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Soil characteristics provide important support for understanding transformations that occur in environmental
systems. Physical characteristics and chemical compositions of soils controlled by pedogenetic processes,
climatic changes and land use imply different types of environmental transformations. Reflectance
spectroscopy is an alternative soil mapping technique that uses spectral absorption features between visible
(VIS) and short-wave infrared (SWIR) wavelengths (0.3–2.5 μm) for determining soil mineralogy. Soil
analysis by means of reflectance spectroscopy and orbital optical sensors have provided favorable results in
mapping transformation processes in environmental systems, particularly in arid and semiarid climates in
extra-tropical terrains. In the case of inter-tropical environments, these methods cannot be readily applied
due to local factors such as lack of exposed regolith, high amounts of soil moisture and the presence of dense
vegetation. This study uses Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and
reflectance spectroscopy data to map mineral components of soils covering a part of the state of São Paulo,
Brazil, which could be linked to key aspects of environmental transformations in this tropical area (e.g.,
climate change, shifts in agriculture fronts, ph, and soil characteristics). We collected forty-two (42) soil
samples at a depth of 0–20 cm, considering that this superficial layer corresponds to the highest correlation
with soil properties detected by the ASTER sensor. These samples were measured using a FieldSpec FR
spectrometer, and the derived spectra were interpreted for mineral composition. Interpretation was
supported by X-ray diffraction analysis on the same samples. The spectral signatures were re-sampled to
ASTER VNIR (AST1-4: 0.52–0.86 μm) and SWIR (AST5-9: 1.60–2.43 μm) spectral bandwidths and validated by
comparing reflectance spectra of field samples with those extracted from atmospherically corrected and
calibrated ASTER pixels. The agreement between spectral signatures measured from soil samples and those
derived from ASTER imagery pixels proved plausible, with R2 correlation values ranging from 0.6493 to
0.7886. This signifies that diagnostic spectral features of key minerals in tropical soils can be mapped at the
spectral resolution of 9-band ASTER VNIR through SWIR reflectance. We used these spectral signatures as
end-members in hyperspectral routine classifications adapted for use with ASTER data. Results proved
possible the identification and remotemapping of minerals such as kaolinite, montmorillonite and gibbsite, as
well as the distinction between iron-rich and iron-poor soils.
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1. Introduction

A relatively less common approach in soil studies involves
mapping pedological properties and their relation with environmen-
tal systems. Basically, this relation can be understood through
physical and chemical processes associated with changes in vegeta-
tion cover, which result in the retention of greenhouse gasses and
carbon fixation (e.g. CO2, CO, NOX, N2O, and CH4), increased erosion,
alteration of the nutrient cycle, increased turbidity of rivers, etc.
(Foley et al., 2005; Tilman & Lehman, 2001). Therefore, soil
characteristics of a defined environmental system are important
indicators of its vulnerability, resistance and resilience to several
multiscale processes that range from climatic changes on a global
scale to land-use changes on the local scale.

Traditional pedological studies require ample field and laboratory
analyses of samples collected from various landforms and at various
depths. This type of approach is time consuming and requires large
resource investments (Brady, 1989), which tend to increase as a
function of project scale. Analysis of the spectral behavior of soils
using reflectance spectroscopy (Ben-Dor et al., 1998) is an alternative
approach to these traditional methods. It involves measuring
electromagnetic radiation (REM) reflected from targets at different
wavelengths, which results in particular spectral signatures (Clark,
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1999). The signatures are quantified according to the ratio between
reflected energy (radiance) and incident energy (irradiance) on a
defined target, the result of which measures reflectance (Clark, 1999).

Reflectance spectroscopy provides information about targets
between visible (VIS) and shortwave infrared (SWIR) (0.3–2.5 μm)
wavelengths. Within this spectral range, some components such as
iron oxides and hydroxides, organic materials, carbonates (CO3),
sulfates (SO4), as well as typical cationic transitional vibrations
present in phyllosilicates (e.g. ―OH, Al―OH, Mg―OH, and Fe―OH
bearing clay, mica and serpentine) can be identified (Ben-Dor et al.,
1997; Chang et al., 2001; Grove et al., 1995; Stoner & Baumgardner,
1981; Thompson et al., 1999).

The use of reflectance spectroscopy in the study of environmental
systems is based on the spectral signatures of targets, principally
those that can be reproduced considering the spectral resolution of
current airborne and spaceborne multispectral and hyperspectral
sensors. Reflectance spectra measured from samples can be used as
end-members in Spectral Mixture Analysis (SMA) algorithms (Asner
& Lobell, 2000; Chabrillat et al., 2002) or in formulating simpler
techniques for highlighting specific spectral features, such as band
indices and band ratios (Arsenault & Bonn, 2005). Both SMA and band
ratios have generated good results, allowing for ample mapping of
various soil types in different areas, especially in arid and semiarid
regions (Morra et al., 1991; Shepherd & Walsh, 2002). In the case of
intertropical regions, dense vegetation cover, persistent cloud cover
and poor exposure of regolith, rocks and soil make it difficult to use
reflectance spectroscopy obtained from orbital sensors (Coleman
et al., 1993). Besides those compiled for soils in Brazil, spectral data
(spectral libraries) available for specific environmental conditions are
scarce. However, we obtained important results from soil studies
using local spectral signatures, often applied to broadband multi-
spectral sensors such as Landsat TM/ETM+ (e.g. Madeira Netto et al.,
1991; Nanni & Demattê, 2006; Valeriano et al., 1995).

