

10-418/10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Learning to Search (Part I)

Matt Gormley Lecture 4 Sep. 12, 2022

Reminders

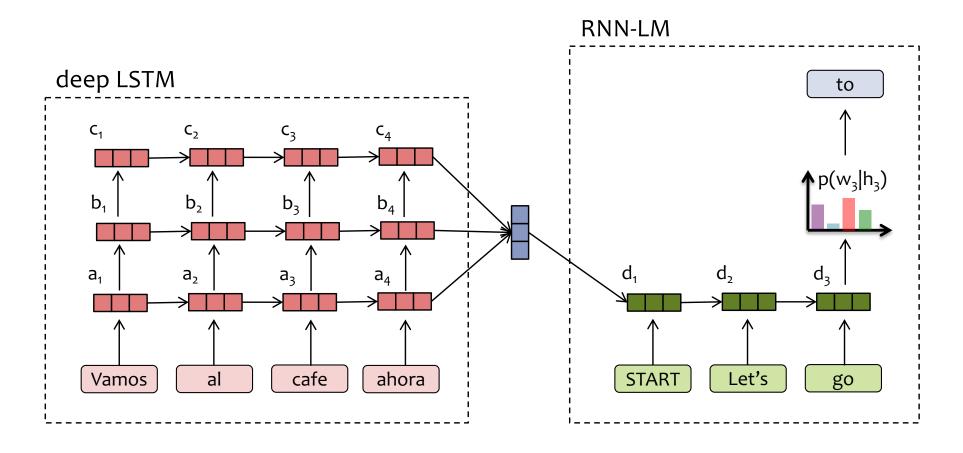
- Homework 1: Neural Networks for Sequence Tagging
 - Out: Wed, Sep 7 (later today!)
 - Due: Fri, Sep 16 at 11:59pm
 - Two parts:
 - written part to Gradescope (Written slot)
 - programming part to Gradescope (Programming slot)

EXAMPLE SEQ2SEQ ARCHITECTURES

Example Architectures

deep LSTM + RNN-LM

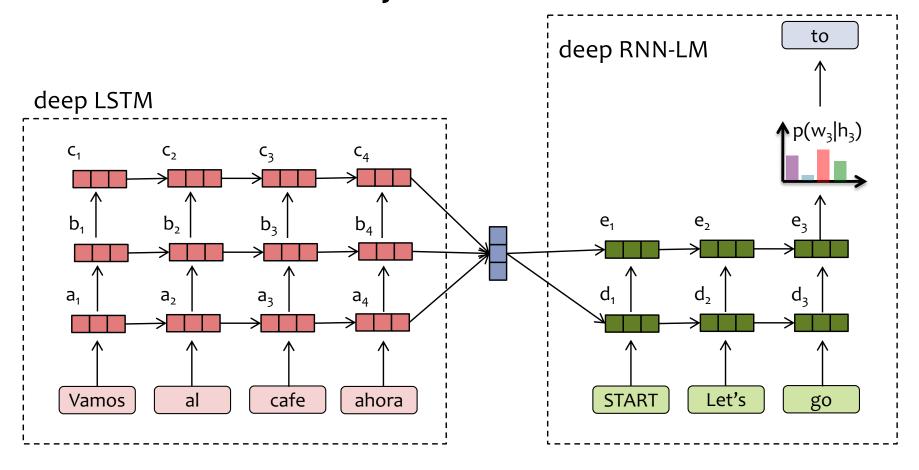
- Encoder: three-layer unidirectional LSTM
- Decoder: a one-layer RNN-LM



