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ABSTRACT
A common approach for text-to-speech (TTS) in noisy con-

ditions is offline fine-tuning, which is generally utilized on
static noises and predefined conditions. We recently proposed
a self-adaptive TTS in machine speech chain inference that
enables TTS to control its voices in statically and dynami-
cally noisy environments based on auditory feedback from
automatic speech recognition (ASR) and speech-to-noise ra-
tio (SNR) recognition. However, that study only investigated
the system on synthetic Lombard speech data. Furthermore,
the ASR feedback was at a lower granularity based only on
the loss of the positive character class. In this paper, we im-
prove the self-adaptive TTS using character-vocabulary level
ASR feedback at higher granularity, considering the losses in
the positive and negative classes. We focus on a self-adaptive
incremental TTS (Adapt-ITTS) with a short-term feedback
mechanism that aims for low latency adaptation for dynam-
ically noisy situations. In experiments, our proposed Adapt-
ITTS successfully improved intelligibility in noisy conditions
based on synthetic and natural Lombard speech data on the
Wall Street Journal and Hurricane datasets, respectively.

Index Terms— self-adaptive, incremental, text-to-speech,
machine speech chain, text-to-speech, Lombard effect

1. INTRODUCTION

In human spoken communication, speech production and per-
ception are inseparable. This idea is reflected in the human
speech chain mechanism, where auditory feedback is passed
from mouth to ear, enabling humans to simultaneously speak
and listen. This mechanism is essential not only for language
acquisition but also for speech monitoring and self-adaptation
during everyday communication. For example, auditory feed-
back makes us aware of environmental sounds that lead to
speech adjustment. Notably, in noisy places, humans tend
to increase their speaking effort, such as by speaking louder,
to make the speech more intelligible. This phenomenon is
known as the Lombard effect [1, 2].

Although auditory feedback is very critical for humans,
in machines, unfortunately, feedback between text-to-speech
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(TTS) as the speaking component and an automatic speech
recognition system (ASR) as the listening component remains
limited. Over the last two decades, ASR and TTS have pri-
marily been performed independently. Several recent works
have shown that connecting ASR and TTS by end-to-end dif-
ferentiable loss is advantageous [3, 4, 5, 6]. However, most
of these studies only aimed at TTS that supports ASR as data
augmentation during training. After the training is finished,
ASR and TTS tasks are still performed separately.

Here we focus on TTS usage during the inference phase.
Although a successful neural TTS can produce highly nat-
ural speech, it ‘speaks’ without being able to ‘listen’. Fur-
thermore, standard systems are commonly developed by as-
suming they are operating in ideal clean environments. Con-
sequently, speech intelligibility often decreases in noisy en-
vironments. A common approach for such situations is fine-
tuning the TTS offline using Lombard speech data [7, 8]. This
approach, however, is generally focused on predefined static
noise conditions, and self-adaptation during inference in more
realistic dynamic environments remains difficult.

We recently proposed a self-adaptive TTS [9, 10] that en-
ables TTS to speak and control its voices in statically and
dynamically noisy environments with the non-incremental or
incremental mechanism. Our mechanism was inspired by the
human speech chain and the ASR-TTS connection in the ba-
sic machine speech chain [3, 11]. It allows TTS to dynami-
cally adjust its speech style and improve its intelligibility ac-
cording to various situations based on auditory feedback from
the ASR loss and the speech-to-noise ratio (SNR) predictions.
However, our previous study only investigated the system on
synthetic Lombard speech data. Furthermore, the ASR feed-
back was at a lower granularity based only on the loss of the
positive character class.

In this work, we propose an advanced self-adaptive TTS
mechanism by leveraging ASR feedback at high granularity.
Specifically, we use character-vocabulary level ASR feedback
based on the losses in the positive and negative classes to en-
rich the feedback information and improve the TTS speech.
We focus on the self-adaptive incremental TTS (Adapt-ITTS)
with a short-term feedback mechanism (Fig. 1) that seeks low



latency adaptation for a dynamically noisy situation that may
change immediately. Since the previous work was only based
on a synthetic Lombard dataset, we also investigated TTS on
natural Lombard speech in the Hurricane corpus [12].