The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) is a potential alternative spaceborne sensor for
soil mapping, which possesses a broad potential yet to be explored for
that purpose. ASTER provides spectral coverage in the visible (VIS)
(0.52 to 0.69 μm — bands 1 and 2) and near infrared regions (NIR)
(0.78 to 0.86 μm — band 3), and denser coverage in the shortwave
infrared region (SWIR) (1.600 to 2.430 μm— bands 4 to 9) (Abrams &
Hook, 1995) as compared to Landsat 5 and 7 TM/ETM+. Such trends
in evolving instrument characteristics are an example of the general
tendency towards increasing spectral resolutions of spaceborne
remote sensing instruments, the maximum of which are currently
restricted to hyperspectral sensors (e.g. AVIRIS, SpecTIR, Hyperion,
Hymap, and CHRIS). Considering the low cost per scene ($60 USD for
non-educational and non-NASA affiliated users), high accessibility of
ASTER data, and its unique technical characteristics, this sensor can
greatly improve tropical soil mapping using information related to the
spectral properties of its components (Galvão et al., 2005; Vicente
et al., 2005).

Once the utility and limitations of ASTER data have been evaluated
for the mapping of tropical soils, they may enhance the speed of
production of soil maps both at the global scale and at the more useful
scale, at a spatial resolution of individual land use and landscape
features (e.g. b30 m). Hence, the purpose of this study is to analyze
the spectral behavior of tropical soils in the VIS and SWIR regions
using ASTER data supported by ground-truth based reflectance
spectroscopy. Soil samples collected in the field were measured in
the laboratory under artificial light in order to determine their
spectral reflectance properties. The soil spectral signatures were
convolved to ASTER's spectral resolution and compared to ASTER
image pixels (converted to reflectance) at their respective sample
collection sites. Each soil's spectral signature was used as end-
member for mapping soil mineral components using a spectral
mixture analysis (SMA) technique adapted for use with ASTER data.
We use SMA here to aid in the analysis of absorption features of the
most dominant mineral components of the soils and to quantify the
degree of correlation between the end-members verified in the field
and those detected in the imagery. Finally, we assess ASTER's efficacy
for effectively mapping these components remotely under the most
optimum land cover and atmospheric conditions in our study area.

2. Study area

The study area is located in Assis, in the western region of the state
of São Paulo, Brazil (Fig. 1). It covers 290 km2 (IBGE/CIM, 2004) of the
Paraná sedimentary basin in the Western São Paulo Plateau. It is part
of theWestern Central and Residual Plateaus of Marília and São Carlos
(basaltic cuestas) with altitudes that range between 300 and 700 m
(IPT, 1981). Three litho-structural units comprise this area: the
Adamantine Formation to the NE, the Marília Formation to the NW
(high-altitude areas) and the Serra Geral Formation, that occupies
sectors along the Paranapanema river in lower terrains (IAC, 1999).

The study area has a reasonable variety of landforms and lithologic
types as well as soils that belong to different soil orders. According to
previous surveys performed in the study area (IAC, 1999) (Fig. 2), we
divided soil types as follows: Oxisols (Ox) (LV78/LV1); Ultisols (PVA2/
PVA10/PVA5) (Ul); Lithic Orthents (LO) (RL4) and Alfisols (Al) (NV1).
Also, since the 19th century this site has gone through intense
anthropogenic modification consisting of different types of land use:
predominantly pastural intermingled with patches of natural vegeta-
tion. Its main characteristics are the small size and heterogeneous
distribution of use and types of landscape parcels. The Assis Ecologic
Station (AES) is a preserved area where remnants of tropical savanna
and natural vegetation predominate. The AES and surrounding
preserved areas served as baseline for collecting and analyzing
vegetation and soil spectral signatures in least disturbed portions of
this study (Fig. 2).

Due to its geographical location, the region's climate is typically
tropical with an average temperature of 22 °C, and an annual
precipitation around 1440 mm. It presents two well-defined seasons:
a warm, rainy period from October to March, with a monthly mean
pluviometric range between 135.5 and 236.5 mm, and a period of
drought and lower temperatures, with a pluviometric range between
99.5 and 34.0 mm.

3. Materials

The ASTER scene used in this investigation was obtained at the 1B
processing level from the USGS EROS Data Center (EDC), with
radiometric and geometric corrections previously applied. The
image was acquired on September 19, 2003, within the local drought
season, in order to minimize vegetation cover and soil moisture, and
to maximize the exposure of bare soils. Soil moisture tends to
specifically reduce the spectral contrast of soils (Ben-Dor et al., 1998),
a common situation for tropical terrains.

The collection and interpretation of the imagery's end-members
were guided by the following maps of the study area: (i) pedological
map at a 1:500,000 scale (IAC, 1999) (Fig. 2); (ii) geomorphologic
map at a 1:500,000 scale (IPT, 1981); (iii) geologic map at a 1:500,000
scale (IPT, 1981); (iv) vegetation cover map of the São Paulo state at a
1:50,000 scale (SMA — Secretaria do Meio Ambiente – (IF) Instituto
Florestal/Biota-FAPESP, 2002); and (v) cartographic base maps at a
1:100,000 scale (IBGE, 2004).

Forty-two (42) sites were preselected in the imagery, and visited
in the field. Twenty-five (25) samples were collected, including all
representative soil types contained within our study area (Fig. 2). The
disposition of the sites also helped to obtain a satisfactory variation of
mesoscale soil properties, considering the size of the sampled area
and its varying geomorphology. We collected each sample at a depth
of 0 to 20 cm. Brady (1989) showed that such depths show the highest



Fig. 1. Location map of the study area.
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correlation with data captured by remote sensors, generally clay,
silicates, iron and aluminum oxides/hydroxides.