Example Architectures

deep LSTM + deep RNN-LM

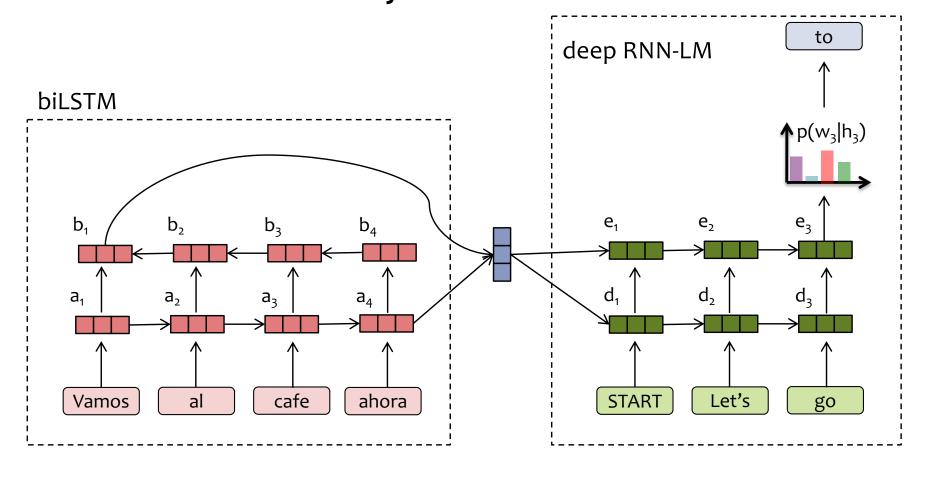
- Encoder: three-layer unidirectional LSTM
- Decoder: a two-layer RNN-LM



Example Architectures

biLSTM + deep RNN-LM

- Encoder: two-layer bidirectional LSTM
- Decoder: a two-layer RNN-LM



LEARNING A SEQ2SEQ MODEL

Comparing RNN, RNN-LM, seq2seq

Whiteboard:

- Objective functions for RNN, RNN-LM, and seq2seq models
- Training a seq2seq model

DECODING FOR SEQ2SEQ MODELS

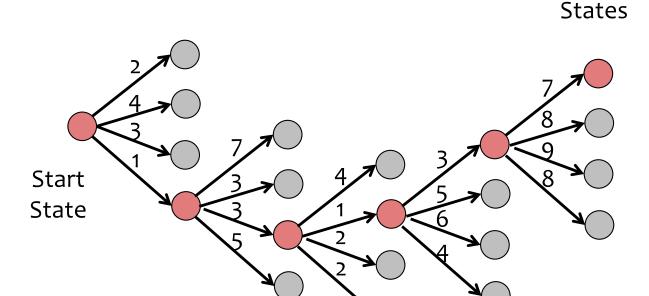
Decoding for seq2seq Models

At test time, how do we obtain predictions from our model?

- The two most common approaches:
 - Greedy search
 - Beam search
- Many alternatives:
 - Ancestral sampling (assuming we have a locally normalized model)
 - Nucleus sampling
 - Top-k sampling

Background: Greedy Search

End



Goal:

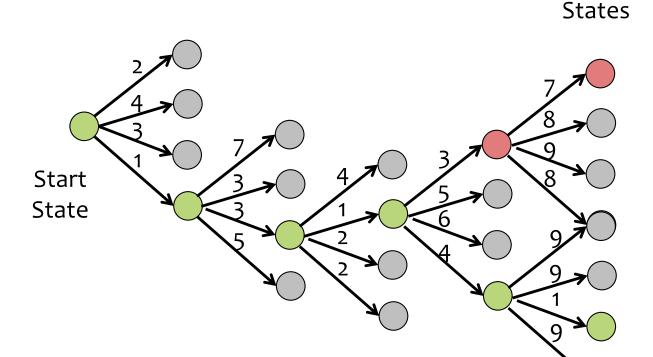
- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Greedy Search:

- At each node, selects the edge with lowest (immediate) weight
- **Heuristic** method of search (i.e. does not necessarily find the best path)
- Computation time: linear in max path length