2. ADAPT-ITTS
Adapt-ITTS incrementally synthesizes speech with a fixed in-
cremental unit in a short-term auditory feedback mechanism
(Fig. 1). To synthesize speech utterance y = [y1, Y2, ..., Y1)
from sentence text x = [x1, Za, ..., xg], Adapt-ITTS first di-
vides x into % segments, each of which consists of W words.
Then for each incremental step, Adapt-ITTS takes W-word
text and produces corresponding W-word speech, and then
slides the input windows to the next segment and repeats the
procedure until it reaches the last segment. In addition to text,
Adapt-ITTS also takes short-term auditory feedback gener-
ated based on the previous speech output. Such feedback aims
to capture the system’s performance and the environmental
conditions, and Adapt-ITTS accordingly uses it to adapt its
speech style (normal or Lombard) to improve the speech in-
telligibility. The feedback employed in Adapt-ITTS consists
of ASR loss and SNR from the noisy speech for intelligibility
measurement and also the speech power-context information.
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Fig. 1. Adapt-ITTS with low adaptation latency in dynamic
noise condition and non-adaptive TTS

2.1. Architecture
2.1.1. Encoder-decoder
The Adapt-ITTS architecture (Fig. 2) is based on the Multi-
Speech framework [13] for multi-speaker speech synthesis
with the auto-regressive Transformer network. To enable the
self-adaptation mechanism, it is extended with feedback mod-
ules and a variance adaptor [14, 15] that predicts the speech
prosody. The feedback, which is represented as an embed-
ding vector, is denoted as z4sg for ASR loss embedding, zsyr
for SNR embedding, and zpow for power-context embedding.
These embeddings are generated independently through con-
volution layers.

All the feedback embeddings are combined with Trans-
former’s encoder output h{, = along with the variance adaptor
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Fig. 3. ASR feedback at (a) low and (b) high granularity

h? = Var Adaptor(FNN([h{.,, + z, zpow])), 2)
where zgpgx represents the speaker embedding. h° is then
passed to the decoder for the cross-attention procedure. The
feedback embeddings are also combined with the decoder in-
put for the decoding process:

yl, = FNN([prenet(y.) + PE + z, zpow])- 3)

2.1.2. ASR feedback

The ASR feedback represents the TTS speech intelligibility
as an ASR loss. The ASR loss is generated by transcribing
the noisy synthesized speech using an ASR system (teacher-
forcing). As shown in Fig. 3, given a sequence of character-
level ASR losses, the ASR-loss embedding module generates
embedding vector z4sg for the Adapt-ITTS input:

P = plaly"™)), )
zask = ASR Loss Embedding(Lossasr(x, pz)), 5)
where Y is the synthesized speech combined with the

noise. In this paper, we present two approaches on ASR loss
calculation for feedback based on the granularity level.

(a) Low granularity
The ASR loss sequence, shown in Fig. 3(a), consists of
the character-level losses of the positive character class
based on the correct text:

LOSSASR = [11,12,...,ls]. (6)



Each character loss [, is calculated with the multi-class
Ccross entropy equationci

ls(xs,pz,) = — Z L(zs = c) x log s, [c]. (7
c=1

(b) High granularity
Since the low-granularity ASR feedback only captures
the loss on the positive class and discards the others,
we newly propose the utilization of ASR feedback in
higher granularity to preserve the finer information on
the intelligibility, shown in Fig. 3(b). Here the ASR
loss-embedding input is a sequence of the ASR loss
that consists of the losses from the class of positive and
negative characters according to the correct text:
LOSSASR = [ll,lg,...,ls], (8)
ls == [lslal:;Za---;lsC]a (9)
where C' is the size of the character-vocabulary, I is
the ASR loss at character index s in the transcription,
and [, is the binary cross entropy loss of character ¢ in
the vocabulary at position s in the transcription:
lse(75, pa,) =

— (5 *logpy, [ + (1 — ) * log (1 — pa, [d]),
(10)
where x¢ = 1 for the positive character class and z$ =

0 for the negative class.

2.1.3. SNR feedback
The SNR feedback contains the SNR value between the syn-
thesized speech and the environmental noises. This feedback
also aims to capture the environmental conditions. Here we
directly estimate the SNR from noisy speech without separat-
ing the acoustic sources through a neural network:

2sNR = SNR embedding(y™°"*"). (11)
In our experiment, we first pre-trained the SNR feedback
module for the SNR recognition task.