4. Methods

4.1. Preprocessing of ASTER data

The original ASTER (Level 1B) scene data were initially corrected
for crosstalk effects using the automated Crosstalk Correction
Software (ERSDAC, 2001). This crosstalk effect is due to the dispersion
of incident light in band AST4, which is diffused to the focal plane of
other SWIR bands, causing the appearance of noise and related
anomalies at the interface of land and water (Iwasaki & Tonooka,
2005). The data were subsequently atmospherically-corrected using
the Moderate Resolution Atmospheric Radiance and Transmittance
Model (MODTRAN), and converted to reflectance. We considered
the following regional parameters and image acquisition conditions:
(i) mean elevation of the study region, (ii) platform altitude, (iii) data
acquisition date and time, (iv) aerosol estimate (visibility), (v) area
coordinates, (vi) water vapor estimate in the atmosphere, and
(vii) atmospheric model (tropical) (ACORN, 2002).

Collectively, these preprocessing procedures were of critical
importance for calibrating pixels within the ASTER imagery to spectral
signatures comparable to those obtained from field samples. Spatial
re-sampling of the SWIR bands was performed by artificially
increasing their resolution to 15 m, which made it possible to work
with all nine VNIR–SWIR bands simultaneously.

4.2. Interpretation of spectral signatures of minerals in soils

Hematite (F2O3), goethite (FeOOH), kaolinite (AL2(Si2O5)(OH)4),
montmorillonite (AL4Si8(OH)4H2O) and gibbsite (Al–OH3Si) are
common minerals in tropical soils due to their close association
with leaching and precipitation processes (Allen & Hajek, 1989).
Although montmorillonite in particular is more widespread in
semiarid regions, it is associated with poorly drained soils (EMBRAPA,
1999) in intertropical environments. Therefore, determining the
presence and quantity of theseminerals is fundamental for estimating



Fig. 2. Soil map and sites of soil sampling. A false color composite of ASTER bands 231
(RGB) is displayed in the background. Ox = Oxisols. Al = Alfisols. UI = Ultisols.

Fig. 3. Spectra of main mineral components of tropical soils considered in this study
(source: USGSLib). Reflectance values were rescaled to improve visualization.
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soil fertility and fragility, and other important physical and hydro-
logical properties such as storm-induced sealing/crusting, permeabil-
ity, runoff and erosion potential (Poesen & Nearing, 1993; Sumner &
Stewart, 1992).

Here, spectral analyses of the soil samples are used for extracting
such relevant mineralogical information. Reference spectra from the
United States Geological Survey (USGS) spectral library (Clark et al.,
1993) were used for comparative analysis and spectral classification
of the ASTER data. Iron oxides and hydroxides (hematite and
goethite) are highly mobile when exposed to physical and chemical
changes. These minerals show charge transfer and Fe3+ crystal field
bands between the VNIR wavelength ranges. Hematite displays
diagnostic absorption features at about 0.53, 0.63 and 0.88 μm,
whereas goethite's are at about 0.48, 0.67 and 0.94 μm. The 0.54 μm
and 0.48 μm charge transfer absorptions imply tonal variations of red
and orange for hematite and goethite respectively (Hunt et al., 1971)
(Fig. 3).

Kaolinite and montmorillonite reveal typical hydroxyl (OH−) and
water absorption features centered around 1.4, 1.9 and 2.205 μm. The
1.4 μm features are the first overtones of the OH− stretches. The
combination of Al–OH bend plus OH− stretch causes the 2.205 μm
absorptions. The 1.9 μm feature is most pronounced in expandable
clay minerals such as montmorillonite, and is due to the water
overtone (Hunt & Salisbury, 1971). Gibbsite, an aluminum hydroxide
mineral (Al–OH3), presents multiple features centered at 1.4 μm, but
yields a particularly diagnostic absorption feature at 2.265 μm (Hunt
et al., 1971) (Fig. 3).

Dark, carbon compounds derived from the decomposition of
organic matter (humines, fulvic acids, and humic acids) are additional
soil components that need to be considered during spectral analysis,
due to their particulate behavior in intimate mixtures and coatings
(Ben-Dor et al., 1997; Clark, 1999). These components influence the
entire VNIR–SWIR spectrum, with only a few percent of dark grains in
the soil significantly reducing the reflectance, much more than their
weight fraction would suggest in such intimate mixtures (Clark,
1999). An estimate of the influence of carbon compounds and that of
colloid interlayer water in the soil (i.e. a molecular mixture, Clark,
1999) is exceptionally important in tropical regions because of their
dependence and covariation with climatic factors (e.g. humidity and
chemical weathering). These can alter the spectra of the mineral
components, such as iron oxides and hydroxides, clay minerals, etc.
(Madeira Netto et al., 1991).

