

10-418/10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Causal Inference + Bayesian Nonparametrics

Matt Gormley Lecture 24 Nov. 30, 2022

Reminders

- Homework 6: VAE + Structured SVM
 - Out: Wed, Nov 16
 - Due: Wed, Nov 30 at 11:59pm

- 10-618 Mini-Project
 - Team Formation Due: Tue, Nov 29
 - Proposal Due: Thu, Dec 1
 - Summary & Code Due: Fri, Dec 9

CAUSAL INFERENCE

Causal Hierarchy

Figure 1. The causal hierarchy. Questions at level 1 can be answered only if information from level i or higher is available.

Level (Symbol)	Typical Activity	Typical Questions	Examples
1. Association $P(y x)$	Seeing	What is? How would seeing <i>X</i> change my belief inY?	What does a symptom tell me about a disease? What does a survey tell us about the election results?
2. Intervention $P(y do(x), z)$	Doing, Intervening	What if? What if I do X?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?
3. Counterfactuals P(y _x x', y')	Imagining, Retrospection	Why? Was it X that caused Y? What if I had acted differently?	Was it the aspirin that stopped my headache? Would Kennedy be alive had Oswald not shot him? What if I had not been smoking the past two years?

Causal Models

Whiteboard:

- Structural Causal Models
 - Example: Linear SCM (structural equation model)
 - Example: Nonparametric SCM
 - Intervention
 - Graphical model induced by SCM
- Post-Intervention Distribution vs. Conditional Distribution
- Treatment Efficacy
 - average difference
 - experimental risk ratio

Identification

Identification:

- whether the causal effects are identifiable
- the central question in analysis of causal effects

Can the post-intervention distribution $p(y \mid do(x_o))$ be estimated by data sampled from the pre-intervention distribution p(x, y, z)?

Yes! (Sometimes.)

Case 1: when the model M is acyclic with all error terms (U_X , U_Y , U_Z) jointly independent, all causal effects are identifiable.

Case 2: when we can marginalize out the causal effects

Causal Markov Theorem

Theorem 1 (The Causal Markov Condition). Any distribution generated by a Markovian model M can be factorized as:

$$P(v_1, v_2, \dots, v_n) = \prod_i P(v_i | pa_i)$$
(15)

where V_1, V_2, \ldots, V_n are the endogenous variables in M, and pa_i are (values of) the endogenous "parents" of V_i in the causal diagram associated with M.

Corollary 1 (Truncated factorization). For any Markovian model, the distribution generated by an intervention $do(X = x_0)$ on a set X of endogenous variables is given by the truncated factorization

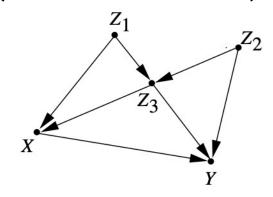
$$P(v_1, v_2, \dots, v_k | do(x_0)) = \prod_{i | V_i \notin X} P(v_i | pa_i) |_{x = x_0}$$
(17)

where $P(v_i|pa_i)$ are the pre-intervention conditional probabilities.⁸

Identification

Example: Model M

(error terms not shown)



- All of the terms in the postintervention distribution are from the preintervention distribution
- Those terms could be learned from observational data

Pre-intervention distribution:

$$P(x, z_1, z_2, z_3, y) = P(z_1)P(z_2)P(z_3|z_1, z_2)P(x|z_1, z_3)P(y|z_2, z_3, x)$$

Post-intervention distribution:

$$P(z_1, z_2, z_3, y|do(x_0)) = P(z_1)P(z_2)P(z_3|z_1, z_2)P(y|z_2, z_3, x_0)$$

Causal effect of X on Y:

$$P(y|do(x_0)) = \sum_{z_1, z_2, z_3} P(z_1)P(z_2)P(z_3|z_1, z_2)P(y|z_2, z_3, x_0)$$

Identification

Identification:

- whether the causal effects are identifiable
- the central question in analysis of causal effects

Can the post-intervention distribution $p(y \mid do(x_o))$ be estimated by data sampled from the pre-intervention distribution p(x, y, z)?

Yes! (Sometimes.)

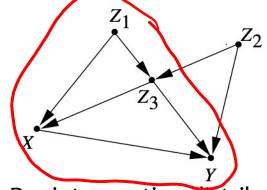
Case 1: when the model M is acyclic with all error terms (U_X , U_Y , U_Z) jointly independent, all causal effects are identifiable.

Case 2: when we can marginalize out the causal effects

Unmeasured Confounders

Example: Model M

(error terms not shown)



Pre-intervention distribution:

Suppose in our previous identifiability example, we didn't observe z_2 in our data. Can we still estimate $p(y \mid do(x_0))$?

Sno dete to learn these !!

$$P(x, z_1, z_2, z_3, y) = P(z_1)P(z_2)P(z_3|z_1, z_2)P(x|z_1, z_3)P(y|z_2, z_3, x)$$

Post-intervention distribution:

$$P(z_1, z_2, z_3, y|do(x_0)) = P(z_1)P(z_2)P(z_3|z_1, z_2)P(y|z_2, z_3, x_0)$$

Causal effect of X on Y:

$$P(y|do(x_0)) = \sum_{z_1, z_2, z_3} P(z_1)P(z_2)P(z_3|z_1, z_2)P(y|z_2, z_3, x_0)$$

$$P(y|do(x_0)) = \sum_{z_1, z_3} P(z_1)P(z_3|z_1)P(y|z_1, z_3, x_0)$$

Yes! Just marginalize over z₂

Figures from Pearl (2009)

Unmeasured Confounders

- Suppose we wish to measure causal effect of X on Y
- But some confounding variables are unmeasurable (e.g. genetic trait) and some are measureable (e.g. height)
- How to pick an admissible set of confounders which, if measured, would enable inference?