Background: Greedy Search

End



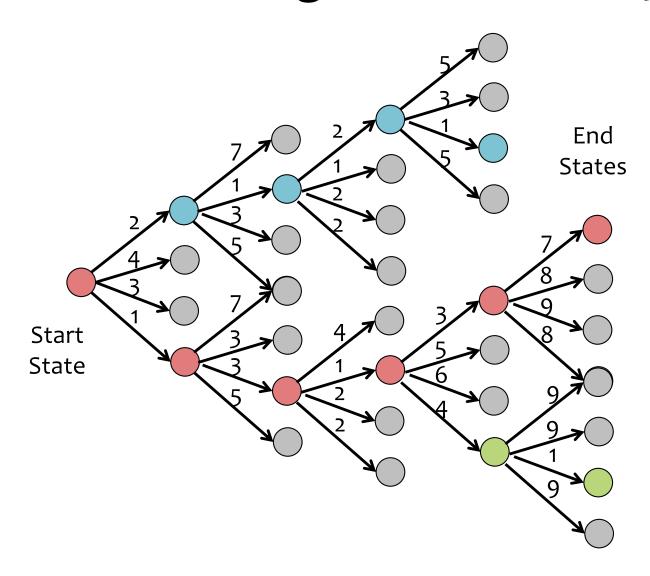
Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Greedy Search:

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)
- Computation time: linear in max path length

Background: Greedy Search



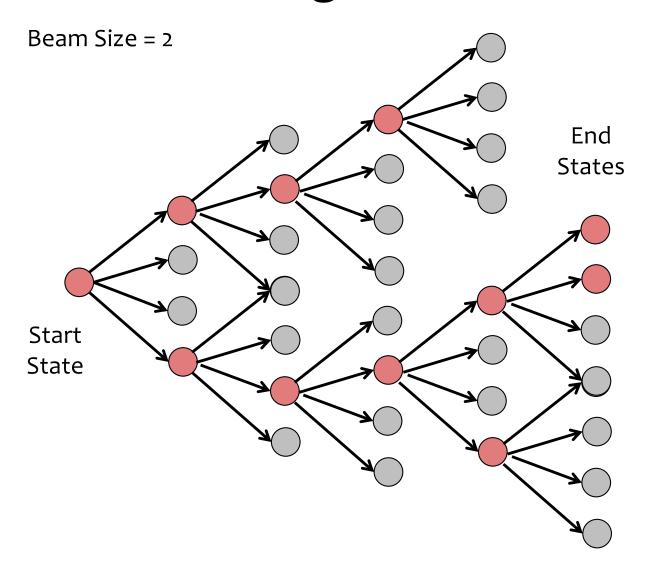
Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Greedy Search:

- At each node, selects the edge with lowest (immediate) weight
- **Heuristic** method of search (i.e. does not necessarily find the best path)
- Computation time: linear in max path length

Background: Beam Search



Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Beam Search:

- The "beam" is current set of best k nodes
- Let the expansion set be all neighbors of nodes in the beam
- At each time step, selects the set of k nodes in the expansion set with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)
- Computation time: linear in max path length

Decoding for seq2seq Models

At test time, how do we obtain predictions from our model?

- The two most common approaches:
 - Greedy search
 - Beam search
- Many alternatives:
 - Ancestral sampling (assuming we have a locally normalized model)
 - Nucleus sampling
 - Top-k sampling

Important Observation

- maximum likelihood training (MLE) assumes that our inference strategy will return the highest probability sequence
- at test time, our inference strategies are all heuristic (i.e. they will make mistakes)

APPLICATIONS OF SEQ2SEQ

seq2seq for MT

Basic Architecture:

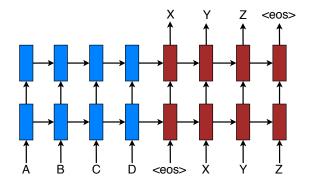


Figure 1: **Neural machine translation** – a stacking recurrent architecture for translating a source sequence A B C D into a target sequence X Y Z. Here, <eos> marks the end of a sentence.

