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On Farthest-Point Information in Networks*
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Abstract

Consider the continuum of points along the edges of a
network, an embedded undirected graph with positive
edge weights. Distance between these points can be
measured as shortest path distance along the edges of
the network. We introduce two new concepts to capture
farthest-point information in this metric space. The
first, eccentricity diagrams, are used to encode the dis-
tance towards farthest points for any point on the net-
work compactly. With this, we can solve the minimum
eccentricity feed-link problem, i.e., the problem to ex-
tend a network by one new point minimizing the largest
network distance towards the new point. The second,
network farthest-point diagrams, provide an implicit
description of the sets of farthest points. A network
farthest-point diagram is, in principle, a compressed
farthest-point network Voronoi link diagram generated
by the entire continuum of uncountably many points
on the network at hand. We provide construction al-
gorithms for data structures that allow for queries for
the distance to farthest points as well as their location
from any point on a network in optimal time. Thus, we
establish first bounds on construction times and storage
requirements of such data structures.

1 Introduction

The topic of this article was inspired by the follow-
ing network extension problem introduced by Aronov
et.al. [2]. We are given a network of roads and the
position of a site, e.g., a hospital, that is not on the net-
work, yet. The site needs to be connected to the existing
roads with a new one, referred to as a feed-link. Aronov
et. al. [2] seek a feed-link that minimizes the largest ra-
tio between the distance to the site via the roads versus
the Euclidean distance from any location on the roads.
This ratio signifies the largest detour one may take to
the site by traveling along the roads as opposed to fly-
ing directly to it. When this detour, also referred to
as dilation, is minimized, the distances via the network
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resemble the straight line distances as best as possible.
An illustration is shown in Figure 1. Griine [7] provides
a summary of dilation and its properties. Notice that
all positions on the network are taken into account to
evaluate a feed-link and that the feed-link might be con-
nected to any location along the roads. In this sense the
dilation is a generalization of the stretch factor [11].
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Figure 1: A polygonal cycle C with a point p in it that
is connected to C' via a feed-link at ¢q. The dilation of
point 7 on the cycle is the ratio between the highlighted
path (orange) via the roads to p versus the Euclidean
distance between p and r (blue, dotted).

Depending on the application at hand, one might con-
sider other measures. For instance, if the site is a hospi-
tal, one might seek to optimize emergency unit response
times [5]. Assume an accident occurs along any of the
roads, then it is desirable to ensure that the time an
emergency crew needs to drive from the hospital to the
accident is as small as possible or below a certain critical
threshold. Therefore, we seek to minimize the largest
road-wise distance to the hospital. The set of farthest
locations from the site is precisely the same as that for
the meeting point of the feed-link with an existing road.
Hence, determining how the set of farthest points and
the road-wise distances to them change along the exist-
ing roads turns out to be helpful to solve this variant of
the feed-link problem.

In this article, we will solve the latter for arbitrary
networks of roads using novel data structures that sup-
port queries for farthest-point information.

1.1 Problem Definition

A network is a straight-line embedding of a simple,
finite, connected, and undirected graph G = (V, E),
where V is a set of points in R2?, and E is a set of
segments whose endpoints are in V. Each edge e has
a positive weight w, > 0. A point p € R? is on G,
denoted by p € G, if p is on some edge of G. A
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point p on an edge wv € E subdivides uv such that
|up| = Auv| and |pv| = (1 — A) |uv| for some A € [0, 1].
We choose the weights of the resulting sub-edges up and
pv according to the fraction A, viz., wy, = Aw,, and
Wpy = (1 — XN)wy,. A point can only be on one edge.
Thus, if a point happens to lie on the proper intersec-
tion of two edges, the point can only be associated with
one edge. Consider the weighted shortest path distance
dg: V xV — [0,00) between vertices of G with respect
to the edge weights w,, e € E. This can be extended to
arbitrary points p and g on G by considering them to be
vertices for the sake of evaluating dg(p, q) [2, 7]. We re-
fer to this as the network distance on G. The following
definition generalizes a term that is usually introduced
with respect to distances between vertices [9, pp. 35-36].