4.3. Reflectance spectroscopy: analysis of soil samples' end-members

We submitted the ASTER data to the Minimum Noise Fraction
transformation (MNF) (Boardman & Kruse, 1994; Green et al., 1988)
and Pixel Purity Index (PPI) (Boardman et al., 1995) procedures in
order to select end-members. These procedures are essential for
reducing spectral and spatial dimensionality of data respectively. The
MNF uses two opposite orthogonal linear transformations based on
Principal Components Analysis (PCA) to reduce an interband
correlation and isolate noise: (i) the first transformation estimated
the noise using a covariance matrix, and (ii) the second transforma-
tion is a typical PCA that estimates the data dimensionality using
eigenvalue bands. In the case of ASTER, the MNF reduction in data
dimensionality is needed not because of the quantity of bands, since it
is not a hyperspectral sensor, but as a refinement of possible sets of
end-members that can be separated and expressed in the set of MNF
images under reduction. Also, this procedure aims to create a dataset
with isotropic, unit variance noise, which is a requirement for the
successful application of the Mixture-Tuned Matched Filtering
(MTMF) algorithm. Most usually the pixel values in the multispec-
tral/hyperspectral images are a spectral mixture from several
materials, and an end-member dataset is established to determine
the pixel's “spectral purity”. The PPI procedure (convex geometry —

Boardman, 1993) reprojects randomly and repeatedly a pixel's array
into an n-dimensional scatterplot arrangement using a vector unit,
and the pixels in the extreme position in each projection are recorded.
Therefore pure pixels are also called end-members. The result is a new
dataset in which the pixels marked as extreme a greater number of
times are considered pure, and the counting decreases when the
mixed pixel count increases.

image of Fig.�2
image of Fig.�3
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We collected twenty-five (25) samples, including all representa-
tive soil types contained within our study area. Our choice of areas for
colleting soil samples was based on analog sites between field areas
(forty-two preselected areas — item 3) and the same pixels indicated
as soil end-members in the ASTER image. This approach decreases the
redundancy of the characteristics of field soil samples and provides an
isonomic dataset arrangement for the comparison of spectral
characteristics from ASTER and soil samples' spectral signature. The
spectral reflectance of soil samples was measured in the laboratory
using a FieldSpec Full-Resolution (0.350–0.250 μm) portable spec-
trometer (ASD, 1999). The samples underwent a natural drying
process in order to reduce the effects of humidity, which may cause
nonlinear oscillations of soil spectra (Lobell & Asner, 2002). Each
sample was measured twice using a 90° variation between the
illumination source and the spectrometer's optical input. A mean
value was obtained for each reading to balance the disposition of
surface textural effects in relation to the FieldSpec FR instantaneous
field of view (ASD, 1999). A normalization function was applied to all
spectra to remove the background (i.e. continuum — Clark, 1999;
Clark & Roush, 1984), thus enhancing spectral absorption features and
making themmore comparable to each other and to those from other
sources, such as ASTER image spectra (Fig. 4).

We identified several characteristics that are representative of the
soils found in the study area, forming five distinct groups represented
by spectra of key soil samples highlighted in Fig. 4. In these groups, a
more accentuated presence of iron-bearing minerals was detected in
Alfisols and Oxisols, with ample features around 0.520 and 0.890 μm
(Fig. 4) respectively. Both features were reciprocally proportional and
related to the presence of ferric iron (Fe3+) (Hunt et al., 1971).
Therefore, an accurate detection of these Fe3+-bearing minerals
should take into consideration these features, giving priority to the
wavelength region above 0.7 μm in the design of future sensors. The
reflectance scores observed in the Alfisols and Oxisols sampled
indicated predominance of hematite over goethite. Samples A4, A14
(Alfisols) and A5, A6, and A21 (Oxisols) show a reddish color and
signatures with intense absorption features in VNIR–SWIR, all typical
of hematite-rich soils. The VNIR features found at 0.88 μm are
associated with the weathering of the basaltic rocks that comprise
the bedrock in this region. A wealth of earlier studies also indicated
that these features are typical of hematite derived from the alteration
of basaltic rocks into tropical soils (e.g. Epiphanio et al., 1992; Stoner
et al., 1991). Another indicator of the elevated ferric-iron content in
the soils of the study area, particularly in the Alfisols, is the low
reflectance throughout all wavelengths (Fig. 4). This characteristic is
also observed and discussed by Stoner and Baumgardner (1981). The
proportion of iron decreases in all other Ultisol soil samples (A9 and
A24 — Fig. 4) and the spectral features related to its presence are
practically nonexistent in the spectra of Lithic Orthents soils (A13,
A17, and A28 — Fig. 4).

In most samples, the presence of clay minerals is highlighted by
absorption features between 2.16 and 2.20 μm due to the presence of
hydroxyl groups (OH−) (Hunt & Salisbury, 1971). Such clays are
formed by the decomposition of mafic minerals, vitric components
and feldspars, which are primary components of basaltic rocks. In
Lithic Orthents (A17, A13, and A28 — Fig. 4) samples, the distinct
absorption bands at 1.4 and 1.9 μmare associatedwith a single feature
at 2.205 μm and a mild concavity at around 0.61 μm, thus revealing
the presence of phyllosilicates with 2:1 layered-structures (i.e.
minerals that have an octahedral sheet sandwiched between two
tetrahedral sheets), in this case a characteristic of montmorillonite
(Hunt & Salisbury, 1971). Even with the predominance of montmo-
rillonite, the A17 sample reveals a smooth spectral feature at
2.165 μm, probably due to the presence of kaolinite. The presence of
montmorillonite in sandy soil is uncommon, but it has been identified
in association with the Botucatu arenite (Demattê & Holowaychuck,
1977). Montmorillonite and kaolinite are distinguished by the
presence of hydroxyl and water molecules in their structure, which
are directly associated with 1.4-μm and 1.9-μm absorption bands
(Kruse et al., 1991). The 1.9-μm water-absorption band is typically
stronger in montmorillonite due to its water-expandability charac-
teristics. Hydroxyl and its link with metals such as aluminum create
different symmetries of the absorption features of these clays, both
centered at 2.200 μm. As a result, kaolinite yields a doublet-shaped
spectral absorption feature, while montmorillonite yields a broader
singlet-shaped spectral absorption feature (Hunt & Salisbury, 1971).