Results from Sutskever et al. (2014)

Method	test BLEU score (ntst14)		
Bahdanau et al. [2]	28.45		
Baseline System [29]	33.30		
Single forward LSTM, beam size 12	26.17		
Single reversed LSTM, beam size 12	30.59		
Ensemble of 5 reversed LSTMs, beam size 1	33.00		
Ensemble of 2 reversed LSTMs, beam size 12	33.27		
Ensemble of 5 reversed LSTMs, beam size 2	34.50		
Ensemble of 5 reversed LSTMs, beam size 12	34.81		

Table: performance on WMT'14 English to French test set

Visualization from Sutskever et al. (2014)

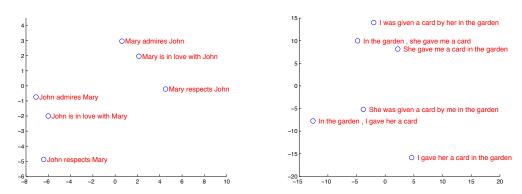


Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that both clusters have similar internal structure.

seq2seq for ASR

Listen Attend and Spell

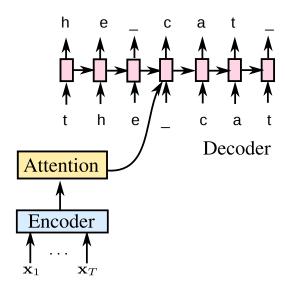


Figure 1: LAS model.

$$\mathbf{h} = \text{Listen}(\mathbf{x})$$

$$P(y_i|\mathbf{x}, y_{< i}) = \text{AttendAndSpell}(y_{< i}, \mathbf{h})$$

seq2seq for ASR

Listen Attend and Spell

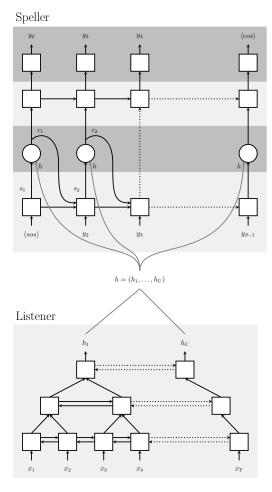


Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence \mathbf{x} into high level features \mathbf{h} , the speller is an attention-based decoder generating the \mathbf{y} characters from \mathbf{h} .

Results from Park et al. (2019)

Table 3: LibriSpeech 960h WERs (%).

Method No LM		With LM		
	clean	other	clean	other
HMM				
Panayotov et al., (2015) [19]			5.51	13.97
Povey et al., (2016) [29]			4.28	
Han et al., (2017) [30]			3.51	8.58
Yang et al. (2018) [31]			2.97	7.50
CTC/ASG				
Collobert et al., (2016) [32]	7.2			
Liptchinsky et al., (2017) [33]	6.7	20.8	4.8	14.5
Zhou et al., (2018) [34]			5.42	14.70
Zeghidour et al., (2018) [35]			3.44	11.24
Li et al., (2019) [36]	3.86	11.95	2.95	8.79
LAS				
Zeyer et al., (2018) [23]	4.87	15.39	3.82	12.76
Zeyer et al., (2018) [37]	4.70	15.20		
Irie et al., (2019) [24]	4.7	13.4	3.6	10.3
Sabour et al., (2019) [38]	4.5	13.3		

seq2seq for ASR

Listen Attend and Spell

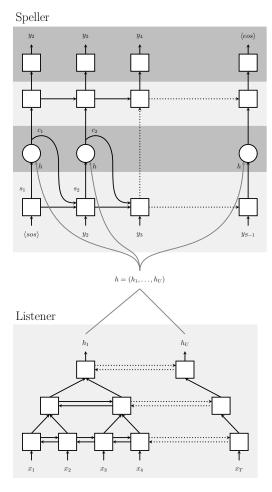


Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence **x** into high level features **h**, the speller is an attention-based decoder generating the **y** characters from **h**.

Results from Park et al. (2019)

Table 3: LibriSpeech 960h WERs (%).