Definition 1 (Eccentricity) Let G be a network (re-
fer to Figure 2). For a point p on G, the largest network
distance towards p is the eccentricity of p with respect
to G and it is denoted by eccg(p), i.e.,

= d .
ecca (p) max a(p,q)

The point q on G is eccentric to p if it is a farthest
point from p with respect to the network distance, i.e.,

if da(p,q) = ecca(p)*.

[]

(a) A network G. (b) A point p on G and a

point p eccentric to p.

Figure 2: A network G (a) with edge weights as indi-
cated. A point p with its non-vertex eccentric point p
is shown (b). Here we have ecc(p) = 10 + 41/2 achieved
on the highlighted path (black).

Our goal is to design algorithms and data structures
for a given network G in order to answer the following
types of queries. For any point p on G.

1. What is the eccentricity of p?

2. Which points on G are farthest from p with respect
to the network distance?

3. Let uv be an edge such that p € uv. Which points
r on uv have the same farthest points as p?

n the remainder of this article we will omit the subscript
indicating the underlying network G in all of the above notation
when it is clear from the context.

1.2 Related Work

The relation between points p on a network G and their
farthest points p on G can be expressed in terms of exist-
ing notions as follows. It can be stated as the farthest-
point Voronoi diagram on the metric space (G,d(,-))
where all of the uncountable infinitely many points on
G are considered to be sites or generators of the di-
agram. Usually Voronoi diagrams are computed with
respect to a finite set of n € N sites. The farthest-point
Voronoi diagram is a special case of the k-th nearest
neighbor Voronoi diagram with k = n. Even though
Voronoi diagrams on networks have been studied be-
fore, e.g., [3, 5, 8, 13], they were defined with respect to
a finite set of generators. A survey of various notions of
Voronoi diagrams, including some for networks, can be
found in [12]. Refer to [13] for generalized variants of
network Voronoi diagrams and further references.

Information about the eccentricity of points along the
edges of a network is also useful in contexts other than
the stated feed-link problem. For instance, in the con-
tinuous absolute 1-center problem from location analysis
[4, 14] we seek a point with minimum eccentricity in a
network. Furthermore, a point of maximum eccentricity
and one of its farthest points form a pair of diametral
points. Recent surveys of existing related notions and
results can be found in [10, 14].

2 Eccentricity Diagrams

We seek a concise representation of the mapping from
the points on a network G to their eccentricity value.
Frank [4] seeks a point with minimum eccentricity on G.
He finds it by determining the smallest among the mini-
mal eccentricity values on each edge uv. To obtain these
values, Frank [4] computes the eccentricity of points on
edge uv as a function as follows. Let ¢5% : [0,1] — [0, 00)
be the mapping such that

st
[0,1] > A M rqnezgcd((l —Nu+ v, q).

Consider a point p on edge wv with p = (1 — Au +
Av, A € [0,1]. The value ¢3! ()) is the largest network
distance from p to any point on edge st. We obtain the
eccentricity function for the points p on uv by building
the upper envelope of the functions ¢¢, for all edges e
of the network, since

= d = d .
ecc(p) max (P, q) = max max (p,q)
The shape of the functions is described in Lemma 2 and
depicted in Figure 3.

Lemma 2 ([4]) Let uv and st be edges of a network G.
Then the function ¢5. is piece-wise linear with slopes
Wy, 0, and —wy, in this order.
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Gun(N)

(c) The function ¢2,.

Figure 3: The function ¢3! for two edges uv an st consist
of three linear segments. The point @ (respectively o) is
the farthest point from w (respectively v) on st. Like-
wise, the point ¢ (respectively 5) is the farthest point
from t (respectively s) on uv. Shortest paths attaining
the network distance ¢3¢ (p) form p to the farthest point
P from p on st are shown in (a) and (b).

As a consequence, the eccentricity along an edge uv of
a network with m edges is the upper envelope of m piece-
wise linear functions as in Lemma 2. The domain of
all these functions is [0, 1]. We can compute this upper
envelope using a divide-and-conquer approach described
by Agarwal and Sharir [1, Section 2.3].

Lemma 3 Let uv be an edge of a network G. Any pair
of functions ¢S, and @2, for edges e and €' of G inter-
sect at most twice disregarding overlaps.