Definition 3 (Admissible sets – the back-door criterion). A set S is admissible (or "sufficient") for adjustment if two conditions hold:

- 1. No element of S is a descendant of X
- 2. The elements of S "block" all "back-door" paths from X to Y, namely all paths that end with an arrow pointing to X.

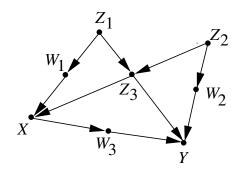
Definition 1 (d-separation). A set S of nodes is said to block a path p if either (i) p contains at least one arrow-emitting node that is in S, or (ii) p contains at least one collision node that is outside S and has no descendant in S. If S blocks all paths from X to Y, it is said to "d-separate X and Y," and then, X and Y are independent given S, written $X \perp\!\!\!\perp Y | S$.

Unmeasured Confounders

- Suppose we wish to measure causal effect of X on Y
- But some confounding variables are **unmeasurable** (e.g. genetic trait) and some are **measureable** (e.g. height)
- How to pick an admissible set of confounders which, if measured, would enable inference?

Definition 3 (Admissible sets – the back-door criterion). A set S is admissible (or "sufficient") for adjustment if two conditions hold:

- 1. No element of S is a descendant of X
- 2. The elements of S "block" all "back-door" paths from X to Y, namely all paths that end with an arrow pointing to X.

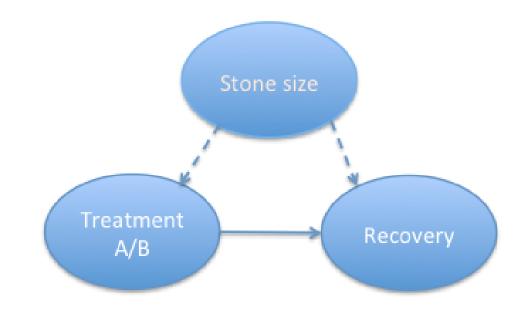


Based on this criterion we see, for example, that the sets $\{Z_1, Z_2, Z_3\}$, $\{Z_1, Z_3\}$, $\{W_1, Z_3\}$, and $\{W_2, Z_3\}$, each is sufficient for adjustment, because each blocks all back-door paths between X and Y. The set $\{Z_3\}$, however, is not sufficient for adjustment because, as explained above, it does not block the path $X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \leftarrow Z_2 \rightarrow W_2 \rightarrow Y$.

EXAMPLE: IDENTIFYING CAUSAL EFFECT

Simpson's Paradox

	Treatment A	Treatment B
Small Stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large Stones	Group 3 73% (192/263)	Group 4 69% (55/80)
Both	78% (273/350)	83% (289/350)



For people with Small Stones, 93% of those who received Treatment A recovered; but only 87% of those who received Treatment B recovered.

For people with Small Stones, pson's Paradox

So Treatment A is better than Treatment B right?

	Treatment A	Treatment B
Small Stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large Stones	Group 3 73% (192/263)	Group 4 69% (55/ <u>80</u>)
Both	78% (273/350)	83% (289/350)

Stone size

Treatment
A/B

Recovery

For people with Large Stones, 73% of those who received Treatment A recovered; but only 69% of those who received Treatment B recovered.

Not quite! Because if you look at both groups, 83% of those who received Treatment B recovered vs only 78% of those with Treatment A.

The problem is HOW
the data was
collected: i.e. the
doctor's looked at
stone size when
selecting Treatment
A or B

Figure from Kun Zhang's Spring 2019 10-708 Guest Lectures

Identification of Causal Effects

$$P(X3 \mid do(X2=1))$$

- "Golden standard": randomized controlled experiments
 - **All the other factors** that influence the outcome variable are either fixed or vary at random, so any changes in the outcome variable must be due to the controlled variable

Treatment

A/B

Recovery

• Usually expensive or impossible to do!

Identification of Causal Effects

Whiteboard:

- Stone-size example:
 - Model 1: path diagram for randomized control trial
 - Model 2: path diagram for observational data
 - Model 3: path diagram for intervention

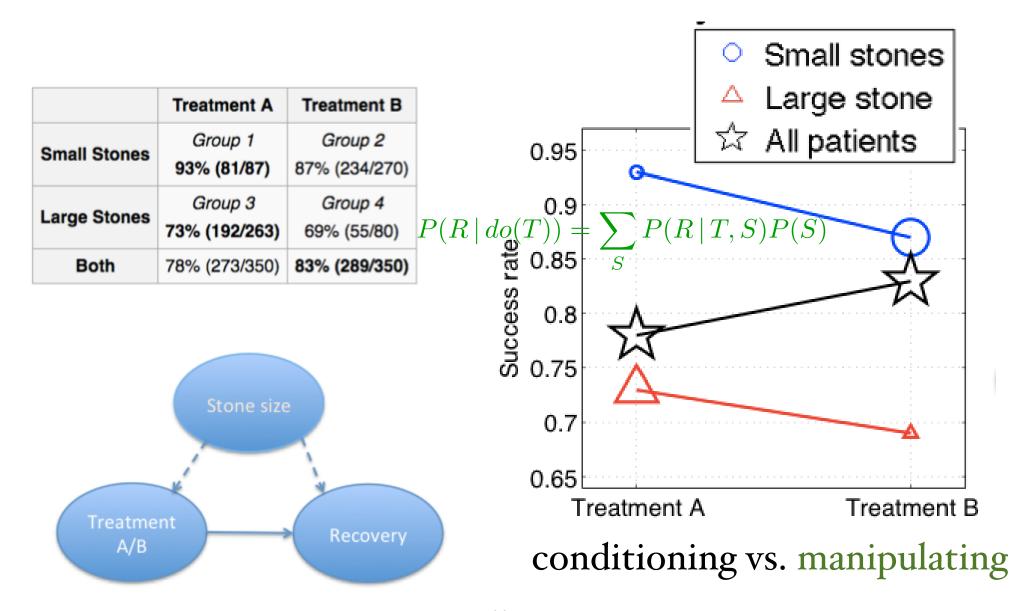
	Treatment A	Treatment B
Small Stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large Stones	Group 3 73% (192/263)	Group 4 69% (55/80)
Both	78% (273/350)	83% (289/350)

