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Fig. 1. By applying our method, seven models are modeled and fabricated using nine specified discrete equivalence classes of triangles (shown in the top right
corner) . They are a modern chair, the David’s head, a table, a decorative lampshade, the Venus, the bunny, and the kitten model (from left to right). A real
black 14-inch laptop is put on the table as a size reference.

We propose a novel method to model and fabricate shapes using a small

set of specified discrete equivalence classes of triangles. The core of our

modeling technique is a fabrication-error-driven remeshing algorithm. Given

a triangle and a template triangle, which are coplanar and have one-to-one

corresponding vertices, we define their similarity error from amanufacturing

point of view as follows: theminimizer of themaximum of the three distances

between the corresponding pair of vertices concerning a rigid transformation.

To compute the similarity error, we convert it into an easy-to-compute form.

Then, a greedy remeshing method is developed to optimize the topology

and geometry of the input mesh to minimize the fabrication error defined

as the maximum similarity error of all triangles. Besides, constraints are

enforced to ensure the similarity between input and output shapes and

the smoothness of the resulting shapes. Since the fabrication error has

been considered during the modeling process, the fabrication process is

easy to proceed. To assist users in performing fabrication using common
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materials and tools manually, we present a straightforward manufacturing

solution. The feasibility and practicability of our method are demonstrated

over various examples, including seven physical manufacturing models with

only nine template triangles.
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1 INTRODUCTION
Geometricmodeling is a fundamental task formany computer graph-

ics, engineering, architecture applications. In manufacturing-related

applications, modeling a shape with a small set of discrete equiv-

alence classes of polygons offers an opportunity for reusing the

templates to reduce the fabrication, storage, and construction costs.

This modular modeling technique has great potential in many ap-

plications, such as freeform architecture modeling, 3D puzzles, and

maintenance of surfaces of easily damaged objects.

Several methods have been proposed to tackle the problem [Eigen-

satz et al. 2010; Fu et al. 2010; Singh and Schaefer 2010]; however,

they focus on optimizing vertex positions of the input mesh, while

keeping the topology (connectivity) fixed, and automatically de-

termining the discrete equivalence class of polygons. Since these
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(a) Input (b) [Singh and Schaefer 2010]

𝑁𝑐 = 96

(c) Ours

𝑁𝑐 = 9

Fig. 2. Given a nonuniform input (a), the method of [Singh and Schaefer
2010] (b) uses much more discrete equivalence classes than our method (c)
to achieve a similar fabrication error (defined in (6)). Different classes are
encoded in different colors, and 𝑁𝑐 is the number of classes. Each triangle
is shown as the template after performing the best rigid transformation.

methods compute a set of templates for a model, different models

need different templates. Hence before fabricating a model, tem-

plate optimization, fabrication, and transportation costs are required.

Moreover, they heavily rely on the initial topology and geometry;

thus, it may produce a large number of discrete equivalence classes

(Fig. 2), resulting in a sharp increase in fabrication cost. Nine pre-

scribed edges and a predefined node in the Zometool system are

used for modeling and fabricating shapes [Zimmer and Kobbelt

2014; Zimmer et al. 2014]. Although the Zometool-based methods

implicitly guarantee triangles and convex, planar quads, they may

produce a large number of template polygons.

Instead of optimizing a collection of template triangles for a sin-

gle model, we study a different problem of modeling and fabricating

various shapes using a given set of specified discrete equivalence

classes of triangles. Accordingly, we are able to pre-manufacture

those templates for various models, thereby further reducing the

template optimization, fabrication, and transportation costs (Fig. 17

and 18). To effectively solve our problem, we optimize the vertex po-

sitions of the input mesh as well as alter its topology simultaneously,

different from [Singh and Schaefer 2010].

Given a triangle and a template triangle, which are in a common

plane and have one-to-one corresponding vertices, the similarity

error is obtained by minimizing the maximum distance between the

corresponding pair of vertices with respect to a rigid transformation.

This definition is based on the physical manufacturing. Then, the

fabrication error of a triangle mesh is the maximum similarity error

of its all triangles. Consequently, we seek to modify the mesh con-

nectivity and geometry to reduce the fabrication error to facilitate

the manufacturing process. Besides, the shape similarity and shape

smoothness should be ensured during the optimization process.