Theorem 4 ([1]) Let F be a set of k continuous, to-
tally defined functions with a common domain whose
graphs intersect in at most two points. The sequence of
functions along the upper envelope of F can be obtained
in O(klog(k)) time and has length at most 2k — 1.

With Lemmas 2 and 3 we can use Theorem 4 to esti-
mate the size and construction time of the upper enve-
lope of the functions ¢3! .

Corollary 5 Let uv be an edge of a network G with m
edges. The eccentricity on uv is a piece-wise linear and
continuous function, consisting of at most 6m — 3 line
segments. It can be computed in O(mlog(m)) time.

Due to its piece-wise linearity, we can describe the
eccentricity completely by stating the value of the ec-
centricity at the endpoints of each linear segment. That
is for any point p in the segment ab with linear eccen-
tricity and with p = (1 — A)a + \b, we have

ecc(p) = (1 — A) ecc(a) + Aece(b).

This leads us to the following notion.

Definition 6 (Eccentricity Diagram) Let G be a
network. Consider the subdivisions G’ of G with

ecc(a+ Ab—a)) = (1 — N ecc(a) + Aece(b),

for each edge ab of G’ and each X\ € [0,1]. Among these
we call the one with the least number of vertices the
eccentricity diagram of G and denote it by ED(G).

The eccentricity diagram of a network is well-defined
and unique, as it can be obtained by subdividing each
edge uv at the endpoints of the line segments of the ec-
centricity function on wv. By Corollary 5, this yields
a finite subdivision with the minimum number of addi-
tional vertices. An example is shown in Figure 5. As
the computation of the upper envelope is performed on
each edge, we have the following corollary.

Corollary 7 The eccentricity diagram of a network
with m edges has size O(m?) and can be constructed
in O(m?log(m)) time, provided the shortest path infor-
mation between any pair of vertices is known a-priori.

Next we establish that the size bound stated in Corol-
lary 7 is tight for planar networks. In the full version
of this paper we establish a lower bound of Q2(nm) for
general networks with n vertices and m edges.

Lemma 8 For all n € N, there exists a (planar) net-

work G with n vertices that has an eccentricity diagram
ED(G) of size Q(n?).

Proof. Consider the network G depicted in Figure 4
for k > 2 and a value of € with 0 < € < ﬁ Each of
the k edges w;v;, i = 1,...,k, is subdivided into k sub-
edges in the eccentricity diagram of G on u;v; by k — 1
additional vertices. Thus, we have at least k(k — 1) €
(n?) additional vertices in total, as the network has

n = 4k vertices. O
Wy, 2 Yo VU1 V2 U3 Vg Vk—1 Vg
€ € € € € €
1
Wk—1 2
1 AU ) ) ) B -
w.
4 2 [ \ \ \ \ \ \
w3 2 : : : : : : :
PR ! !
1 . . .
w2 2
o« 2 |
1
wy 2 € € € e | € €
Up U1 U2 U3 Ug Uk—1 Uk

Figure 4: A network whose number of vertices in the
eccentricity diagram is quadratic in the number of ver-
tices n in the network itself. Along the edges u;v; for
i =1,...,k, the farthest point among w1, ..
dicated in the corresponding colour.

., Wg 18 in-
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(a) A network.
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(b) The functions ¢35, and their upper envelope.

Figure 5: An example for the brute-force method ap-
plied to the edge uv of the network in (a). The functions

st representing the edge-to-edge distances are shown
in (b) together with their upper envelope, representing
the eccentricity along uv. The vertices h, z, y, and a
must be added to uwv, to obtain the subdivision of uv in

the eccentricity diagram ED(G) of G.

Assume we are given the eccentricity diagram ED(G)
of a network G as well as the eccentricity values ecc(v)
of all vertices v of ED(G). Then we can answer queries
for the eccentricity value ecc(p) of a point p on an edge
uv using the piecewise linearity of ecc(-) on uv, where

ece(p) = (1 - wal’) ecc(a) + —2 ecc(b),

Wab Wab

and ab is the sub-edge of uv in ED(G) containing p. We
assume that we are given the edge uv of the original
network G containing p when conducting such a query.
The sub-edge ab of uv can be found in O(log(n)) time
using binary search as there are at most 6m—3 € O(n?)
additional vertices on wv in ED(G) by Corollary 5.
The above yields in combination with Corollary 7 and
Lemma 8 the following theorem.