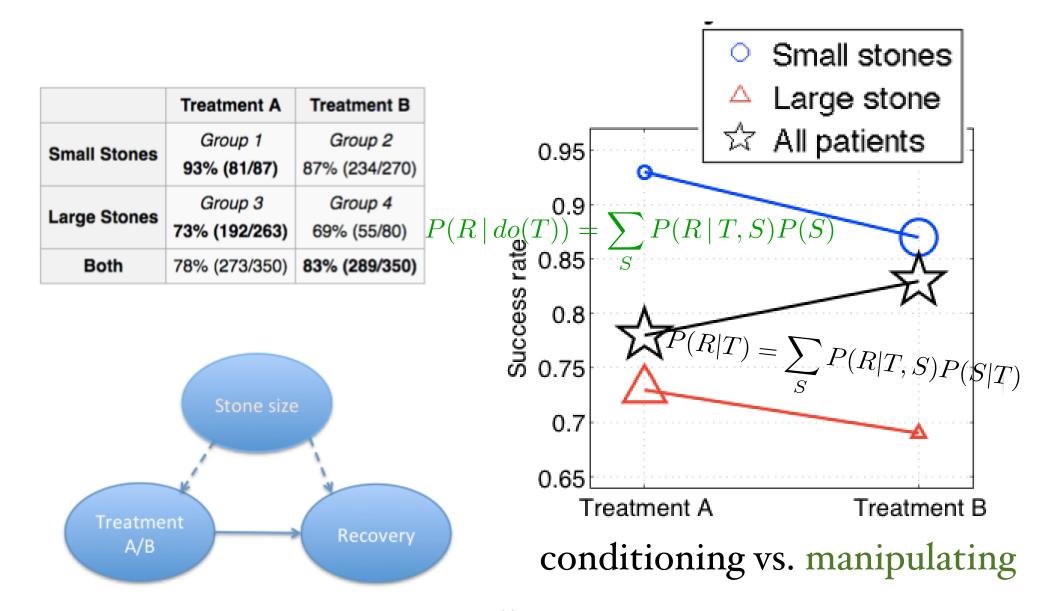
$$P(R|T) = \sum_{S} P(R|T,S)P(S|T)$$

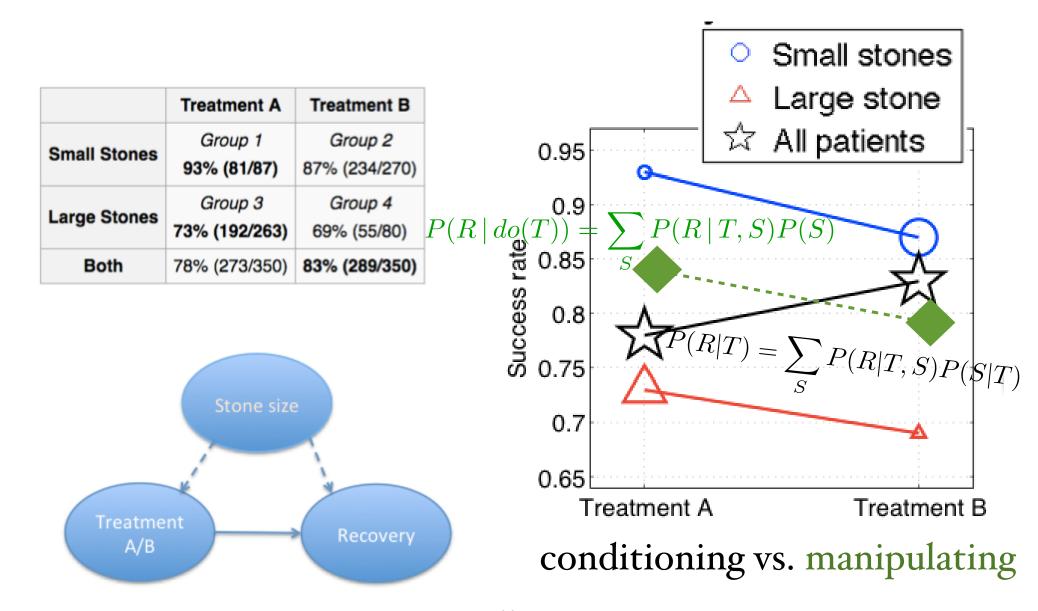


$$P(R \mid do(T)) = \sum_{S} P(R \mid T, S)P(S)$$

conditioning vs. manipulating



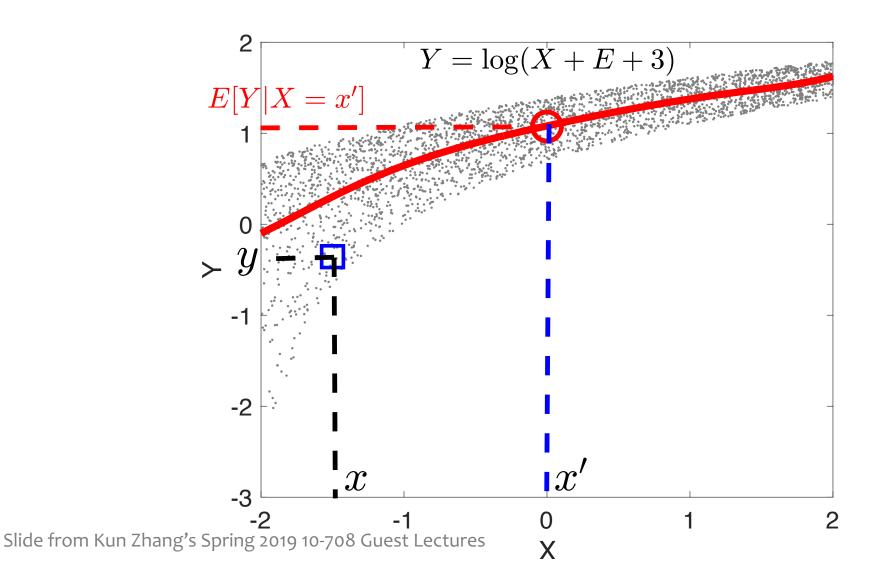




COUNTERFACTUAL INFERENCE

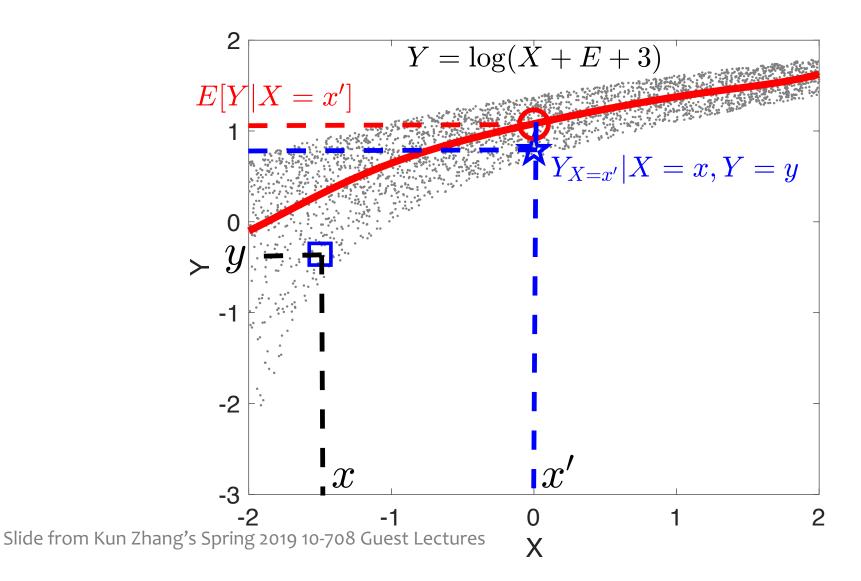
Counterfactual Inference vs. Prediction

• Suppose $X \rightarrow Y$ with Y = log(X + E + 3). For an individual with (x,y), what would Y be if X had been x?



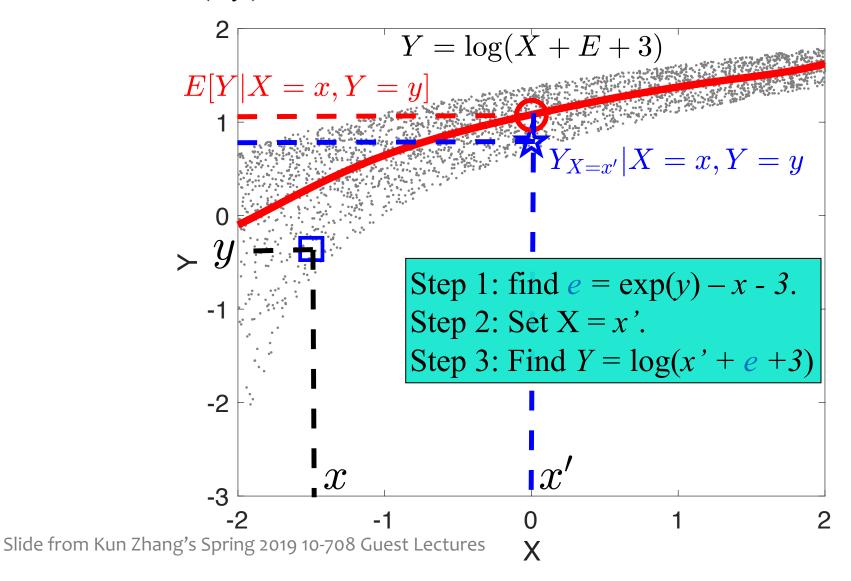
Counterfactual Inference vs. Prediction

• Suppose $X \rightarrow Y$ with Y = log(X + E + 3). For an individual with (x,y), what would Y be if X had been x?



Counterfactual Inference vs. Prediction

• Suppose $X \rightarrow Y$ with Y = log(X + E + 3). For an individual with (x,y), what would Y be if X had been x?

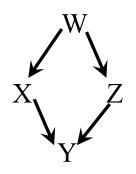


Standard Counterfactual Questions

- We talk about a particular situation (or unit) U = u, in which X = x and Y = y
- What value would Y be had X been x' in situation u?
 I.e., we want to know Y_{X=x'}(u), the value of Y in situation u if we do(X=x')
- u is not directly observable, so $P(Y_{X=x'} | X = x, Y = y)$ instead

For identification of causal effects, U is randomized. It is fixed for counterfactual inference.

