Hence if a minimally k—factor-critical

2
k
graph G with n > k + 6 satisfies 6(G) = nt

three encountered types, Type 1 described in Case 1, Type 2 described in Case 2.2.1,
Type 3 described in Case 3.1. Recall that if e = uv is of Type 1 then |N (u)\N[v]| < 1
and |N(v) \ N[u]| < 1; if e is of Type 2 then N(u) \ N[v] = N(v) \ N[u] = 0; if e
is of Type 3 then there exist two disjoint triangles K3(u) and K3(v) such that uv is
the only edge of G between Kj(u) and Kj3(v).

Let G be a minimally k—factor-critical graph of order n > k + 6 and 6(G@) =
n+k

— 1, each edge e = uw is of one of the

— 1. If G contains an edge e = uv of Type 1, let € B, N N(u). Using the

notation of Case 1, we have {21, 23} C N(z) \ N{u], so the edge ux is not of Type 1
or 2 and thus must be of Type 3. But as in Type 1 each z;, 1 < ¢ < p, is adjacent
to every vertex of B, and w is adjacent to every vertex of B, except perhaps to at
most one, we cannot find two disjoint triangles K3(z) and K3(u) joined by the only
edge uz, a contradiction. Hence no edge of G is of Type 1.

If G contains an edge e = uwv of Type 2 (which implies n = k + 6), let x be a
vertex of B, adjacent to some vertex 2 of Cy. Since z; € N(z)\ N[u], the edge uz is
not of Type 2 and must be of Type 3. The triangle K3(u) does not contain v since
z is adjacent to v, and is of the kind utw with ¢,w € B.. Hence Kj3(z) contains no
vertex of ) since each vertex of C is adjacent to at least one of ¢, w, and K(z) is
contained in B,. This gives a contradiction since u is adjacent to every vertex of B,.

Therefore every edge of G must be of Type 3. Let e = uv be such an edge and
z, y two vertices of Cy, \ {u}. Since N(z)\ {y} = Nw) \ {z} = (C. \ {z,¥}) U B,,
the edge zy cannot be of Type 3.

Hence no minimally k—factor-critical graph of order n > k + 6 satisfies §(G) =
n+k

2

Corollary 3.4 Let G be a minimally k—factor-critical graph of order n. If k =
n—2,n—4orn-— 6, then 6(G) =k + 1.

— 1. This completes the proof of the theorem.
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Proof: The only (n — 2)—factor-critical graph of order n is K, which proves the
corollary for £ = n — 2. For k = n — 4 or n — 6, this is a consequence of Theorem 3.3
and the property 6(G) > k + 1 recalled in Lemma 1. |

Problem: It is clear from the Ear Decomposition of 1-factor-critical graphs (cf [8})
that every minimally 1-factor-critical graphs has minimum degree 2.

Is it true that every minimally k—factor-critical graph G has minimum degree
§G@)=k+17

4. Minimally (n — 4)—factor-critical graphs

Theorem 4.1 A graph G of order n > 6 is (n — 4)—factor-critical if and only if G
is claw-free and §(G) > n — 3.

Proof Let G be a (n—4)—factor-critical graph. By Lemma 1, §(G) > k+1 = n—3.
If there exists a set Y of four vertices inducing a claw, then G[Y] has no perfect
matching, contradicting G is (n — 4)—factor-critical.

Conversely, let Y be any subgraph of G induced by exactly four vertices. Since
G is claw-free and 6(G) > n — 3, Y # K, 3 and §(Y) > 1 which implies that ¥ has
a perfect matching. =

Let us remark that the condition for a graph G of order n to be claw-free and have
minimum degree §(G) > n — 3 is equivalent to the condition to have independence
number (@) < 2 and §(G) > n — 3.

Theorem 4.2 A graph G of order n > 6 is minimally (n — 4)—factor-critical if and
only if it is claw-free and satisfies one of the following three conditions: '

(1) Gis (n — 3)—regular.

(2) G contains one vertex of degree n — 1 and n — 1 vertices of degree n — 3.

(3) @G contains n — 2 vertices of degree n — 3 and two vertices of degree n — 2,
say u and v, which are such that N(u) \ {v} = N(v) \ {u}.