Theorem 9 Given a network G with n vertices and m
edges. There is a data structure that can be used to de-
termine the eccentricity value ecc(p) of any point p on
G in O(log(n)) time, provided that the edge uv of G
containing p is giwen. This data structure can be con-
structed in O(m?log(n)) time, provided that the network
distances between all vertices of G are known. The size
of this data structure is at most O(m?) in general and
can be at least Q(n?) for certain planar networks.

3 Network Farthest-Point Diagrams

In addition to computing the distance towards farthest
points, we are also interested in their location. That is
we seek to query for the set of farthest points from any
point g on a network (G. This suggests the introduc-
tion of a continuous version of a farthest-point Voronoi
diagram on the metric space formed by the edges of a
network and the corresponding network distance.

Definition 10 Let G be a network. Consider the set

Viarnet(9) :={p € G: Vg’ € G: d(p,¢’) < d(p,9)},

of points p € G whose network distance d(p, g) to a point
g on G 1is largest among the network distances to all
other points ¢’ on G. We call Vigrnei(g) the farthest-
point network Voronoi link cell of g. We obtain the
farthest-point network Voronoi link diagram of G by
adding a new vertex to G for each boundary point of
the non-empty farthest-point network Voronoi link cells,
i.e., at all points of the set UgeG Viar-net(g). If the lat-
ter set is finite, we say that the diagram is finite.

The existing notions of Voronoi diagrams are deter-
mined by a finite set of reference points. For instance
the farthest-point Voronoi diagram [12, Section 3.3] sub-
divides the plane into regions such that the points in the
interior of any region have one common unique farthest
point among a finite set of points in R?. Likewise, the
network Voronoi link diagram on G [12, Section 3.8]
subdivides a network into parts, such that the points in
the interior of each part are closest to a common subset
of a finite set of points on G. However, for the queries
described in Section 1.1, the situation is different. First,
we are oblivious of which points g on G are considered
farthest points, i.e., satisfy Viarnet(9) # 0, when cre-
ating the farthest-point network Voronoi link diagram.
Thus, the set of reference points is to be determined as
opposed to given a-priori. Secondly, this set of reference
points may be infinite, as depicted in Figure 6. There-
fore, known methods to determine Voronoi diagrams do
not necessarily apply here. Moreover, we need to find a
way to deal with infinite farthest-point network Voronoi
link diagrams. If a finite number of vertices is added, the
farthest-point network Voronoi link diagram is a subdi-
vision of G. In that case, it is considered a network it-
self. Otherwise, it is an infinite network, i.e., a network
with infinitely many vertices and degenerate edges that
may have an empty interior and identical endpoints. In
the finite case, it would be sufficient to store the set
of farthest points at each vertex and each edge of the
farthest-point network Voronoi link diagram to give a
full description of the location of eccentric points. How-
ever, this is impossible to do explicitly in the infinite
case. Next, we will investigate the latter in order to
obtain a finite representation of the same information.
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(b) Infinite diagram.

(a) Finite diagram.

Figure 6: The farthest-point network Voromnoi link di-
agrams for two networks. Parts that have a common
farthest point (square) are indicated in colour. In the
finite case (a), the network is subdivided into regions
with a fixed farthest point. We have a different be-
haviour on the vertical edges (black) of (b). When the
point p is moved upwards, its two farthest points p and
P’ move downwards accordingly. No two points on this
edge have a common farthest point.

Theorem 11 Let G be a network. The farthest-point
network Voronoi link diagram of G is infinite if and
only if there exists an edge ab of the eccentricity diagram
ED(G) of G such that the eccentricity is constant on ab,
i.e., we have ecc(a) = ecc(p) for all p € ab.

We distinguish two types of phenomena on the edges
of the eccentricity diagram. On edges wv with non-
constant eccentricity, the farthest points are stationary
in the sense that uv can be subdivided into finitely many
sub-edges without any change of the farthest-point set
in their interior. On edges with constant eccentricity
however, each point has its own set of farthest points
distinct from that of any of the uncountably many other
points on it. Nonetheless, we can subdivide edges that
exhibit the latter behavior into finitely many portions,
such that the farthest points on each portion are con-
tained in a common set of edges. This simplification
yields a finite representation of the farthest-point net-
work Voronoi link diagram defined as follows.