Counterfactual Inference



$$W = U_{W}$$

$$X = f_{X}(W, U_{X})$$

$$Z = f_{Z}(W, U_{Z})$$

$$Y = f_{Y}(X, Z, U_{Z})$$

$$P(Y_{X=x'} | X = x, Y = y, W = w)$$

$$evidence$$

- Three steps
 - Abduction: find P(U | evidence)
 - Action: Replace the equation for X by X = x'
 - Prediction: Use the modified model to predict Y

CAUSAL DISCOVERY

Causal Discovery

Goal:

 Find a path diagram (i.e. causal model) that is best supported by the data

Key Idea:

find causal structures that are consistent (in a d-separation sense) with the set of conditional independencies supported by the data

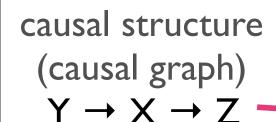
Where to learn more?

 Kun Zhang (CMU, Philosophy / ML) guest lectures from Spring 2020 10-708:

http://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html

Causal Structure vs. Statistical Independence (SGS, et al.)

Causal Markov condition: each variable is ind. of its non-descendants (non-effects) conditional on its parents (direct causes)



Statistical independence(s)

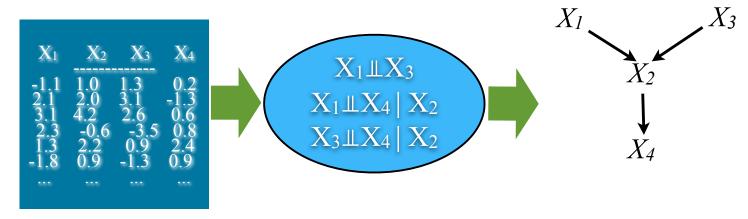
$$Y \perp \!\!\! \perp Z \mid X$$

Faithfulness: all observed (conditional) independencies are entailed by Markov condition in the causal graph

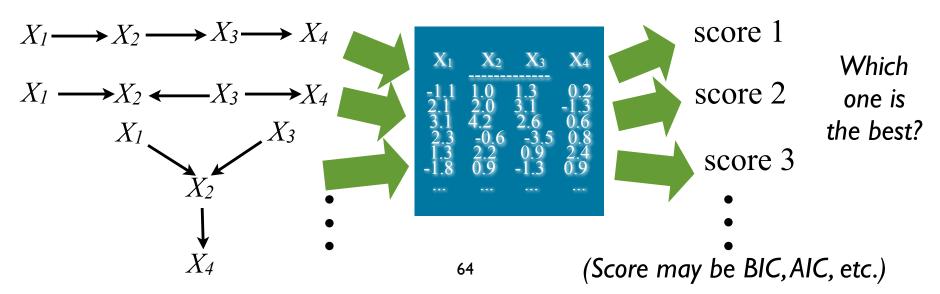
Recall: $Y \perp Z \Leftrightarrow P(Y|Z) = P(Y); Y \perp Z|X \Leftrightarrow P(Y|Z,X) = P(Y|X)$

Constraint-Based vs. Score-Based

Constraint-based methods



Score-based methods



A CONUNDRUM: HOW TO PICK THE NUMBER OF LATENT CLUSTERS?

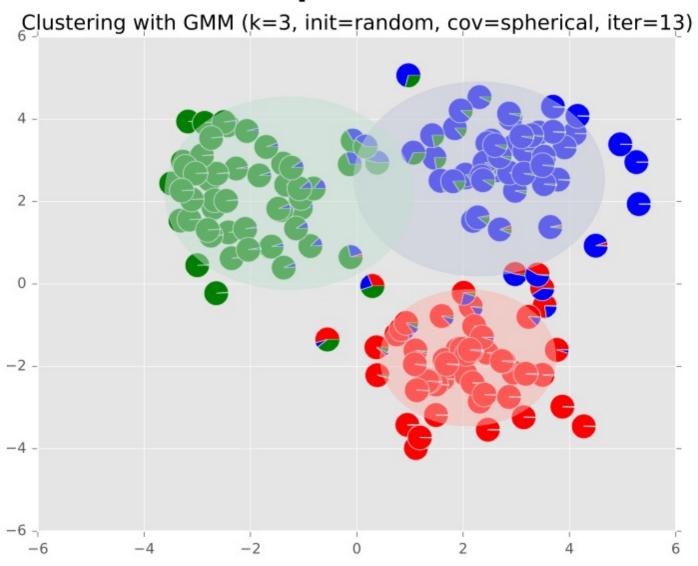
K-Means Algorithm

Given unlabeled feature vectors

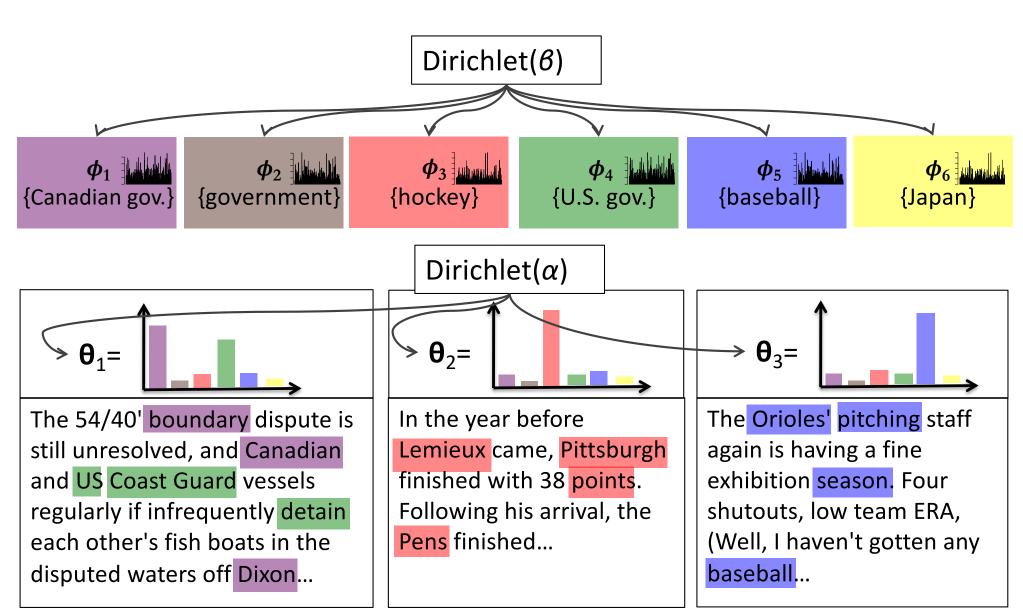
$$D = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}\$$

