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In this supplementary materials, we provide more details
to the network architecture, a short introduction to the OIS,
the definitions of our evaluation metrics, execution time
comparisons, description of our dataset, and more visual
comparisons.

1. Implementation Details

Network architecture. Table 1 shows the detailed network
configuration of our model. Given an input video, we resize
the input frames to extract forward and backward flows at
the spatial resolution of 480 × 270. Our encoder consists
of 5 strided convolutional layers that map the optical flow
from 4×270×480 to 128×1×1. Each convolutional layer
is followed by a ReLU activation function. The latent code
is converted to 1× 1× 64 by an FC layer and then concate-
nated with the real and virtual pose histories. Therefore, our
latent motion representation is a 188-channel feature vector,
where 64 channels are from the encoded optical flow, 21×4
channels are from the real poses, and 10 × 4 channels are
from the virtual poses. The hidden layers in the LSTM have
512 channels, and the last FC layer converts the output of
LSTM to a 4D quaternion as the virtual pose of the current
frame. We apply a soft-shrink activation function [6] in the
last FC layer to smooth the prediction.

Boundary handling. Our method takes 10 past frames
and 10 future frames from the real pose history. To en-
sure that our model can generate full-length videos with-
out dropping any frame, we apply temporal padding to the
input video. Specifically, we reversely pad the real pose
history of the first 10 frames at the beginning and the last
10 frames at the end of the video. The virtual pose history
is initialized by copying the real pose history at the begin-
ning. We note that the reverse temporal padding is critical to
initialize our model and LSTM. A simple repeated or zero
padding results in worse initialization and stabilization re-
sults as shown in Fig. 1.

Figure 1: Comparison on temporal padding. With zero
padding for the real and virtual camera poses, the predicted
virtual poses are not stable at the beginning of a sequence.

Layer Kernel Strided Input size Output size

Conv1 3× 3 1 4× 270× 480 8× 270× 480
Conv2 3× 3 1 8× 270× 480 16× 270× 480

MaxPool2 4× 4 4 16× 270× 480 16× 67× 120
Conv3 3× 3 1 16× 67× 120 32× 67× 120

MaxPool3 4× 4 4 32× 67× 120 32× 16× 30
Conv4 3× 3 1 32× 16× 30 64× 16× 30

MaxPool4 4× 4 4 64× 16× 30 64× 4× 7
Conv5 3× 3 1 64× 4× 7 128× 4× 7

MaxPool5 4× 4 4 128× 4× 7 128× 1× 1
FC1 - - 128× 1× 1 64

Concat - - 64 + 84∗ + 40† 188
LSTM1 - - 188 512
LSTM2 - - 512 512

FC2 - - 512 4

Table 1: Network configuration. ∗ and † indicate the real
and virtual camera poses, respectively.

2. Optical Image Stabilizer

In this section we briefly describe the functionality of
optical image stabilizer (OIS) and why it is not enough for
video stabilization. OIS is a mechanical approach to adjust
the camera systems for compensating the camera motion
and avoid motion blur in the captured images. On bulky
DSLR, this is achieved by moving a few lens pieces in the
compound lens [13] or the imaging sensor [8]. OIS is even
more crucial on smartphones due to their limited sensor
size and light-collection efficiency, and it is usually imple-



Figure 2: Grid-based frame warping. Left: the input
frame with a regular 12x12 grid. Right: the warped frame
with a virtual camera pose. The red bounding box shows
the output frame after cropping. Note the rolling shutter
distortion is also corrected (curved lines are straightened).

mented by moving the whole lens module [1]. Almost all
premium or high-tier smartphones equip their cameras with
OIS since 2016.

To detect and compensate the motion during the expo-
sure, OIS systems typically rely on high-frequency and pre-
cise inertial measurement sensors (up to a few thousand Hz)
to provide the motion signal and place the closed-loop con-
trol circuit near the moving hardware components to min-
imize the latency. While the real-time compensation can
eliminate much motion blur, OIS has its own limitations.
First, OIS usually has a limited working range (only 1-2
degrees for the smartphones) before it reaches the physical
limitation (the cage housing the camera module). More-
over, when the optical elements shifts too far from the ideal
position, the resulting image can suffer from other artifacts
such as vignetting or inaccurate focusing. Finally, the OIS
in smartphones can create some wobbling artifacts to the
video because it usually uses translation to approximate the
rotational model [9].

Due to these limitations, digital processing is still re-
quired to handle large motions encountered in video record-
ing. As some parts of the camera motion is compensated by
OIS, the remaining motions in the videos can not be solely
represented by the gyroscope signal. Therefore, the impact
of the OIS must be taken into account in the camera model
[9, 11]. Our solution takes the OIS motion into account, and
the dataset will come with the codes to model the motions
introduced by OIS.

3. Grid-based Frame Warping

We use a grid-based warping similar to Karpenko et
al. [7] to jointly stabilize video frames and remove the
rolling shutter distortion. For each frame, we record the
timestamp at the start of frame exposure tf , length of rolling
shutter lrs, exposure duration lexp, and other frame meta-
data (e.g., focal length, sensor size). We divide a frame into
M columns and S horizontal stripes, where each stripe has
its unique timestamp (see Fig. 2). By warping all stripes to
a virtual camera pose Pv , rolling shutter distortion is cor-

rected. Specifically, the warping grid is generated as

xv(i, j) = KvRvR
−1
r (ti)K

−1
r (ti)xr(i, j), (1)

where ti = tf + lexp/2+ lrs/S ∗ i is the stripe timestamp at
row i. xr(i, j) is the 2D location on row i and column j. We
set the mesh dimension to 12× 12 in all the experiments.

