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Abstract— Research on robotic manipulation has mainly
focused on manipulating rigid objects so far. However, many
important application domains require manipulating deformable
objects, especially deformable linear objects (DLOs), such as
ropes, cables, and sutures. Such objects are far more challenging
to handle, as they can exhibit a much greater diversity of
behaviors. This paper describes a new motion planner for
manipulating DLOs and tying knots (self-knots and knots
around simple static objects) using cooperating robot arms. The
planner constructs a topologically-biased probabilistic roadmap
in the DLO’s configuration space. Unlike in traditional motion
planning problems, the goal is a topological state of the world,
rather than a geometric one. The implemented planner was
tested in simulation to achieve various knots like bowline,
neck-tie, bow (shoe-lace), and stun-sail. In real-life, the planner
was used to tie bowline knots with various household ropes on
a hardware platform with two PUMA 560 robots.

Index Terms—Manipulation planning, deformable objects, knot
tying, probabilistic roadmaps

I. INTRODUCTION

Robotic manipulation of rigid objects is a rather well-
studied problem. Here, we focus on manipulating deformable
linear objects (DLOs), such as ropes, cables, and sutures.
Progress in robotic manipulation of DLOs can benefit many
application domains, like manufacturing (loading cable har-
nesses and robot dresses), medical surgery (especially sutur-
ing), and agriculture, where DLOs are ubiquitous. It can also
benefit service-based humanoid robots, since tying knots is a
common activity in daily life. However, DLOs add a number
of difficulties to the manipulation task. They exhibit a much
greater diversity of behaviors than rigid objects, by taking
many different shapes when submitted to external forces. In
particular, self-collisions are possible and must be considered.
Furthermore, the manipulation of DLOs almost inevitably
requires two, or more, arms performing well-coordinated mo-
tions and re-grasp operations. Finally, the topology of the goal
state of a DLO is usually far more important than its exact
shape.

In this paper we describe a new motion planner for ma-
nipulating DLOs with two cooperating robot arms. Figure 1
shows two typical problems. In Figure 1(a), a segment of rope
is initially unwound. Figures 1(b) 
 (c) depict two types of
goal states in which the rope forms a self-knot (bowline) and
winds around some static objects, respectively. Our planner
does not depend on any particular physical model of the DLO.
Instead, it takes a model as input, in the form of a state-

Fig. 1. Initial (a) and goal (b)-(c) states in a manipulation problem

transition function. Using this function and the model of the
robot arms, the planner constructs a probabilistic roadmap in
the configuration space of the DLO. The sampling of this
roadmap is biased toward achieving the topology of the goal
state of the DLO. During roadmap construction, the planner
tests that the grasp points on the rope are accessible by the
arms without collision. The planner assumes that simple static
sliding supports (independent of the robot arms), which we
call needles (by analogy to the needles used in knitting)
are available and can be used when needed, to maintain the
integrity of certain portions of the DLO during manipulation.
A novel method is used to account for the interaction of
the DLO with simple rigid objects. Curve representations of
the objects, obtained from their skeletonization, are “chained”
with the DLO to produce a ����
������������ semi-deformable linear
object (sDLO). Thereafter, the problem reduces to that of
tying self-knots with the composite sDLO. We implemented
the planner and tested it in simulation and real-life. We
demonstrated its effectiveness by tying commonly used knots
like bowline, neck-tie, bow (shoe-lace), and stun-sail.

II. RELATION TO PREVIOUS WORK

A. Manipulation Planning

Robot manipulation planning with rigid objects was first
addressed in [22]. The randomized algorithm proposed in [10]
generates motion paths for multiple cooperating manipulators
to manipulate a movable rigid object. The algorithm assumes
that a set of discrete grasps is given as input. The algorithm
proposed in [19] works with continuous sets of grasps of rigid
objects but plans for a single manipulator. The re-grasp is
done by releasing the object. In the case of a DLO, releasing
the grasp makes the DLO very unstable due to its deforming
nature. An algorithm for planning paths for elastic objects,
especially for flexible plates and cables, is presented in [8].



Fig. 2. Representation of a DLO

This algoritm plans motions only for the object, not for
the manipulator. The problem of path planning for DLOs in
presence of obstacles is addressed as a variational problem
in [20]. Their formulation does not consider the manipulator
either. All these works focus on geometric planning while
we focus on topological planning, because while manipulating
DLOs, especially to tie knots, it is more important to achieve
an acceptable topology than a specific geometry.