- Initialize cluster centers $c = \{c^{(1)}, ..., c^{(K)}\}$ and cluster assignments $z = \{z^{(1)}, z^{(2)}, ..., z^{(N)}\}$
- Repeat until convergence:
 - for j in {1,...,K}
 c^(j) = mean of all points assigned to cluster j
 for i in {1,..., N}
 z⁽ⁱ⁾ = index j of cluster center nearest to x⁽ⁱ⁾

Example: GMM



LDA for Topic Modeling



Familiar models for unsupervised learning:

- 1. K-Means
- Gaussian Mixture Model (GMM)
- Latent Dirichlet Allocation (LDA)

But without labeled data, how do we know the right number of clusters / topics?

Outline

- Motivation / Applications
- Background
 - de Finetti Theorem
 - Exchangeability
 - Aglommerative and decimative properties of <u>Dirichlet distribution</u>
- CRP and CRP Mixture Model
 - Chinese Restaurant Process (CRP) definition
 - Gibbs sampling for CRP-MM
 - Expected number of clusters
- DP and DP Mixture Model
 - Ferguson definition of Dirichlet process (DP)
 - Stick breaking construction of DP
 - Uncollapsed blocked Gibbs sampler for DP-MM
 - Truncated variational inference for DP-MM
- DP Properties
- Related Models
 - Hierarchical Dirichlet process Mixture Models (HDP-MM)
 - Infinite HMM
 - Infinite PCFG

analogy to GMM

BAYESIAN NONPARAMETRICS

Parametric models:

- Finite and fixed number of parameters
- Number of parameters is independent of the dataset

Nonparametric models:

- Have parameters ("infinite dimensional" would be a better name)
- Can be understood as having an **infinite** number of parameters
- Can be understood as having a random number of parameters
- Number of parameters can grow with the dataset

Semiparametric models:

Have a parametric component and a nonparametric component

	Frequentist	Bayesian
Parametric	Logistic regression, ANOVA, Fisher discriminant analysis, ARMA, etc.	Conjugate analysis, hierarchical models, conditional random fields
Semiparametric	Independent component analysis, Cox model, nonmetric MDS, etc.	[Hybrids of the above and below cells]
Nonparametric	Nearest neighbor, kernel methods, boostrap, decision trees, etc.	Gaussian processes, Dirichlet processes, Pitman-Yor processes, etc.

Application	Parametric	Nonparametric
function approximation	polynomial regression	Gaussian processes
classification	logistic regression	Gaussian process classifiers
clustering	mixture model, k- means	Dirichlet process mixture model
time series	hidden Markov model	infinite HMM
feature discovery	factor analysis, pPCA, PMF	infinite latent factor models

• **Def**: a model is a collection of distributions

$$\{p_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \Theta\}$$

 parametric model: the parameter vector is finite dimensional

$$\Theta \subset \mathcal{R}^k$$

• nonparametric model: the parameters are from a possibly infinite dimensional space, \mathcal{F}

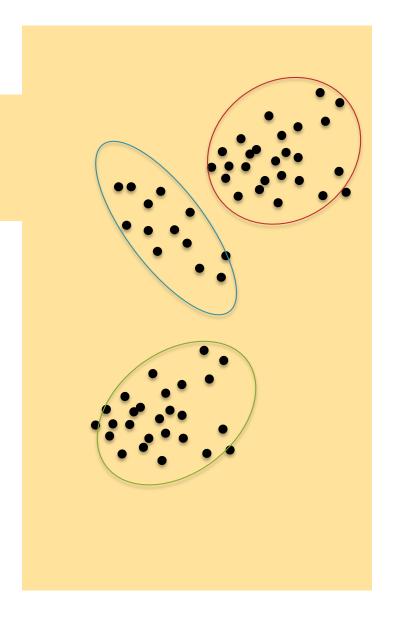
$$\Theta \subset \mathcal{F}$$

Model Selection

- For clustering: How many clusters in a mixture model?
- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?

Model Selection

- For clustering: How many clusters in a mixture model?
- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?



Model Selection

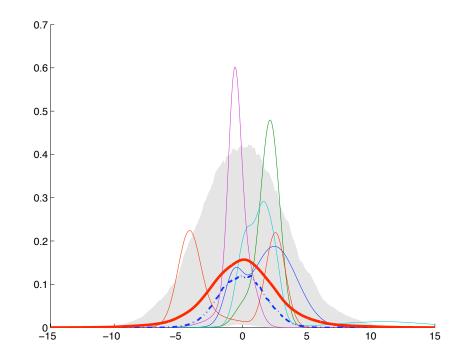
- For clustering: How many clusters in a mixture model?
- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?