2.1.4. Power-context feedback
The power-context feedback represents the intensity or the
power of the previously synthesized speech segment before
it was induced with noise:

zpow = Power-context embedding(y) (12)
This feedback serves as a context cue for Adapt-ITTS to
maintain or change the speech style based on environmen-
tal conditions, for example, continuing to produce Lombard
speech while the noise still exists and changing the speech
style when the conditions change. In our experiment, the
power-context feedback module was pre-trained as a speech
power recognition module before the Adapt-ITTS training.

2.2. Training and Inference

Adapt-ITTS is trained in a clean condition to produce normal
speech and in noisy conditions to produce Lombard speech
[10]. In training, ASR-loss embedding is generated from the
synthesized speech. SNR embedding is generated from the
audio in training material whose acoustic environment repre-
sents the environment condition before adaptation starts. The

power-context embedding is generated from the clean speech
in the training data.

In inference, Adapt-ITTS incrementally synthesizes speech
by taking the feedback from the earlier incremental step (Fig.
1). Since the adaptation might be delayed by an incremental
step due to the nature of the mechanism, Adapt-ITTS also
applies a speech power post-adaptation to reduce the adapta-
tion delay. It modifies the speech power incrementally on the
M-ms units by first estimating the SNR and noise levels us-
ing the SNR feedback module and modifying the next M -ms
segment to reach a certain SNR.

3. EXPERIMENTAL SETTING
3.1. Dataset

3.1.1. WSJ

We used the normal speech and synthetic Lombard speech
data in the static noise condition based on the Wall Street
Journal corpus [16] to initialize our model, which originally
consisted of 81 hours of multi-speaker normal speech in clean
condition. The Lombard speech was generated by modify-
ing the original speech prosody attributes into Lombard-like
prosody by a method that is identical as a previous work [10].

3.1.2. Hurricane

The Hurricane speech corpus [12], which was introduced
in the Hurricane Challenge 2013 [17] for speech enhance-
ment and synthesis in noisy conditions, consists of nor-
mal and Lombard speech recorded from a single, native
British-English male speaker in the static noise condition.
During training, we followed similar data partitions as in a
related work [8]. We also created the noisy speech for SNR-
embedding generation during training by combining noise
sounds with normal speech. We used the same noise sounds
(babble and white noises) and SNR (0 dB and -10 dB) as for
our WSJ data. The SNR here is relative to the normal speech
intensity in the Hurricane data. Since the data size was small,
all the Hurricane-based TTS’s parameters were initialized
using TTS trained on the WSJ dataset.

3.2. Model Configuration

The Adapt-ITTS Transformer configuration followed the
same configuration as in a previous work [10]. The Adapt-
ITTS input was a character sequence, and the output was
in 80 dimensions of Mel-spectrogram. The speech signal
was generated from the predicted Mel-spectrogram using the
CBHG (1-D Convolution Bank + Highway + bidirectional
GRU) and Griffin-Lim algorithm, as in the Tacotron frame-
work [18]. We composed the Adapt-ITTS incremental unit
follows: the main input three words, the look-back input that
included the previous ten words, and the look-ahead input
that includes the next two words. The incremental unit for
the power post-adaptation was 200 ms, and the target SNR
was 20 dB. The configuration of the feedback modules was
also identical as the one utilized in a previous work. All the
feedback modules were trained using short speech segments
to match the incremental unit in the Adapt-ITTS.



Table 1. TTS performance on WSJ dataset.

System ASR Cl:]R(%) I ] S.TOI (%) 1 ]
Static | Dynamic || Static | Dynamic
Clean . . . .
noise noise noise noise
Baseline standard TTS (delay = 17 words)
Base-TTS 18.32 | 73.81 46.25 43.88 72.05
Finetune-TTS 14.82 | 29.70 19.08 77.32 91.78

Adapt-TTS (delay = 17 words)
ASR:Low granularity 13.52 | 24.88 17.79 81.83 90.60
ASR:High granularity | 590 | 20.38 15.52 80.30 90.65
Adapt-ITTS (delay = 3 words)
ASR:Low granularity 14.42 | 25.82 20.55 87.93 94.66
ASR:High granularity | 14.04 | 23.19 17.48 89.04 97.20
Topline
(743 1596 [ - [ - |

Natural speech

Table 2. TTS performance on Hurricane dataset.