B. Application of Knot Theory in Robotics

Knot theory provides means to capture and analyse the
topological states and state transitions of a DLO [1]. Its
applications in robotics include work presented in [12]. Like
us, they present a data structure for describing the state of a
DLO as a sequence of signed crossings. State transitions are
caused by Reidemeister moves and a crossing operation that
moves the end of the DLO over another part to make a new
crossing. Similar ideas are being used in [21] to build a vision
guided robot system for one-handed manipulation of a DLO
with the aid of the floor. However, collision constraints and
the physical behavior of the DLO are not considered during
the planning phase. In [7], motion planning techniques from
robotics are used to untangle mathematical knots.

C. Vision-Based DLO Manipulation

The difficulty of accurately modeling deformable objects
has motivated vision-based approaches to DLO manipulation.
Among other examples, in [11], methods for DLO modeling,
recognition, and parameter identification are presented, which
have been embedded in a system capable of tying a rope
around a cylinder with two manipulators. In [15], a sensing-
based method is proposed for picking up hanging DLOs. In
our work, we do not rely on the availablity of any sensing
system to guide the manipulation in real-time. Instead, we
focus on precomputing manipulation plans which are robust
to uncertainties in the physical model of the DLO.

III. MODELING A DEFORMABLE LINEAR OBJECT

A. Geometric Model

We describe the geometry of a DLO by a curved cylinder of
length � and circular cross-section of constant non-zero radius
(see Figure 2). The ������� of this cylinder is a smooth curve �
parameterized by the Euclidean length � along the DLO, i.e.:

� �!�#"%$ &('��*),+-��./��01"3254�'
where ��.6&�0 is the ������7 of the DLO and ��.6�10 its 8����:9 . Whenever
the physical model of the DLO includes torsion or twist,
we also attach a Cartesian coordinate frame ;<.���0 with each
point ��./�=0 as shown in Figure 2. We call >@?A.6��'�;B0 a����CED,�/F�G,HI�!�J�J��C of the DLO.

(a) (b)
Fig. 3. (a): The crossings in the “figure-8” knot. (b): The sign convention
for the crossings

B. Physical Model

Designated points located at ��KI'MLNLOLN'P��Q on the DLO areF:H��R��� points. These are the only points whose positions ��.��IS�0
and orientations ;<./�=S�0T'��U?WV!'MLNLOLN'PX , can be directly controlled
by the robotic manipulation system.

The physical model of a DLO is given in the form of a���������Y�JHI��CE���/�J�J��C function D that maps both a configuration>�Z\[O] of the DLO and a X -vector G of small displacements of
the grasp points (the control input) to a new configuration>M^!_J` . We assume that both >=Z\[O] and >�^a_J` are stable configu-
rations, although the DLO may exhibit dynamic behavior (e.g.,
snapping) during the transition from >�Z\[O] to >�^a_J` . We do not
consider elapsed time between >�Z\[O] and >�^a_J` , although it could
be easily added to the model.

We assume that the model in D handles collisions with
obstacles, as well as self-collisions, so that the DLO does
not “jump” over itself or obstacles. In addition, if G would
cause violations of physical constraints associated with the
DLO, e.g., over-stretching, then the function D indicates that
the execution of G is impossible. As we do not allow the robot
arms to touch the DLO at points other than the grasp points,D reports failure if it detects a collision between the DLO and
an arm.

Several physical models of DLOs proposed in the literature
(e.g., [2], [5], [13], [14], [23]) are relevant to the construction
of D .

C. Topological Model

We characterize the topology of the DLO at some configu-
ration >b?c.6��'�;B0 by means of its crossing configuration [1].
A crossing configuration is defined with respect to a reference
plane d . Let �Me be the projection of � into d . The crossing
configuration of � with respect to d is defined only when no
more than two points in � project to the same point in d .
Morever, for any two points � and f in � that projects to the
same point � e ?Wf e in d , � e must admit two distinct tangents
at � e ?gf e , which are the respective projections of the tangents
to � at � and f . Then a �THI���=����ChFji in d is any point on � e
that is the projection of two distinct points of � .