- 1. Parametric
 approaches:
 cross-validation,
 bootstrap, AIC,
 BIC, DIC, MDL,
 Laplace, bridge
 sampling, etc.
- 2. Nonparametric approach: average of an infinite set of models

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Prior:



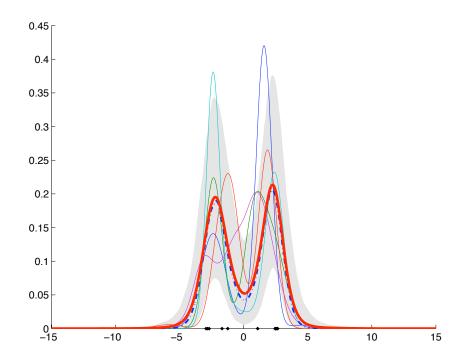
Red: mean density. Blue: median density. Grey: 5-95 quantile.

Others: draws.

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Posterior:



Red: mean density. Blue: median density. Grey: 5-95 quantile.

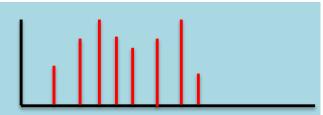
Black: data. Others: draws.

EXCHANGEABILITY AND DE FINETTI'S THEOREM

Background: Mixed Distribution

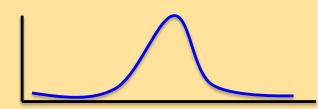
Suppose we have a random variable X drawn from some distribution $P_{\theta}(X)$ and X ranges over a set \mathcal{S} .

• Discrete distribution: S is a countable set.



• Continuous distribution:

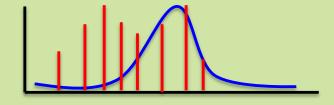
$$P_{\theta}(X=x)=0$$
 for all $x \in \mathcal{S}$



• Mixed distribution:

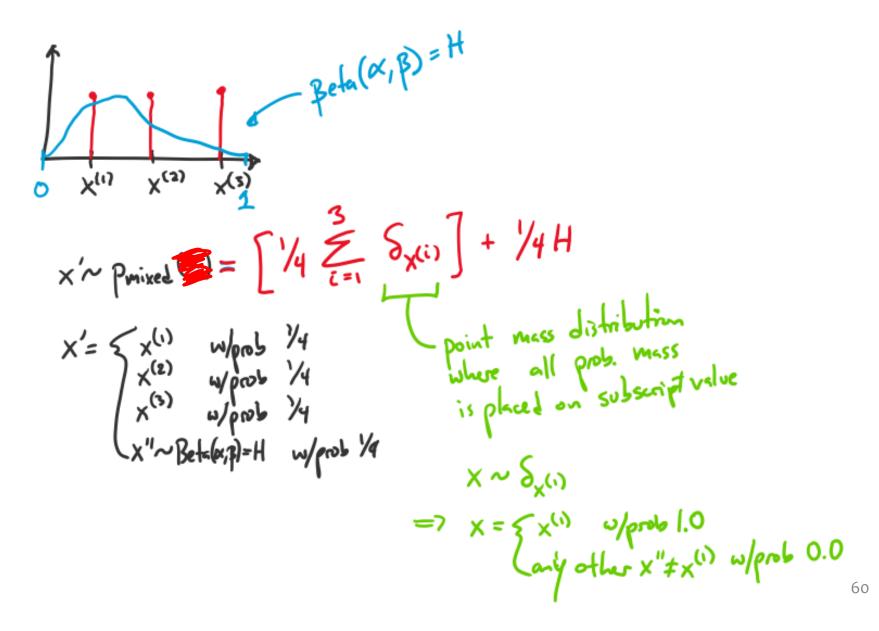
 \mathcal{S} can be partitioned into two disjoint sets \mathcal{D} and \mathcal{C} s.t.

- 1. \mathcal{D} is countable and $0 < P_{\theta}(X \in D) < 1$
- 2. $P_{\theta}(X=x)=0$ for all $x\in\mathcal{C}$



Background: Mixed Distribution

Example:



Exchangability and de Finetti's Theorem

Exchangeability:

- Def #1: a joint probability distribution is exchangeable if it is invariant to permutation
- **Def #2:** The possibly infinite sequence of random variables $(X_1, X_2, X_3, ...)$ is **exchangeable** if for any finite permutation s of the indices (1, 2, ...n):

$$P(X_1, X_2, ..., X_n) = P(X_{s(1)}, X_{s(2)}, ..., X_{s(n)})$$

Notes:

- i.i.d. and exchangeable are not the same!
- the latter says that if our data are reordered it doesn't matter

Exchangability and de Finetti's Theorem

Theorem (De Finetti, 1935). If $(x_1, x_2, ...)$ are infinitely exchangeable, then the joint probability $p(x_1, x_2, ..., x_N)$ has a representation as a mixture:

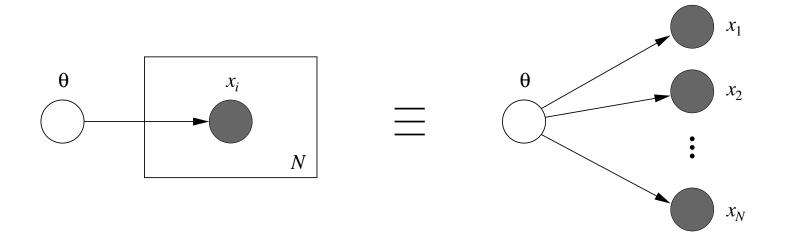
$$p(x_1, x_2, \dots, x_N) = \int \left(\prod_{i=1}^N p(x_i \mid \underline{\theta}) \right) dP(\underline{\theta})$$

for some random variable θ .

- ullet The theorem wouldn't be true if we limited ourselves to parameters heta ranging over Euclidean vector spaces
- In particular, we need to allow θ to range over measures, in which case $P(\theta)$ is a measure on measures
 - the Dirichlet process is an example of a measure on measures...