ASR CER(% STOI (%
System - (%) | - - (%) 1 -
Static | Dynamic || Static | Dynamic
Clean . . . .
noise noise noise noise

Baseline standard TTS (delay = 7 words)

\ 8.95 \ 32.85 \ 25.95 H 73.12
Adapt-TTS (delay = 7 words)

ASR:Low granularity 10.53 | 24.91 21.46 82.29 93.73

ASR:High granularity | 9.36 | 23.98 20.58 82.33 93.77
Adapt-ITTS (delay = 3 words)

ASR:Low granularity 1377 | 28.82 28.24 79.91 85.86

ASR:High granularity | 14.92 | 27.86 28.27 80.37 86.58

Topline
\ 6.85 \ 22.28 \ 16.05 H 73.67 \ 88.68

Finetune-TTS 88.21

Natural speech

4. RESULT AND DISCUSSION

We evaluated the TTS speech intelligibility in the static and
dynamic noise conditions based on the ASR character er-
ror rate (CER) and the short-term objective intelligibility
measure (STOI) [19]. The ASR CER was calculated by tran-
scribing noisy speech using an utterance-level ASR in the
Speech-Transformer framework [20] trained on clean and
noisy speech based on the WSJ and Hurricane data. Then
STOI measures the temporal envelope correlation between
the speech signals before and after they are combined with
noise. Our baseline was a standard non-incremental TTS
that was trained on normal speech (Base-TTS) and fine-tuned
on Lombard speech data [8] (Finetune-TTS). The baseline’s
architecture was identical as the Adapt-ITTS without feed-
back modules or a variance adaptor. We also compared
the Adapt-ITTS to the self-adaptive non-incremental TTS
(Adapt-TTS)[10] that synthesized the speech using utterance-
level feedback in a re-speaking manner. The Adapt-TTS
architecture was also identical as Adapt-ITTS’s without us-
ing the power-context embedding module. The topline was
natural human speech.

4.1. Static Condition
We evaluated Adapt-ITTS in the clean and static noise condi-

tions shown in Table 1 for the WSJ data results and Table 2
for the Hurricane data results. The experiment in clean con-
ditions was conducted without noise, and the noisy condition
experiment was done using noise from the SNR 0 dB or -10
dB conditions according to the dataset.

In static conditions, the high-granularity ASR feedback
improved the Adapt-ITTS performance. ASR CER was re-

== Adapt-ITTS Adapt-TTS == Finetune-TTS == Noise

(sec) °

Fig. 4. Speech power and pitch in dynamic noise condition

duced by 2.63% on WSJ and 0.96% on Hurricane. The
performance difference between the datasets might have been
affected by the acoustic characteristics and the length of the
speech utterances. Adapt-ITTS performed with lower in-
put latency and adaptation latency, which in our setting was
three words of approximately 1 sec. On the other hand, al-
though Adapt-TTS achieved the best intelligibility, it requires
a higher delay than Adapt-ITTS due to the utterance-level
feedback mechanism. Adapt-ITTS with high-granulated ASR
feedback successfully approached the Adapt-TTS speech in-
telligibility with shorter delay.

4.2. Dynamic Condition

In this experiment, the noise intensity was increased or de-
creased between the clean and noisy conditions. The high-
est noise intensity was based on noise from the SNR-10 dB
condition. For the baseline and the topline, the noise was
combined with the static Lombard speech since no dynamic
Lombard speech was available.

The high-granulated ASR feedback successfully im-
proved the Adapt-ITTS performance in dynamically noisy
conditions, in which the ASR CER could be reduced by
3.07%. The Adapt-ITTS speech prosody adapted accordingly
to the noise change, as shown in Fig. 4 from the model trained
on the Hurricane dataset. In this example with the increas-
ing noise, Adapt-ITTS initially produced normal speech and
then, after the noise power reached a certain point, it produced
Lombard speech with the increased speech power and pitch.
On the other hand, the Adapt-TTS and Finetune-TTS spoke
loudly initially, but they were unable to adapt during the mid-
dle of utterance to cope with the increasing noise. Although
the best intelligibility was achieved by the Adapt-TTS, it has
to wait for one utterance to finish. The Adapt-ITTS, on the
other hand, was more realistic because it adapted within 1 sec
and improved the speech intelligibility.

5. CONCLUSION

We proposed an Adapt-ITTS with high-granulated ASR feed-
back for a self-adaptive speech synthesis in noisy conditions.
Adapt-ITTS adapts the speech style based on noise condi-
tions in real time using short-term feedback in an incremental
mechanism. The utilization of the proposed ASR feedback
successfully improved Adapt-ITTS intelligibility in noisy
conditions. Examples in https://sites.google.com/view/adapt-
lombard-tts/home.
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