Let ��.��IK�0 and �a.��=k�0 , with �IKjlc�=k , be the two points on� that projects to the crossing i in d . Let mIK and mMk be the
projections of the tangent to � at ��./��K�0 and ��./�=k=0 , respectively.
The status of i is said to be ��n:��H if �a.�� K 0 lies above ��./� k 0 with
respect to d , otherwise it is G�Co9��=H . Moreover, i is assigned a
sign. This sign is + if (1) i is over and the counter-clockwise
angle between m K and m k is less that p , or (2) i is under and
the clockwise angle between m K and m k is less than p . The
sign of i is - in all other cases. The sign convention is also
depicted in Figure 3(b).



Fig. 4. A knot can be tied crossing-by-crossing in the order implied by
its forming sequence. The above figure illustrates this fact for the “figure-8”
knot, whose crossing configuration is q ���Tr�s��Jr\���=r/t���r��Nu=r�v���r\�Nw�r�xT�/y and the
associated forming sequence is

�6���=r/t��Jr\�6�Tr�s���r��Ow�r�xT��r\��u=r/v����
.

Suppose that � e has C crossings iYKI'MLNLOLN'\iz^ . Let us “walk”
along � e from �{?|& to �{?|� and assign the integral
labels V!'MLNLOLN'P}�C in increasing order to the crossings as they are
encountered. Since each crossing ib~ is encountered exactly
twice, it receives two distinct labels i K~ and i k~ . Figure 3(a)
illustrates the labeling of crossings in the “figure-8” knot. The�THI���=����ChFz����CED,�/F�G,HI�!�J�J��C of � with respect to d is defined by
the set of triplets: �

.�i K~ '�i k~ 'P��~=0T��~���KT��������� ^,L
where �\~ denotes the sign of the crossing i�~ . Morever, the
over/under status associated with i�~ can be encoded by
assigning opposite signs to i K~ and i k~ . In the rest of the
paper we will ignore the signs, when listing the crossings, for
the sake of compactness.

Note that many configurations > of a DLO can achieve the
same crossing configuration with respect to d . We denote by� .��,0 the set of all configurations > of the DLO that achieve
a crossing configuration � .

IV. DLO MANIPULATION PLANNING PROBLEM

A DLO manipulation planning problem is defined by the
following inputs: the radius and length � of the DLO, the
coordinates ��KI'�LOLNLO'���Q of the grasp points, the state transition
function D , an initial configuration >=SN^�SO� of the DLO, a
reference projection plane d , a goal crossing configuration����Z��T[ of the DLO, a model of the robot arms forming the
manipulation system, and a set of fixed obstacles.

The solution to this problem is a sequence of collision-free
paths of the robots that achieve the goal crossing configuration� ��Z��T[ with respect to d , that is, a configuration >B" � .�� ��ZP��[ 0 .
Any two consecutive paths are separated by (re-)grasp oper-
ations. During the manipulation, the robots are not allowed
to touch the DLO, except at the grasp points. The DLO is
allowed to touch obstacles. The transition function D models
the interaction between the DLO and the obstacles, and rejects
attempted moves that cause the DLO to touch an arm.

In the rest of this paper, we make the following assumptions:
(1) The DLO admits only two point grasp, located at ��?& (tail) and ��?�� (head). The tail of the DLO is fixed at
some given position and orientation. (2) The robotic system
consists of two arms, which can both grasp the DLO’s head.
At any point of time, a single arm moves the head, but both
arms simultaneously grasp the head to eventually switch grasp.
(3) In its initial configuration > SO^�SO� , the DLO has no crossing
in d (we say that it is G,C�����G�Co9 ). (4) Simple passive/static
sliding supports, which we call needles (see Section V-C), are

Fig. 5. The �������#�������a�J���a��� for the “figure-8” knot

available and can be used to maintain the integrity of certain
portions of the DLO during manipulation.

In Section VI we will extend the definition of a crossing
configuration of a DLO to take obstacles into account, in order
to tie knots around obstacles or, instead, to avoid undesired
loops of the DLO around obstacles.

V. PLANNING APPROACH

A. Forming Sequence

The first step of our planning approach is to ignore the ma-
nipulating arms and derive a “qualitative” plan, which we call
the Dh��H�
5��ChF5�=��>�G,�=Co��� of the crossings in the goal topology� ��ZP��[ of the DLO. It will be used later to bias the sampling
of a probabilistic roadmap in the DLO’s configuration space.