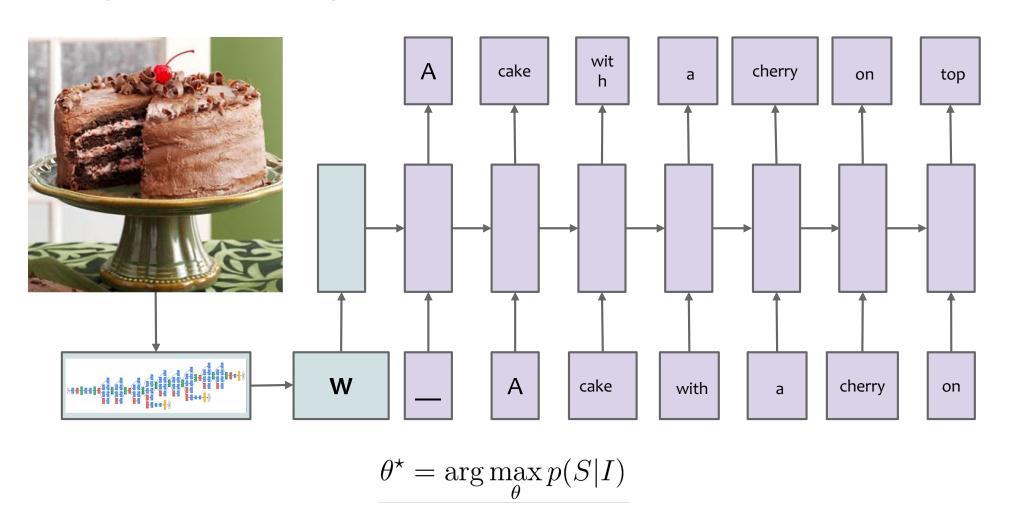
Method	No LM		With LM	
	clean	other	clean	other
HMM				
Panayotov et al., (2015) [19]			5.51	13.97
Povey et al., (2016) [29]			4.28	
Han et al., (2017) [30]			3.51	8.58
Yang et al. (2018) [31]			2.97	7.50
CTC/ASG				
Collobert et al., (2016) [32]	7.2			
Liptchinsky et al., (2017) [33]	6.7	20.8	4.8	14.5
Zhou et al., (2018) [34]			5.42	14.70
Zeghidour et al., (2018) [35]			3.44	11.24
Li et al., (2019) [36]	3.86	11.95	2.95	8.79
LAS				
Zeyer et al., (2018) [23]	4.87	15.39	3.82	12.76
Zeyer et al., (2018) [37]	4.70	15.20		
Irie et al., (2019) [24]	4.7	13.4	3.6	10.3
Sabour et al., (2019) [38]	4.5	13.3		
Our Work				
LAS	4.1	12.5	3.2	9.8
LAS + SpecAugment	2.8	6.8	2.5	5.8

Park et al. (2019) used the **LAS model** from prior work, and introduced a **data augmentation** method that gave state-of-the-art performance on LibriSpeech 960h and Swichboard 300h tasks

p(English | French)

p(English | Image)

- 1. Vinyals, O., et al. "Show and Tell: A Neural Image Caption Generator." CVPR (2015).
- 2. Mao, J., et al. "Deep captioning with multimodal recurrent neural networks (m-rnn)." ICLR (2015).
- 3. Karpathy, A., Li, F., "Deep visual-semantic alignments for generating image descriptions." CVPR (2015).



Human: A close up of two bananas with bottles in the background.

BestModel: A bunch of bananas and a bottle of wine.

InitialModel: A close up of a plate of food on a table.

Human: A woman holding up a yellow banana to her face.

BestModel: A woman holding a banana up to her face.

InitialModel: A close up of a person eating a hot dog.

Human: A man outside cooking with a sub in his hand.

BestModel: A man is holding a sandwich in his hand.

InitialModel: A man cutting a cake with a knife.

Human: Someone is using a small grill to melt his sandwich.

BestModel: A person is cooking some food on a grill.

InitialModel: A pizza sitting on top of a white plate.

Human: A blue, yellow and red train travels across the tracks near a depot.

BestModel: A blue and yellow train traveling down train tracks.

InitialModel: A train that is sitting on the tracks.

Learning Objectives

Sequence to Sequence Models

You should be able to...