The presence of gibbsite was only found in the Alfisol A4 sample
(Fig. 4), and is associated with intense soil exposure resulting from
agricultural land use. This mineral was diagnosed on the basis of its
typical 2.264-μm feature, and displays a characteristic inflection
previously verified by Madeira Netto et al. (1991) in well-developed
tropical soils. Lithic Orthents (A13, A17, and A28— Fig. 4) soils display
a sandy texture as well as low iron contents. Consequently, these
samples display high reflectance and sharper absorption features in
SWIR. Collectively, these spectral variations found within our soil
reflectance spectra permit the reclassification of soil subgroups.

4.4. Validation of soil reflectance spectroscopy using X-ray
Diffractometry (XRD)

The five representative key samples selected in the previous step
summarize the main characteristics of the soils in the study area –

(i) samples with either highest or lowest iron content; (ii) samples
containing kaolinite; (iii) samples containing montmorillonite;
(iv) samples containing gibbsite; and (v) samples with coarse texture
(i.e. sandy soil) (Fig. 5) –, and were to undergo X-ray Diffractometric
(XRD) analysis on total soil fractions using a Siemens Kristalloflex
Diffraktometer (Fig. 5). While differences in particle size and degree of
crystallinity strongly affect the intensity of the diffraction peaks,
quantitative measures using XRD are difficult to achieve. Besides, the
spectral measurements are not always proportional to the intensity of
XRD peaks. Spectral reflectance measurements can be affected by
abundant coating on the surface of the sample, thus resulting in
greater depths of diagnostic features. The same sample may not yield
proportionally intense X-ray peaks, because it may not be as abundant
volumetrically as it is in the surface area (Buckingham & Sommer,
1983). However, our goal was not to establish quantitative measures
in this study, but to use the XRD results to assess the samples'
mineralogy, and for further cross comparison with the mineralogy
determined by interpretative reflectance spectroscopy in order to
validate its presence in the study area, and its relative abundance.

The XRD consistently detected the presence of quartz in all
samples due to its ubiquitous presence in the larger soil fractions. XRD
analysis of sample A13 (LO) (Fig. 5a) – characterized by high
reflectance and complete absence of iron oxides – showed a
predominance of quartz, confirmed by the elevated intensity of its
characteristic peaks (d=3.351) (Fig. 5b). XRD indicated a higher
proportion of kaolinite in sample A6 (Ox) (d=7.185) (Fig. 5e) than in
other samples. Spectra yielded from this sample showed a doublet
formed by relatively subtle absorption features at 2.165 and 2.205 μm
(Fig. 5a), which denotes the presence of kaolinite. Magnetite, detected
by XRD in the same sample, was responsible for the overall low
reflectance and inhibition of a more conspicuous appearance of these
kaolinite absorption features in the SWIR range (e.g. Clark, 1999)
(Fig. 5a).

The variations in the levels of iron oxide were evident in samples
A14 (A1) and A21 (Ox). Spectral inflections at around 0.54 and
0.88 μm (Fig. 5a) were observed in sample A14, and these are related
to the greater quantity of hematite indicated by XRD (d=2.7078 and
d=4.5193) (Fig. 5f). Sample A21 is hematite-free and shows only
traces of goethite (Fig. 5d).

Montmorillonite appears to occur interstratified with illite in
samples with amore sandy constitution— samples A13 (LO) and A21



Fig. 4. Soil sample spectra measured in the laboratory using an ASD FieldSpec (Full Resolution— FR) spectrometer— the apparent continuumwas removed from each raw spectrum.
These spectra show key patterns that are related to specific mineralogy and seem to be consistent throughout the tropical soils investigated here. Ox = Oxisols. Al = Alfisols. UI =
Ultisols. LO = Lithic Orthents.
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(Ox), Fig. 5b and d. Its peak position (d=9.472) in the diffractogram
signifies a large basal amplitude of molecules of the constituent
minerals, characteristic of clayey 2:1 minerals, whereas the inter-
planar distance between peaks indicates an unaltered soil, with
minerals that still conserve their crystallographic structure (i.e.
highly ordered) (Sawhney, 1989). The spectral signatures yielded for
samples A13 and A21 suggest a variation in the presence of
montmorillonite, and in its relative abundance, also expectedly
verified by XRD. Both samples display absorption bands centered at
1.9 μmand 2.205 μm that are akin to the presence of montmorillonite
(Fig. 5a). However, sample A13 is featureless at 2.165 μm,
which indicates that it is exclusively composed of montmorillonite;

image of Fig.�4


Fig. 5. Reflectance spectra measured from key soil samples (a) and their corresponding X-ray Diffractograms (XRD) (b–f). Sample mineralogy was interpreted on the basis of
diagnostic spectral absorption features (a) and diffractogram peaks (b–f). XRD ‘d’ values (distance between successive basal planes measured in angstroms (Å)) clearly indicated the
presence of a range of minerals, most of which are equivalently recognized by reflectance spectroscopy. Ox = Oxisols. Al = Alfisols. UI = Ultisols. LO = Lithic Orthents.
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whereas sample A21 displays features at 1.9 μm, 2.205 μm and
2.165 μm simultaneously, which indicates a mixture of kaolinite and
montmorillonite.
Gibbsite was detected in sample A4 (A1) because of its
characteristic XRD peaks (d=4.866 and d=4.386) (Fig. 5c), and its
archetypal absorption feature at 2.265 μm (Fig. 5a).

image of Fig.�5
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5. Results and discussion

5.1. Resampling soil reference spectra for ASTER spectral analysis and
unconstrained unmixing

Considering the higher spectral resolution of the ASD lab
instrument, XRD-analyzed soil samples clearly display spectral
signatures that allow the identification of key minerals and their
relative proportions. In order to verify how much of this is
reproducible at the spectral resolution of multispectral sensors, soil
spectra were convolved to ASTER's VNIR–SWIR bandpass functions
(bands 1 to 9).