Suppose we walk along the DLO, in a given configuration,
from its tail to its head. We say that a crossing is Dh��H�
3��9 when
it is encountered for the second time. �#��H�
3�/ChF��=��>�G,�=Co���
is the sequence in which crossings are formed during the
walk. Alternatively, if the goal crossing configuration is����ZP��[�?

�
.6i K~ '\i k~ 0��M~���KT��������� ^ , then its forming sequence is.\.6i K~ '�i k~ 0�0/~��,~\ M��������� ~�¡ , where

��¢
K�'
¢
ka'MLNLOLN'

¢
^,� is a permutation

of

�
Va'�}R'MLNLNLO'�CU� such that i k~J£ l¤i k~J¥ if X¦l§7 . Qualitatively,

knots can be tied crossing-by-crossing in the order implied by
the forming sequence of the goal crossing configuration (see
Figure 4).

B. Loop structure

The loop structure is built to later identify portions of the
DLO whose integrity must be maintained during manipulation
by means of needles (see Section V-C). Let ��e be any curve
in the reference projection plane d that forms the crossings
defined in � �TZP��[ . Let us draw � e from the tail to the head.
Each time a crossing is formed, either a new 76�I��� is created,
or an existing loop is split into two loops. For example, in
Figure 5, the crossing (2,5) is first formed, which creates the
loop denoted I; then crossing (1,6) creates loop II and crossing
(4,7) creates loop III; finally, crossing (3,8) splits loop I into
two loops denoted by I-a and I-b. The 76�I���¤���JH�G,�T�JG,HI� is
the hierarchy of all the loops thus formed. The root of this
structure points to the newly created loops (I, II, and III in
Figure 5). Each loop in the structure that has been split (only
loop I in Figure 5) points toward the two loops resulting from
that split. The structure may have arbitrary many levels.

During manipulation, it is critical to maintain some loops
sufficiently wide open, so that they can later be split. In
addition, some loops could be undone by pulling the head of
the DLO. The planner guarantees the integrity of all such loops
by introducing needles through them, as described below.



(a) (b)
Fig. 6. (a): Reidmeister move I (b): Reidmeister move II

Fig. 7. (a): After a loop has been created, it is not guranteed that its size will
be maintained during further manipulation (b): Passive/static sliding supports
(tri-needle) is used to maintain the size of the loops to be pierced in future.

C. Pierced and slip loops

Reidmeister moves are a classical technique used in knot
theory to simplify crossing configurations without changing
the topology of a knot [1]. Figure 6 shows the Reidmeister
moves I and II. We do not use such moves to simplify the
input goal crossing configuration �,��ZP��[ . Instead, we assume
that the planner’s user has appropriately described �h��Z���[ so
that all the loops it implies are desired loops. However, since
common knots do not contain arbitrary loops, we make some
additional assumptions about the loops that �,��ZP��[ may imply.

Let us say that a goal crossing configuration of a DLO ind is �J��F(8�� if it cannot be simplified (i.e., no crossing can be
removed) by any Reidmeister move and its forming sequence
is �:7����=H�Co�!�J��ChF , i.e., the successive crossings in the sequence
are alternately over and under. The crossing configuration
depicted in Figure 3(a) is tight.

In a tight goal crossing configuration, each split loop ¨
(loop I in Figure 5) is eventually pierced, meaning that
split occurs just after two consecutive crossings of different
over/under status are formed. ¨ must be wide enough to make
it possible for the robot arms to move the head of the DLO
through it. The planner achieves this condition by using a tri-
needle. The role of the tri-needle is illustrated in Figure 7. Its
size depends on whether any of the two loops resulting from
the split of ¨ will be split in turn. The tri-needle could be
defined in many ways. Here, it consists of three thin straight
bars inserted through the loop perpendicular to d .

We also allow ����Z��T[ to be semi-tight. A ���=
3� - �J�/F(8(� crossing
configuration is one in which (1) at most two consecutive
crossings in the forming sequence have the same over/under
status and (2) any two consecutive crossings .�i K~ '�i k~ 0 and.�i KQ '\i kQ 0 in the forming sequence that have the same
over/under status are such that © i K~«ª i KQ ©*?-V and © i k~«ªi kQ ©a?¬V . Figure 8 shows a semi-tight crossing configuration.
Most practical knots that rely on friction along the DLO for
their integrity (e.g., shoe-lace knot) yield semi-tight crossing
configurations. In such a configuration, a loop bounded by a

Fig. 8. A ���\­¯® - ��®�°M±I� configuration

Fig. 9. A needle, inspired from real-life (right figure), is used to preserve a
slip loop.