Proof Let G be a minimally (n — 4)—factor-critical graph. By Theorem 4.1 and
Corollary 3.4, G is claw-free and 6(G) =n — 3.

If A(@) =n — 3 then G is (n — 3)-regular.

If A(G) = n—1 then by Corollary 3.2, G contains one vertex of degree n — 1 and
n — 1 vertices of degree k +1 =n — 3.

If A(G) = n — 2 then each vertex of G has degree n — 2 or n — 3. If n is odd,
then n — 2 is also odd and G has an even number of vertices of degree n — 2. If n is
even, then n — 3 is odd and G has an even number of vertices of degree n — 3 and
thus also an even number of vertices of degree n — 2. Therefore, G contains at least
two vertices of degree n — 2. Suppose G has three vertices of degree n — 2, say u, v
and w.

Case 1 Two of them, say u and v are not adjacent.

Then N(u) = N(v) =V — {u,v} and w € N(u). Let e = uw. Since G — e is
not (n — 4)—factor-critical and 6(G — e) > n — 3, G — e has an induced subgraph H
isomorphic to K3 by Theorem 4.1. Since G is claw-free, H must contain v and w
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as two pendant vertices. There are only two vertices v and w which are not adjacent
to u in G — e, so the only other possible pendant vertex is v. But H can not be Kis
since vw € E(G — e), a contradiction.

Case 2 wuv,uw and vw € E(G). Let e = uw. As in Case 1, G — e has an induced
subgraph H isomorphic to K73 and v and w are two pendant vertices of H. If z is
the third pendant vertex of H, then z € V(G) — {u,v,w} and z ¢ N(u) U N(w).
Considering similarly the edge uv, there exists y € V(G) — {u, v, w} such that y ¢
N(u) U N(v). Since d(u) =n —2 and z,y ¢ N(u) — {u}, we have z = y. Hence,
N(z) C V\ {u,v,w} and thus d(z) < n — 4, a contradiction.

Therefore, there are exactly two vertices, say u and v, of degree n — 2. If u and
v are not adjacent then N(u) \ {v} = N(v) \ {u} =V \ {u,v}. If they are adjacent
and if N(u)\ {v} # N(v) \ {u}, then N(u) =V \ {«'} and N(v) = V' \ {¢'} for some
vertices u’ # v'. By considering the edge uv’, a similar argument as above yields a
contradiction.

Conversely, by the hypothesis we have §(G) = n — 3 and G is claw-free. By
Theorem 4.1, G is (n — 4)—factor-critical. Moreover, for any e = uv € E(G), if
d(u) = n—3 or d(v) = n—3, we have §(G—e) < n—3 and G—e is not (n—4)—factor-
critical. Otherwise, we are in the third case with uv € E(G), N(uv)\{v} = N(v)\ {u}
and V\ (N (u)UN(v)) = {z} for some vertex z of G. If w is any vertex in N(u) NN (v)
and since d(z) = n—3, then {u, v, w, 2} induced a subgraph of G'—e which isomorphic
to Ky3. By Theorem 4.1, G — e is not (n — 4)—factor-critical. Therefore, G is a
minimally (n — 4)—factor-critical graph. B

In [2] and [3], Anunchuen and Cacetta determined all the (— —2)— and minimally
(5—-2)~extendable graphs of even order n > 6. Since for n even, every (n—4)—factor-
critical graph is (5 — 2)—extendable, we expected to find in Theorem 4.1 a subclass

of non-bipartite (g ~2)—extendable graphs (some p—extendable graphs are bipartite
whereas k—factor-critical graphs are never bipartite). Surprisingly, for n > 10, we
found all of them, that is

Corollary 4.3 A non-bipartite graph of even order n > 10 is (g — 2)—extendable
if and only if it is (n — 4) —factor-critical.

In consequence

Corollary 4.4 A non-bipartite graph of even order n > 10 is minimally (— -
2)—extendable if and only if it is minimally (n — 4)—factor-critical.

This last corollary allows us to get from Theorem 4.2 all the non-bipartite min-
imally (7—;— — 2)—extendable graphs of order n > 10 which were obtained in [2] af-

ter a long proof (the bipartite ones are easily obtained from the bipartite (% -
2)—extendable graphs which are all the bipartite graphs of even order n and mini-
mum degree > % -1).
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