Soils containing higher (A14) and lower levels of iron (A21)
display diagnostic modifications of reflectance values and feature
depths around 0.880 μm. The variation in iron content becomes
evident as the angle between features of adjacent spectra changes,
thus indicating ever-increasing absorption (i.e. reduction in reflec-
tance) centered at 0.88 μm. This behavior is well mapped by ASTER
bands AST1 (0.52–060 μm), AST2 (063–0.69 μm) and AST3 (0.78–
0.86 μm) in particular (Fig. 6). ASTER spectral coverage in the VNIR
range is similar to that provided by the ETM+ and TM sensors
onboard Landsat platforms (ETM1, 0.45–0.52 μm; ETM2, 0.52–
0.60 μm; ETM3, 0.63–0.69 μm; and ETM4, 0.77–0.90 μm), except for
the lack of a band covering the visible blue wavelengths. As ETM3/
ETM1 band ratios proved successful in detecting ferric iron at the
surface (Fraser, 1991), the same should be feasible using an ASTER
band ratio AST2/AST1.

Spectra of soils containing montmorillonite (A13) and kaolinite
(A6) show distinct absorption features at 2.205 μm (exclusively) and
at 2.165 and 2.205 μm (simultaneously) respectively (Fig. 7a). ASTER
spectral characteristics in the SWIR region potentially allow for these
two minerals to be mapped separately. Considering USGS spectra,
montmorillonite shows a sharp, single absorption centered at band
AST5 (2.145–2.185 μm), whereas kaolinite's doublet forms either a
shallow or a slightly inclined line between bands AST5 and AST6
(2.185–2.225 μm) (Fig. 7a). Similar features are observed in soil
samples of the study area (Fig. 7b), revealing an analogous behavior
among reference minerals and soils, thus allowing for their potential
discrimination and mapping using ASTER imagery.

Particularly in the case of the diagnostic features of kaolinite, a
doublet feature is not always perfectly defined due to the level of
disorder in the crystalline structure of this mineral (Crowley & Vergo,
1988; Ducart et al., 2006; Senna et al., 2008; Velde, 1992). In this case,
Fig. 6. Soil reference spectra measured in the laboratory and resampled to ASTER's
VNIR–SWIR (nine bands) spectral resolution. Variations in iron levels are depicted by
modifications of reflectance values and feature depths around 0.520 μm and 0.880 μm.
its behavior may be associated with weathering and processes of soil
formation, which can be indicated by the basal distance between
intense peaks of XRD measurements. Therefore, a variation in the
depth of related spectral absorption bands is also an important
indicator of mineral alterations in the soil.

A typical absorption feature of gibbsite, centered at 2.265 μm, was
identified in sample A4 (drawn lines — Fig. 4). This feature is caused
by the presence of aluminum molecules and their linkage with
hydroxyls (Al–OH), giving origin to a double feature that is
reproduced at bands AST6 (2.185–2.225 μm) and AST7 (2.235–
2.285 μm) (continuous line — Fig. 8a). The sample exhibits low
reflectance due to an abundant quantity of ferric iron (e.g. Clark,
1999). However, the features are evident in continuum-removed
spectra (Fig. 8b). Thus, variation in depth and displacement of
features in bands AST6 and AST7 may provide important information
about the presence and quantity of gibbsite in soils.

5.2. Soil reflectance spectra vs. ASTER image spectra

The capacity of an orbital sensor for mapping spectral variations
defined in the laboratory on the basis of field samples is restricted by
its spectral and spatial resolution. In the case of ASTER, the spatial
resolution extends up to 15 m — one of the best in the multispectral
sensor category, which is an advantage for deciphering spectral
mixtures (e.g. soils, rocks, vegetation, and moisture) at this scale.
Other important issues for controlling the utility of ASTER images for
resolving the spectral characteristics of tropical soils include atmo-
spheric effects (e.g. water vapor, CO2, and aerosols), sensor effects
(e.g. crosstalk), and topographic shadowing effects.

The correlation level between the soil spectra and the ASTER pixel
spectra was established at corresponding pixel training sites using
orthorectified, atmospherically-corrected ASTER imagery (Fig. 9a).
Each signature, considering the 9 ASTER bands, was individually
compared using regression analysis (Fig. 9). The results demonstrated
that regular R2 values oscillated between 0.6493 and 0.7886, the only
exception being the sample containing gibbsite (A4–A1), which
showed low R2 (~0.1361) (Fig. 9e). This discrepancy may be
attributed either (i) to the presence of small quantities of gibbsite in
the area, which could be observed through subtle absorption features
centered at AST7 band (Fig. 9f), or (ii) to some alteration of the cover
between the sample collection and the ASTER imagery acquisition. In
the latter, pixels may be formed by a complex spectral mixture of
gibbsite-bearing soils and dry or green vegetation, which produces
lignin-cellulose features near 2.26 μm (Serbin et al., 2009) (Fig. 9f).