Fig. 10. In real life, sliding supports (fingers in (a) and scissors in (b)) are
commonly used while tying knots.

curve segment joining two consecutive crossings with the same
over/under status is called a ��76��� loop. In Figure 8 there are
two slip loops shown with striped interiors. To prevent a slip
loop from being undone during manipulation, a mono-needle
perpendicular to d is used, as shown in Figure 9. Pierced
loops in semi-tight crossing configurations are handled with
tri-needles as previously described.

We assume that the goal crossing configuration � ��Z��T[ is
either tight or semi-tight. Once � ��ZP��[ is achieved, all needles
can be removed by translating them perpendicular to d .

The needles are structural supports along which the DLO
can slide during manipulation. They are inspired from the way
people use their extra fingers and tools during manipulation.
While two fingers in one hand (usually, the thumb and the
index) are used to grasp a DLO, other fingers are often used
to maintain the integrity of loops (see Figure 10(a)). Tools such
as scissors and needles may also be used as sliding supports
(Figure 10(b)).

D. Motion Planning Algorithm

The algorithm is shown in Figure 11. At Step 1 it computes
the forming sequence �³² � and the loop structure ´ � of � ��ZP��[ .
Then it constructs a single-query probabilistic roadmap µ
in the DLO’s configuration space. Our approach is similar
to those proposed in [6] and [9] to plan trajectories under
kinodynamic constraints. The roadmap µ is a tree rooted at
the initial configuration >�SN^�SO� . Each node of µ is a sampled
configuration of the DLO and each edge is a transition
computed by the state-transition function D (see Section III-B).µ is built iteratively. At each iteration (Step 3), the algorithm
selects a node > from µ (Step 3.a) and a small move of the
DLO’s head G (Step 3.b), and evaluates DU.�>:'\G�0 to obtain a new
configuration >�^a_J` , which is then inserted in µ as a successor
of > (Step 3.h).

However, before >=^a_J` is added to µ , the algorithm checks
that a number of conditions are satisfied. Any violation of



Algorithm TWO-ARM-KNOTTER ( >�SN^�S�� , ����Z���[ , d )
1. �³² �<¶ Forming-Seq( � ��Z��T[ ), ´ �<¶ Loop-Struct( �³² � )
2. µ .Insert(NULL, > SN^�S�� )
3. Loop ·W��� times

a. Pick > from µ with a probability measure biased
towards � ��ZP��[

b. Pick control vector G at random
c. >M^!_J` ¶ DU.�>:'\G�0
d. Return to Step 3 if:

- D returned that the move was impossible, or
- the forming sequence of >=^a_J` is not a

sub-sequence of �³²��
f. Inspect ´b� and add needles if needed
g. Return to Step 3 if the arms cannot perform G
h. µ .Insert( > , >�^a_J` )
i. If > ^a_J` " � .�� ��Z���[ 0 , then exit with manipulation path

4. Exit with Dh���J7�G,HI�
Fig. 11. The DLO manipulation planning algorithm

Fig. 12. Suppose a split loop is created when the crossings ¸ followed by¹
are formed. A tri-needle is placed, just after ¸ is formed, along the DLO

in the region infered by matching the crossings associated with the current
configuration of the DLO and the crossings in º�»�¼�½T¾ which define the loop.

these conditions leads to start a new iteration at Step 3.
First, DU.6>:'\G�0 must have indicated that the control vector G
is possible (see Section III-B). If this is the case, the planning
algorithm verifies that the forming sequence at >�^a_J` is a
subsequence of �³²�� beginning at the same crossing as �³²��
(this causes the topological biasing of µ ). If yes, it checks
whether new needles are needed and adds them (they then
become obstacles). Needles are placed when a slip or split
loop is about to be formed, as indicated by ´ � . They are
placed along the DLO where the loop is expected to be formed
(see Figure 12). However, the planner does not plan for the
manipulation of the needles. It can be done with the help
of additional manipulators and some movable fixtures for the
needles. Throughout the planning, the crossing configuration
of �,^a_J` is determined with respect to d . Next, the planner
checks that the robot arm currently grasping the head of
the DLO can track the motion of the DLO’s head without
colliding (using the arm’s IK). If not, it checks whether the
other arm can perform the motion instead, after a grasp switch
between the two arms at > . The collision free motion of the
arms for performing a grasp switch can be computed using
any single-query probabilistic-roadmap planner [3]. In our
implementation, we use the SBL planner [17]. The motion
of the arms and the needle placements are stored along with>M^a_J` in µ .