4. Evaluation Metrics

We adopt the following metrics to evaluate the quality of
stabilized videos. Note that the FOV ratio1, stability, and
distortion are commonly used metrics in prior works [2, 10,
14, 15], while the correlation is used to measure the local
distortion. For all of them, a higher value indicates a better
quality.
FOV ratio: We first fit a homography between the input
and stabilized frames. The FOV ratio is defined as the min-
imal scale components of the homography across the entire
video. We note that while Choi et al. [2] generate full-frame
stabilization results, their FOV ratios calculated from this
metric are usually smaller than 1.0 due to the homography
fitting (where the average is 0.917 in our test set). As Choi
et al. [2] do not apply any cropping to their results, we set
their FOV ratio to 1 in Table 1 of the main manuscript for
fair comparisons.
Stability: We first compute the frame-to-frame homog-
raphy transformation on the stabilized video. Then, we ex-
tract the translation magnitudes and rotation angles from the
homography of each frame to generate two 1D profiles. We
compute the ratio between the sum of low-frequency com-
ponents (2nd to 6th) and the total energy in the FFT domain.
The stability score of a video is the average of the two ra-
tios from translation and rotation. The intuition here is that
a video is more stable if more energy is contained in the
low-frequency components of the motion profile.
Distortion: We fit a homography between the input and
stabilized frames and then measure the ratio of the two
largest eigenvalues of the affine part from the homography.
The minimal ratio from all the frames is chosen as the dis-
tortion score of a video.
Correlation: The distortion score measures global geom-
etry distortion but cannot reflect local distortion or visual
artifacts. Therefore, we measure the local distortion using
a tile-based correlation. Specifically, we first align the in-
put frame to the stabilized frame using a homography trans-
form. To avoid any undefined regions, we experimentally
choose a inner region (0.1 crop on each side) and split into
a 6× 6 tile on each frame. We measure the average correla-
tion score of the entire video.

1This metric is named as “cropping ratio” in [2, 10, 14, 15]. However,
the definition is counterintuitive, where a large ratio refers to less crop.
Therefore, we rename it to “FOV ratio” in this work.



Table 2: Execution time. We test each method on a video
with resolution 1920×1080 and average the execution time
for 500 frames.

Method CPU/GPU Second per frame

Grundmann et al. [3] CPU 0.541
Wang et al. [12] GPU 0.576
PWStableNet [16] GPU 0.108
Yu et al. [15] GPU 2.967
Choi et al. [2] GPU 6.505
Ours CPU + GPU 0.287

Table 3: Timing breakdown of our method.

Stage CPU/GPU Second per frame Percentage

Optical flow GPU 0.134 46.7%
DNN GPU 0.023 8.0%

Warping CPU 0.130 45.3%

5. Execution Time
We evaluate the execution time of the proposed method

and state-of-the-art approaches [2, 3, 12, 15, 16] on a ma-
chine with Intel Xeno CPU and Tesla T4 GPU. We test on a
video with 1920×1080 resolution and calculate the average
execution time of 500 frames in Table 2. We also provide
a breakdown of our method in Table 3. Note that our core
algorithm (the DNN part) is very efficient and only takes
8% of the execution time. The speed of optical flow esti-
mation can be further improved by adopting efficient flow
models [4, 5]. Our grid warping is based on a CPU imple-
mentation and can be sped-up with GPU optimization. In
addition, the computational cost of optical flow estimation
and grid warping can also be shared and hidden in the video
processing pipelines, e.g., video recording on smartphones.

6. Video+Sensor Dataset
We collect 50 videos with Google Pixel 4 along with the

gyroscope and the OIS readings. The snapshots of these
videos are shown in Fig. 3 and 4 with tags on its scene
and motion properties. We cover several different motions:
static, panning at different speed, tracking subjects, run-
ning, circling around the subject, and riding on the vehi-
cle. The scenes include all lighting conditions from bright
daylight to low-light at night. The subjects include static
objects at various depths, moving/deforming humans and
high-speed vehicles.

7. Visual Comparisons and Video Results
We provide more visual comparisons with state-of-the-

arts [2, 3, 12, 15, 16] in Fig. 5, 6, 7, 8, and 9. We also
provide a demo video that include the full video results and
the ablation study.
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Figure 3: Thumbnails of our training set with tags on the characteristics of each video.
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Figure 4: Thumbnails of our test set with tags on the characteristics of each video.
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Figure 5: Visual comparisons with Grundmann et al. [3]. The results of Grundmann et al. [3] contain residual shaking
(e.g., the sky area on the top right corner is decreasing and then increasing), while our results are more stable.



Fr
am

e
t

Input Wang et al. [12] Ours

Fr
am

e
t
+
1

Input Wang et al. [12] Ours

Fr
am

e
t
+
2

Input Wang et al. [12] Ours

Fr
am

e
t
+
3

Input Wang et al. [12] Ours

Figure 6: Visual comparisons with Wang et al. [12]. The street light poles in Wang et al. [12]’s results are distorted, while
our method maintains the scene geometry well.
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Figure 7: Visual comparisons with PWStableNet [16]. The results of PWStableNet [16] contain temporal wobbling and
residual motion (see the bumping from frame t to t+ 10).
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Figure 8: Visual comparisons with Yu et al. [15]. Yu et al. [15] fails to handle a challenging RUNNING example.
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Figure 9: Visual comparisons with Choi et al. [2]. The method of Choi et al. [2] often generates ghosting and blurry results
when the camera or object motion is large.