The main kaolinite features and its typical doublet between 2.160
and 2.205 μm, covered by bands AST5 and AST6, showed analogous
behavior both in the ASTER-bandwidth resampled field spectra and in
the spectra derived from atmospherically-corrected (reflectance)
ASTER image pixels. The correlation analysis of the data resulted in
high R2 values for samples A6 (0.7886 — Fig. 9d) and A13 (0.6849 —

Fig. 9d and e), despite the prominent mixture of materials in the study
area (e.g. remaining crops and grasses). For samples 14 and 21 (Fig. 9b
and c), the variation between the depth and inclination of the spectral
reflectance between bands AST2 and AST3 due to the abundant iron
content (typical inflections between 0.800 μm and 0.900 μm) were
well reproduced in the spectra extracted from ASTER imagery pixels.
These samples showed the highest R2 values (0.7245 and 0.6493)
(Fig. 9b and c).

5.3. ASTER soil mapping results

The Mixture-Tuned Matched Filtering algorithm was used to map
the soil spectral characteristics identified in previous sections. This
procedure, originally developed for the processing of hyperspectral
data, has proven to be effective for ASTER images, especially for
mapping targets with high spectral mixture percentage and reduced
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Fig. 7. (a) Reflectance spectra of kaolinite and montmorillonite extracted from the USGS spectral library (dotted line — Clark et al., 1993) both at full resolution and resampled to
ASTER's VNIR–SWIR (nine bands) spectral resolution (solid line). (b) Reflectance spectra of soil samples (A13 and A6) collected in the study area show similar spectra and absorption
features that are diagnostic of these twominerals. The shape of the spectral feature and its gradient between ASTER bands 5 and 6 are critical for the discrimination and identification
of kaolinite and montmorillonite at such resolution.

Fig. 8. (a) Raw reflectance spectra and (b) continuum-removed spectra of soil sample A4 (A1) both at full resolution (labmeasurement) and resampled to ASTER's 9-band resolution.
The absorption feature of gibbsite at 2.265 μm (b) is highly distinct, despite the prominent content of ferric iron in the sample.
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dimensions (e.g. Hubbard & Crowley, 2005; Souza Filho et al., 2003),
characteristics commonly observed in highly anthropized soils and
vegetation areas, as well as in our study area. The Matched Filtering
(MF) component establishes a n-dimensional measure, such as a
vector unit, into average pixel values between 0 and 1, thus providing
a MF-score grayscale image in which the background data is centered
around 0 and the end-member data occur around 1 (perfect match) as
a result. In addition the algorithm produces an Infeasibility grayscale
image. The Mixture-Tuned component establishes a standard devia-
tion measure (tridimensional cone) into a n-dimensional scatter plot
between MF score and Infeasibility images, eliminating the false
positives and providing the end-members with the relative suitability
degree (MTMF — ITT, 2009). This algorithm circumvents the mixed
pixel modeling's unit-sum and non-negativity mathematical con-
straints, which occurs in the standard fully constrained spectral
unmixing model (Boardman, 1998; Heinz & Chang, 2001). The MTMF
Fig. 9. (a) Comparison of reference spectra of soil samples collected in the field and meas
imagery pixels at corresponding localities. (b, c, d, e, and f) Linear regression analysis was carr
the equivalence between the spectral signatures.
is effectively an unconstrained linear spectral unmixing which is able
to estimate the smallest participation of a material in the pixel
(subpixel scale), even if the target material is relatively less abundant
than other components (Harsanyi & Chang, 1994; Williams & Hunt,
2002). This assumption underlies our study, since we assume that
the spectral mineralogical characteristics of soils are a complex and
subtle mixture of small targets. Besides, MTMF does not require
knowledge of all scene fractions, thus providing efficient background-
minimization effects, and maximizing the response of each single
known end-member. In our study, soil end-members are highlighted
while active photosynthetic vegetation (APV) composes the back-
ground scene (Fig. 10). This approach is highly appropriate to tropical
terrains due to the complex canopy-cover variability and the massive
domain of green vegetation in these areas.

We used soil reference spectra based on pixels extracted from the
ASTER imagery as end-members for the MTMF classification. ASTER
ured in the laboratory with spectra extracted from atmospherically-corrected ASTER
ied out to every paired spectrum to assess their correlation. This provided an estimate of
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Fig. 10. (top) MTMF classification results for the entire study area draped over an ASTER band 3 imagery. End-members employed in the classification comprise those measured in
the field (e.g. kaolinite: ME A6=measurement at locality A6). Specific mapped sites are shown in detail at figures (a), (b), (c), (d), (e), (f), (g) and (h) using a RGB color composition
of ASTER bands 231 as background.
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bands AST1, AST2, AST3 (VNIR), and AST4 (SWIR) were used for
mapping iron oxides and hydroxides,whereas ASTER bands AST4, AST5,
AST6, AST7, and AST8 (SWIR) were used separately for mapping clay
minerals and/or gibbsite. Two additional image end-members (IEM)
were also considered, so that active nonphotosynthetic vegetation
(ANPV-IEM 1) could be separated from sandy soils (IEM-2). ANPV
is often confusedwith sandy soil inmultispectral orbital imagery due
to the high reflectance values showed by both quartz and dry foliage.
This fact makes it harder to assess degraded soils in environmental
systems, because this type of soil is associated with an intensely
erosive processes and poor fertility. The use of ASTER Thermal
Infrared bands (TIR — AST10/8.125 μm–AST14/10.95 μm) is highly
efficient for this approach, due to its ability to reproduce the main
quartz spectral diagnostic feature (reststrahlen bands— ~8.2–9.3 μm)
(Vicente & Souza Filho, 2010). However, ASTER/TIR's 90-m spatial
resolution restricts our goals in this work. It is therefore essential to
consider ANPV biochemical components in the SWIR region for the
separation of these targets in order to obtain a more effective
mapping of soil mineral components using ASTER data (Almeida
et al., 2006; Serbin et al., 2009).

image of Fig.�10
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Overall, seven different end-members were considered in the
MTMF classification: (i) iron-rich soils, (ii) iron-poor soils, (iii) sandy
soils, (iv) clayey soils dominated by kaolinite, (v) clayey soils
dominated by montmorillonite, (vi) clayey soils containing gibbsite,
and (vii) ANPV.

The MTMF classification helped separate active photosynthetic
vegetation (APV), sandy soil and active nonphotosynthetic vegetation
(ANPV) based on the different spectral characteristics of each end-
member at the subpixel scale. This observation is confirmed in great
detail in Fig. 10, where crop remnants are displayed as lilac-colored
pixels (Fig. 10a), whereas sandy soils were classified and displayed as
yellow-colored pixels (Fig. 10b). Reflectance variations in bands AST6
(2.185–2.225 μm) and AST7 (2.235–2.285 μm) confirm the presence
of NPAV. This was mainly due to the detection of “dry material”
derived from generic biochemical compounds (amides, lignin and
cellulose) as well as the loss of water from broad-leafed structures
(~2.150–2.350 μm) (Serbin et al., 2009; Zagolski et al., 1996).

Soils with high contents of ferric iron display attenuated
reflectance throughout the VNIR–SWIR range, and are usually
associated with low-albedo areas in the imagery and marked by
masked spectral features (Clark, 1999; Stoner & Baumgardner, 1981).
This combination sometimes results in ambiguous classifications.
Targets with low albedo related to topographic shadows, water
bodies, moisture or organic soils can be erroneously classified as iron-
rich surfaces (Robinove et al., 1981). A similar situation is shown in
Fig. 10c and d, with areas with hydromorphic soils close to water
bodies (Fig. 10d) and shadows caused by a rough relief (Fig. 10c).
These areas all appear as dark shades of colors in a false-color
composite image of ASTER bands 231 (RGB), due to low albedo.
Interestingly, these sites and neighboring areas were not mapped by
the MTMF algorithm as being highly abundant in iron (red-colored
pixels — Fig. 10).

Kaolinite is commonly associated with intense weathering and
leaching processes as well as pedogenetic formation in tropical soils
(Allen & Hajek, 1989; EMBRAPA, 1999), which explains its dominant
presence inwell-developed soils in the southern sector of our study area
(cyan-colored pixels — Fig. 10i). The occurrence of montmorillonite is
associatedwith younger soils that are less profound in extent, mainly in
the N–NW sector (blue pixels — Fig. 10i). Although these are two
common clay minerals that are subject to typical masking effects of
amorphous iron in soils that have undergone intense intemperism
(Formaggio et al., 1996), the presence of both can be identified in areas
of rough relief, such as cuestas, in the north of the image (Fig. 10f).

The presence of gibbsite appears to be rare and occurs predom-
inantly in Oxisols in the study area (purple pixels in Fig. 10h).
Identification of gibbsite proved possible, even though iron-rich soils
and dry vegetation materials (Serbin et al., 2009) tend to mask its
typical absorption features. Gibbsite mapped at these sites seems to
be associated with exposure of ancient surfaces. Therefore, the
presence of this mineral may be an important indicator of soil
weathering age.

In general, the spectral mapping of the study area also indirectly
revealed bedrock lithology, considering the intrinsic relation between
soils and their geologic substrates. Younger soils, rich in kaolinite and
montmorillonite, were found at higher altitudes in the north of the
area, which comprises Adamantine and Marília Formation rocks
(mainly derived from sandy sediments). To the south, at lower
altitudes (Paranapanema river basin), soils were derived from the
weathering of basaltic rocks of the Serra Geral Formation, which is
characterized by a high concentration of iron oxides and hydroxides,
as well as gibbsite.

6. Conclusion

Reflectance spectroscopy made it possible to assess the capacity of
ASTER data for reproducing diagnostic spectral features of tropical
soils, taking into consideration their mineralogy components and
granulometry. A comparative analysis of the six reference cover types
observed in the study area (i.e. iron-rich soils, iron-poor soils, sandy
soils, kaolinite-rich soils, montmorillonite-rich soils, and ANPV)
demonstrated high correlation between spectra derived from field
samples and those derived from ASTER image pixels converted to
reflectance, with R2 values ranging between 0.6493 and 0.7886.

Considering the VNIR region (0.52 to 0.86 μm), it was possible to
establish the relative abundance of iron oxides/hydroxides in the soil
based on typical spectral inflections between 0.80 and 0.90 μm, as
well as overall signatures in ASTER AST2 and AST3 bands. In the SWIR
region (1.6 to 2.430 μm), exploration of the spectral diagnostic
features of kaolinite, montmorillonite and gibbsite (2.160–
2.265 μm) enabled the remote mapping based on spectral features
resolved by ASTER bands AST5, AST6 and AST7. The position of the
SWIR bands also helped separate ANPV, APV and bare soils that
presented diagnostic spectral variations in AST6, AST7 and AST8
bands. These signatures were successfully mapped based on the
MTMF classification algorithm, despite some topographic variations
and spectral mixture of targets caused by intense local land use.

The results achieved here for the tropical terrains of the Assis
region (SE Brazil) could easily be extended to other sites with similar
characteristics, considering equivalent data and methods.
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