The planner succeeds when it achieves a configuration>M^a_J`¿" � .�����ZP��[/0 , which occurs when the number of crossings

Fig. 13. A composite semi-deformable linear object sDLO is constructed
by chaining the curve representations of the rigid objects with the DLO axis.
Thereafter, sDLO is used to account for the topological interactions of the
DLO with rigid objects in the environment.

in >M^a_J` is equal to the number of crossings in �h�TZP��[ . It returns
a manipulation path, retrieved by backtracking from >�^a_�`
to >�SO^�SO� in µ , which consists of sequence of collision-free
paths of the robots, separated by (re-)grasp operations, and the
description of needle placements. The planner fails if it has
not achieved a desired configuration after a specified number
of iterations at Step 3.

At Step 3.a, the configuration > is selected at random among
the nodes currently in µ , with a probability measure that favors
the nodes with more crossings, since they are topologically
closer to

� .�����Z���[�0 . At Step 3.b, the control vector G is a small
move of the DLO’s head selected uniformly at random. Here,
one can also bias this choice to favor the creation of the next
crossing in �³² � .

VI. TYING KNOTS AROUND STATIC RIGID OBJECTS

So far, we have focussed on achieving topological states of a
DLO defined with respect to itself, i.e., tying self-knots. But in
many applications, DLOs also knot around static objects. Here,
we provide a simple technique to account for the topological
interaction of a DLO with static objects for which curve
representations exist. We say that for a given object � , its
curve representation exists if there exists a curve H:.���0 such
that any point in � is within À distance from HR.6��0 , where À
is small compared to the length of the curve. Examples of
such objects are torus, cylinders, and long bars. In the case of
a torus, the curve swept by the center of its generator conic
and in the case of cylinder its central axis could be chosen as
their curve representations. In general, curve representations
can be obtained by skeletonizing the objects by the methods
presented in [4] and pruning less prominent branches of the
skeletal tree to obtain a curve.

We will account for the interaction of the DLO with rigid
objects by defining a ����
������������ semi-deformable linear object
(sDLO), and work with the crossing configuration of the sDLO
thereafter. Let Á be the set of curve representations of the
concerned static objects. sDLO is created by “chaining” the
curves in Á and � sequentially, � being the last (see Figure 13).
There will be virtual links connecting consecutive curves in
the sequence. We will ignore the crossings between the curves
in Á , and also any associated with the virtual links.

Here we choose a reference projection plane such that the
curves in Á are minimally distorted after projection. This
reduces the possibilities of crossings, between the projections
of a curve in Á and the DLO axis � , lumping into a small
region. Any plane parallel to the one that minimizes the sum
of squares of distances between the points of the curves in Á



and the plane could be used. However, it is difficult to choose
a good plane in situations when a plane suited for one object is
bad for another object, or when an object is not quasi-planar.

VII. EXPERIMENTAL RESULTS

We implemented our proposed DLO manipulation planner
in C++ and ran knot-tying experiments on a 1.5GHz Intel
Xeon PC with 1GB RAM. We used the physical model
described in [23] to account for the physics of the DLO. This
physical model takes into account the essential mechanical
properties of a typical DLO such as stretching, compressing,
bending and twisting, as well as the effect of gravity. It
manages self-collisions efficiently and also accounts for the
interaction of the DLO with other static and rigid objects
in the environment. Two robot arms, each with 6 degrees of
freedom and capable of providing point grasps, were used for
the manipulation. The planner took 10 to 15 minutes of CPU
time to generate knot tying motions for the dual arms.

Figure 15 shows sequences of snapshots from the manipula-
tion motion generated by our planner for the five manipulation
problems that we considered. The first four sequences tie
common knots: bowline, neck-tie, bow (shoe-lace), and stun-
sail, respectively. The last sequence corresponds to a typical
manipulation problem of winding the DLO around static
objects.