Definition 12 (Farthest-Point Diagram) Let G be
a network. Consider the subdivisions G' of the eccen-
tricity diagram ED(G) of G such that each edge uv of
G’ is of one of the following types.

(i) The eccentricity on wv is non-constant, and all
points in the interior of uv have the same set of
farthest points in G.

(ii) The eccentricity on uv is constant, and all points
in the interior of uv have the same set of edges of
G containing their farthest points in G.

Among these subdivisions we call the one with the least
number of additional vertices the network farthest-point
diagram of G and denote it by FD(G).

The network farthest-point diagram can be obtained
in the same manner as the eccentricity diagram. During
the construction of the upper envelope, we keep track
of the edges e whose functions ¢, contribute to this
envelope. See Figure 7 for an example.

For each edge of the network farthest-point diagram
we can store the set of farthest points or the set of edges
containing them depending on the type of the edge.
Each of these sets consist of at most m elements. With
this data we can answer queries for the set of farthest
points of a point p on a given edge uv of G as follows.
First, we identify the sub-edge ab of uv in FD(G) con-
taining p using binary search. If a set of farthest points
is stored with ab, we return this set. Otherwise, we
store the set of edges containing the farthest points of
p with ab. In that case we use the distances between
all vertices of G to obtain the locations of the farthest
points from p in constant time per point.

Theorem 13 2 Given a network G with n vertices and
m edges. There is a data structure that can be used to
determine the set of farthest points of any point p on G
in O(log(n)+k) time, when given the edge uv containing
p, where k is the size of the output. This data structure
has a construction time and size of O(m?).

20 - 1

(b) The network farthest-point diagram on wv indicated
with colours. Farthest points are located at the dot(ted
segments) of matching colour.

Figure 7: An example for determining the network
farthest-point diagram for the network G from Figure 5.
The upper envelope (a) of the functions ¢! reveals
which edges contain farthest points (b).

2In the full version of this paper, we show how to obtain this
result with a construction time and size bound of O(m?log(n)).
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4 Solving a Feed-Link Problem

Now we demonstrate how to solve the feed-link prob-
lem stated in the introduction with the aid of the data
structure from Theorem 9. We begin with a formal def-
inition of the former. Here we assume all edge weights,
including that of any possible feed-link, to be equal to
the Euclidean length of the corresponding line segment.
A network with this property is referred to as geometric.
Further, if we introduce the feed-link pg to a point ¢ on
G, we denote the resulting network by G + pq and refer
to ¢ as the anchor of p in G + pq.

Definition 14 Let G be a geometric network. Further,
let p be a point in the plane that is not on G. We call
the problem of determining a point ¢ on G such that the
eccentricity of p with respect to G + pq is smallest the
minimum eccentricity feed-link problem.

Lemma 15 Let uv be an edge of the eccentricity dia-
gram of G. If the eccentricity is increasing on uv from
u to v, then u is the optimal anchor on uv. Otherwise,
the closest point to p on uv is the optimal anchor on uv.

The (globally) optimal anchor on G is found by scan-
ning through all edges of the eccentricity diagram of G
and determining the (locally) optimal anchor on each of
them. In case there are restrictions for the position of
the anchor point, we only use the part of the eccentric-
ity diagram for the allowed anchor points. For example,
one could require that the extended network G + pgq
should be planar. Then only the points on G that are
visible from p may be anchors.

5 Future Work

The construction algorithms for the data structures in
Theorem 9 and 13 work for any type of network, yet they
suffer from slow running times and the need to know all
vertex-to-vertex distances in the network. The follow-
ing improvements [6] upon these results are beyond the
scope of this extended abstract and will be the matter of
future publications. For cactus networks, we can obtain
data structures with the same query times as in The-
orem 9 and 13 but with storage requirement and con-
struction time of O(n). Moreover, for planar networks,
we can construct a data structure for a designated face
in O(nlog(n)) time. Neither of these results require pre-
computed vertex-to-vertex distances. For more details
refer to Grimm [6].
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