Exchangability and de Finetti's Theorem

• A *plate* is a "macro" that allows subgraphs to be replicated:



Note that this is a graphical representation of the De Finetti theorem

$$p(x_1, x_2, \dots, x_N) = \int p(\theta) \left(\prod_{i=1}^N p(x_i \mid \theta) \right) d\theta$$

Type of Model	Parametric Example	Nonparametric Example	
		Construction #1	Construction #2
distribution over counts	Dirichlet- Multinomial Model	Dirichlet Process (DP)	
		Chinese Restaurant Process (CRP)	Stick-breaking construction
mixture	Gaussian Mixture Model (GMM)	Dirichlet Process Mixture Model (DPMM)	
		CRP Mixture Model	Stick-breaking construction
admixture	Latent Dirichlet Allocation (LDA)	Hierarchical Dirichlet Process Mixture Model (HDPMM)	
		Chinese Restaurant Franchise	Stick-breaking construction

Chinese Restaurant Process & Stick-breaking Constructions

DIRICHLET PROCESS

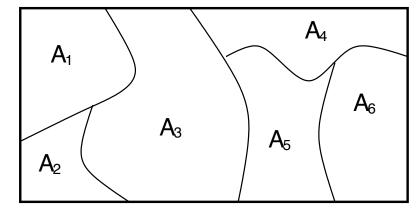
Dirichlet Process

Ferguson Definition

- Parameters of a DP:
 - 1. Base distribution, H, is a probability distribution over Θ
 - 2. Strength parameter, $\alpha \in \mathcal{R}$
- We say $G \sim \mathrm{DP}(\alpha, H)$ if for any partition $A_1 \cup A_2 \cup \ldots \cup A_K = \Theta$ we have: $(G(A_1), \ldots, G(A_K)) \sim \mathrm{Dirichlet}(\alpha H(A_1), \ldots, \alpha H(A_K))$

In English: the DP is a distribution over probability measures s.t. marginals on finite partitions are Dirichlet distributed

A partition of the space Θ

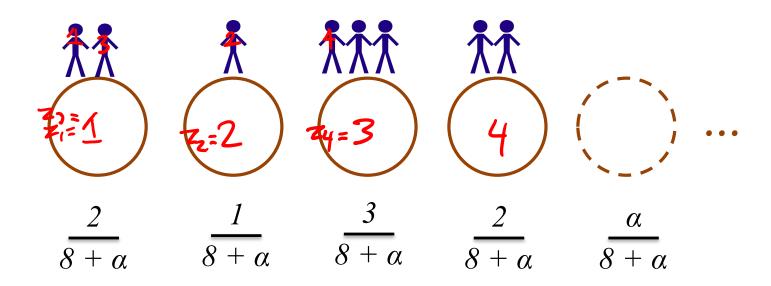


Chinese Restaurant Process

- Imagine a Chinese restaurant with an infinite number of tables
- Each customer enters and sits down at a table
 - The first customer sits at the first unoccupied table
 - Each subsequent customer chooses a table according to the following probability distribution:

 $p(kth \ occupied \ table) \propto n_k$ $p(next \ unoccupied \ table) \propto \alpha$

where n_k is the number of people sitting at the table k



Chinese Restaurant Process

Properties:

- 1. CRP defines a **distribution over clusterings** (i.e. partitions) of the indices 1, ..., n
 - customer = index
 - table = cluster
- 2. We write $z_1, z_2, ..., z_n \sim CRP(\alpha)$ to denote a **sequence of cluster indices** drawn from a Chinese Restaurant Process
- 3. The CRP is an **exchangeable process**
- **4. Expected number of clusters** given n customers (i.e. observations) is $O(\alpha \log(n))$
 - rich-get-richer effect on clusters: popular tables tend to get more crowded
- 5. Behavior of CRP with α :
 - As α goes to θ , the number of clusters goes to 1
 - − As α goes to +∞, the number of clusters goes to n

CRP vs. DP

Dirichlet Process: For both the CRP and stickbreaking constructions, if we marginalize out G, we have the following predictive distribution:

$$\theta_{n+1}|\theta_1,\ldots,\theta_n \sim \frac{1}{\alpha+n} \left(\alpha H + \sum_{i=1}^n \delta_{\theta_i}\right)$$

(Blackwell-MacQueen Urn Scheme)

The Chinese Restaurant Process is just a different construction of the Dirichlet Process where we have marginalized out G

Properties of the DP

1. Base distribution is the "mean" of the DP:

$$\mathbb{E}[G(A)] = H(A)$$
 for any $A \subset \Theta$

2. Strength parameter is like "inverse variance"

$$V[G(A)] = H(A)(1 - H(A))/(\alpha + 1)$$

- 3. Samples from a DP are discrete distributions (stick-breaking construction of $G \sim \mathrm{DP}(\alpha, H)$ makes this clear)
- 4. Posterior distribution of $G \sim \mathrm{DP}(\alpha, H)$ given samples $\theta_1, ..., \theta_n$ from G is a DP

$$G|\theta_1,\ldots,\theta_n \sim \mathrm{DP}\left(\alpha+n,\frac{\alpha}{\alpha+n}H+\frac{n}{\alpha+n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n}\right)$$

Exchangability

Question:

Select All: Which of the following properties of an infinite sequence of random variables X_1 , X_2 , X_3 , ... ensure that they are infinitely exchangeable?

- A. For any pair of orderings $(i_1, i_2, ..., i_n)$ and $(j_1, j_2, ..., j_n)$ of the indices (1, ..., n) the joint probability of the two orderings is the same
- B. The joint distribution is invariant to permutation
- C. The joint distribution of the first n random variables can be represented as a mixture
- D. The random variables are independent and identically distributed

Ertoxic

Answer: