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The presence of cyclopropane rings in the sterol side chains
of certain sponges and marine algae has long been of great
biosynthetic interest.” We have recently shown that a group
of cyclopropyl sterols isolated from Haplosclerid sponges
arise via the enzymatic desaturation of saturated sterol side
chains.” However, a more common mechanism for bio-
synthetic cyclopropanation involves the enzyme-catalyzed
alkylation of an isolated double bond by the biological
sulfonium salt S-adenosylmethionine (SAM). Lederer, in
early studies of sterol biomethylation, proposed that the
ubiquitous 24-methyl sterols arise via the ring-opening of a
cyclopropyl intermediate.* Although this theory has been
disproved, the erstwhile cyclopropyl intermediate (sormo-
sterol, 1) has recently been isolated from a California
sponge, Lissodendoryx topsenti.’ Sormosterol (1) was
shown both in feeding experiments® and in experiments
with sponge microsomes® to arise via the SAM alkylation of
desmosterol (2), a process which usually leads directly to
24-methyl or 24-methylene sterols.

In many cases the formation of cyclopropane rings via
SAM bioalkylation is believed to involve the intermediacy
of secondary carbonium ions. The cyclopropane-containing
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Scheme 1. Possible biosynthetic routes to sormosterol.
*To whom correspondence should be addressed.

678 Acta Chemica Scandinavica 46 (1992) 678-679

Sormosterol

bacterial fatty acids arise via such intermediates,” and the
biosynthesis of gorgosterol in marine dinoflagellates® and
24,28-methylenestigmasterol in a marine Chrysophyte® are
also thought to involve secondary carbonium ions. If the
alkylation of the A%*% double bond occurs at the 25 rather
than the usual 24-terminus (Scheme 1) a secondary car-
bonium ion could also be an intermediate in sormosterol
biosynthesis. Such a course would initially produce a fert-
butyl group (3) that could conceivably lead to the cyclo-
propane via ring-closure by any one of the three methyl
groups. We found it of interest, therefore, to investigate
the origin of the cyclopropane methylene group via degra-
dation of biosynthetically labeled sormosterol (Scheme 2).
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Scheme 2. Degradation of biosynthetically labeled sormosterol.
a, Ac,O-pyr.; b, TFA; ¢, NaOH; d, POCl,—pyr.; e, LAH; f, TsCl—
pyr.; g, MeOH-pyr.; h, O;; i, NaBH,; j, PCC; k, KOH-MeOH.

Experimental

Labeled sormosterol (1) was prepared enzymatically from
desmosterol (2) and *H-SAM (70 pCi) using Lissodendoryx
topsenti microsomes as previously described.® After addi-
tion of cold carrier the product was purified by reversed-
phase HPLC purification using a Waters Associates HPLC
system (M 6000 pump, R403 differential defractometer)
equipped with two Ultrasphere ODS 5 pm columns {10 mm
(i.d.) x 25 cm] in series using methanol (MeOH) as the
mobile phase (4 ml min™'). The sterol 1 (25000 dpm) was
converted into the acetate and isomerized with trifluoro-
acetic acid as previously reported.’ The resulting mixture
was treated with phosphorus oxychloride and deace-
tylated. 24-Methyldesmosterol (6) (58 %) was separated by
HPLC from the other sterol products [codisterol (21 %)
and ergosta-5,23-dienol (20 %)]. The isomerized sterol 6
was converted into the i-methyl ether as described,’ puri-
fied by argentic TLC (hexane—ether 39:1), and the specific
activity was determined (250 dpm mg™'). Ozonolysis fol-
lowed by sodium borohydride as described,’ gave the alco-
hol 7, which was purified by silica gel TLC (hexane—ether
1:1). Measurement of the specific activity (230 dpm mg™")
showed negligible loss of label. To confirm the location of
the radiolabel, the alcohol 7 was oxidized to the ketone 8
with pyridinium chlorochromate. Base exchange of the
acidic protons as previously described® resulted in the loss
of all radioactivity. When the same degradation procedure
was applied to the 24-methylenecholesterol (250 000 dpm)
obtained biosynthetically from the same experiment,S the
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radiolabel was found in the same location. The identity of
all intermediates in the degradation was confirmed by pro-
ton nuclear magnetic resonance ("H NMR) spectroscopy
with a Varian XL-400 spectrometer.

Discussion

This experiment indicates that the methylene group of the
sormosterol cyclopropane arises from the methyl group of
S-adenosylmethionine. This is consistent with a mechanism
involving initial alkylation at C-24 to give, initially, a
tertiary carbonium ion (Scheme 1, 4) or direct production
of the protonated cyclopropane intermediate 5 without dis-
crete classical carbonium ion intermediates. However, ini-
tial alkylation at C-25 to give the fert-butyl secondary car-
bonium ion 3 cannot be ruled out because restricted rota-
tion of the terz-butyl group is expected in the active site of
the enzyme. Since the SAM alkylation is believed to occur
from the B-face,'' the methyl group originating from SAM
would be in the best orientation for ring-closure. In con-
trast with the known instances of normal SAM methyla-
tion," in the cyclopropanation reaction the removal of the
proton occurs from the same face as the introduction of the
methyl group.
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