Bowline and bow required one tri-needle, and neck-tie
and stun-sail required two tri-needles each. Bow needed an
additional mono-needle to maintain its slip loop. The last
problem did not require any needle.

Our real-life experimental set-up consists of two PUMA-
560 robots at the Stanford Artificial Intelligence Lab. We tuned
the parameters of the rope model such that the simulated rope
“visually” behaved like a typical common-life rope, as one of
its ends was being manipulated and the other end was kept
fixed. Then we let our planner generate a manipulation plan
for tying a bowline knot. Thin aluminium rods were used to
simulate the needles and hand-placed, prior to the execution
of the manipulation plan, at the positions determined by the
planner. Using the generated plan, the two PUMA robots were
able to co-operatively tie a bowline knot with a real rope
(Fig. 15(i)), successfully, even though the tuned rope model
did not exactly represent the physics of the real rope. The
robustness of our planner to inaccuracies in the physical model
of the rope was further ascertained when the robots were able
to tie bowline knots with the same plan, but using four other
ropes of different nature, i.e. ropes with different materials and
thicknesses. However, the same plan failed to tie the knot for a
plastic rope, because it was too stiff and the plan was originally
generated for significantly less stiff ropes. Fig. 15(ii) lists the
materials and thicknesses of the ropes used. Fig. 15(iii) shows
the final bowline shape attained by the ropes.

The ability of our planner to generate robust plans mini-
mizes the need for online sensing and re-planning of robot
motions. However, online sensing and re-planning could be
required if the model and the actual physics of the rope are
significantly out of tune.

We have also been interested in quantifying the robustness
of generated plans to inaccuracies in the rope model. But
it is not feasible to do so from real experiments since rope
manufacturers do not provide numerical values for the me-
chanical properties of ropes. So, we quantified the robustness
of generated plans from computer simulations in the following
manner. After generating a manipulation plan for tying a
bowline using a particular rope model, we tested in simulation
if the same manipulation plan still achieves a bowline after
corrupting the rope model parameters with Gaussian noises.
The table in Fig. 15(iv) lists the means and standard deviations
(estimated numerically) for the Gaussian distributions from
which 3 main parameters of the model were independently
chosen, such that a bowline was achieved more than 90 Â of
the time. The mean values correspond to the original model
parameter values, used to generate the manipulation plan. The
standard deviations and the corresponding mean values have
comparable values, indicating a high degree of robustness.

The videos of the results are available at:
http://ai.stanford.edu/ Ã mitul/dlo

VIII. CONCLUSION

In this paper we have proposed a topological motion planner
for manipulating deformable linear objects (DLOs) using
cooperating dual robot arms to tie self-knots and knots around
simple static objects. The planner does not assume a specific
physical model of the DLO. The user has the flexibility of
providing an appropriate model (e.g., rope, suture, strand
etc.) depending upon the application. To our knowledge, our
planner is a first of its kind, i.e., we are not aware of any
other planner which can generate collision-free motions for
robot arms which lead to DLO manipulation in environments
with obstacles.

We have demonstrated the effectiveness of our planner by
tying some commonly used knots. Currently we are analyzing
the probabilistic completeness our planner, i.e., if it can tie
any type of (semi-)tight knot given unbounded time and
computational resources.

From this point, there are many interesting research direc-
tions to head for. For example, one could consider the topolog-
ical metrics used in [16] for biasing our topological planner.
Since it is difficult to choose a good reference projection plane
when there are several static objects or when an object is not
quasi-planer, one could try to extend our method to tie knots
around objects with the help of multiple planes. Input objects
could be broken into a number of quasi-planar objects and a
separate plane could be used for each of them. Also, the new
concepts of forming sequence and loop structure could seed
future research in knot theory and its application domains.

Finally we believe that our contribution in this paper could
potentially lead to opening of crucial application domains for
robotics in future, surgical suturing being one of them. It could
be of particular interest to humanoid robotics - aiming to assist
humans in their daily life activities, knot-tying being one of
them.



Fig. 14. Sequences of snapshots generated by our planner for five manipulation problems.



(i)

(ii) (iii) (iv)

Fig. 15. (i): Snapshots of two PUMAs in the process of tying a bowline knot, (ii): Different types of ropes used for tying knots. (iii): Final shapes of bowline
knots achieved with different ropes. (iv): Means and standard deviations of Gaussian distributions from which the three main rope model parameters were
chosen for the robustness analysis.
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