- Apply an RNN to time-series structured prediction tasks
- Employ an RNN-LM for various structured prediction tasks through prompting
- Explain the difference between RNNs, RNNLMs, encoder-decoder models, and seq2seq models
- 4. Implement and train a basic seq2seq model

IMITATION LEARNING

Imitation Learning vs. RL

Paradigm	Data
Supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N \qquad \mathbf{x} \sim p^*(\cdot) \text{ and } y = c^*(\cdot)$
\hookrightarrow Regression	$y^{(i)} \in \mathbb{R}$
\hookrightarrow Classification	$y^{(i)} \in \{1, \dots, K\}$
\hookrightarrow Binary classification	$y^{(i)} \in \{+1, -1\}$
\hookrightarrow Structured Prediction	$\mathbf{y}^{(i)}$ is a vector
Unsupervised	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N \qquad \mathbf{x} \sim p^*(\cdot)$
Semi-supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}\}_{j=1}^{N_2}$
Online	$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), (\mathbf{x}^{(3)}, y^{(3)}), \ldots \}$
Active Learning	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ and can query $y^{(i)} = c^*(\cdot)$ at a cost
Imitation Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}), (s^{(2)}, a^{(2)}), \ldots\}$
Reinforcement Learning	$\mathcal{D} = \{ (s^{(1)}, a^{(1)}, r^{(1)}), (s^{(2)}, a^{(2)}, r^{(2)}), \ldots \}$

Autonomous Driving via Imitation Learning

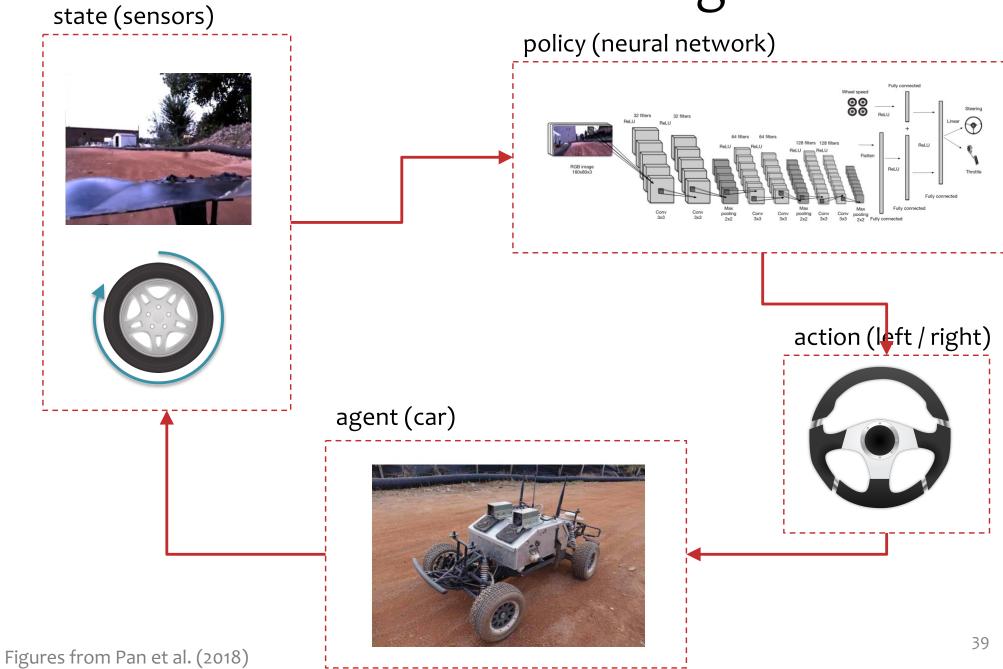
- Goal: learn to drive a car around a dirt track at high speed without crashing
- Approach 1: (Williams et al., 2016; 2017)
 - model-predictive control (MPC)
 - expensive, accurate sensors required:
 - Global Positioning System (GPS)
 - Inertial Measurement Unit (IMU)
 - effective, but limited applicability
- Approach 2: (Pan et al., 2018)
 - imitation learning with deep CNN defining the policy
 - low-cost, on-board sensors:
 - monocular camera
 - wheel speed sensors
 - learn from expert demonstrations to reduce risk of crash

Autonomous Driving via Imitation Learning

Autonomous Driving via Imitation Learning

Why is this hard?

Imitation Learning



Imitation Learning

Whiteboard:

- Fully supervised imitation learning
- The pitfall of fully supervised imitation learning
- DAgger for imitation learning