However, this modeling problem is very challenging. The reasons

are twofold. First, it is not easy to effectively and efficiently find

a predefined triangle or update the vertex positions to compute

the similarity error for one output triangle. Second, adjustment of

the mesh connectivity, as a combinatorial problem, may result in a

tremendous searching space. Besides, as the fabrication error is the

maximum value in a set of the maximum distances, it is non-trivial

to optimize it during the remeshing process.

In this paper, we propose a novel algorithm to use specified dis-

crete equivalence classes of triangles to model various shapes. Cen-

tral to our modeling algorithm is a fabrication-error-driven remesh-

ing process to reduce the fabrication error greedily. To overcome

the first challenge, we convert the similarity error computation pro-

cess to an easy-to-compute procedure. Then, local topological and

geometric optimization can be easily used to reduce the similarity

error. Consequently, our remeshing process iteratively performs

local operations, including edge collapse, edge flip, and vertex re-

location, to optimize the fabrication error, thereby resolving the

second challenge. In practice, these operations are carefully filtered

to guarantee a high degree of shape similarity. Moreover, we pro-

pose an empirical constraint to remove the local operations that

cause poor smoothness.

We fabricate models using common materials and tools, including

stainless steel triangle plates, stainless steel hinges, nylon cable

ties with self-locking, and pliers (Fig. 8). To assemble two adjacent

triangles that have a common edge, there are two steps. First, we

use the plier to bend the stainless steel hinge so that its opening

angle approaches the dihedral angle of the two triangles. Second,

nylon cable ties are used to fix the triangle plate and hinge. This

simple assembly process is iteratively performed to manufacture

the entire model.

To the best of our knowledge, our system is the first to directly

and explicitly use a set of specified discrete equivalence classes of

triangles to model and fabricate shapes. We apply the developed

modeling tool to various shapes with a set of predefined template

triangles. Compared to state-of-the-art methods, our approach uses

much fewer template triangles. We use nine specified types of trian-

gles to demonstrate the feasibility and practicability of our technique

on seven physical manufacturing examples.

2 RELATED WORK
Modeling using discrete equivalence classes. Modeling methods

rely on different types of discrete equivalence classes, such as tri-

angles [Huard et al. 2015; Singh and Schaefer 2010], quads [Eigen-

satz et al. 2010; Fu et al. 2010], triangle-based point-folding struc-

tures [Zimmer et al. 2012]. Since these methods do not modify the

topology of the inputmesh, the resulting discrete equivalence classes

heavily depend on the shapes of the input polygons (Fig. 2). Differ-

ent from them, we explicitly and directly remesh the input meshes

using a set of specified template triangles. Our novel remeshing

algorithm can be widely used for various models with predefined

templates instead of optimizing different templates for different

input models, e.g., [Singh and Schaefer 2010].

Instead of using specified triangles, the Zometool-based meth-

ods [Zimmer and Kobbelt 2014; Zimmer et al. 2014] perform remesh-

ing using a predefined, fixed set of elements that consists of nine

different strut types and a single node type. Although a set of polyg-

onal faces are not explicitly provided by the Zometool system, the

methods implicitly use the triangles and convex, planar quads. How-

ever, since they are defined as the simple closed loops of edges that

are predefined, fixed in the Zometool system, their shapes and num-

bers cannot change. Besides, the total number of template triangles

and quads is large (Fig. 22). Although our used triangles are also

predefined, we can use different shapes and numbers for one model.

The modular structures, such as universal building blocks [Chen

et al. 2018] and Zometool construction set [Shen et al. 2020], are

also used for infill fabrication to achieve cost-effective fabrication.
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Fabrication error. For manufacturing, the maximum distance be-

tween two triangles should be small. To this end, minimizing the

two-sided Hausdorff distance concerning a rigid transformation is

an appropriate choice. However, optimization is non-trivial. Given

two triangles with corresponding vertices, a ℓ2-norm error is de-

fined as the minimizer of the summation of squares of the distances

between the corresponding vertices concerning a rigid transforma-

tion [Fu et al. 2010; Singh and Schaefer 2010]. The method in [Arun

et al. 1987] is used to compute the best rigid transformation analyti-

cally. This error reduces the distances between vertices evenly. We

define the fabrication error by optimizing the maximum distance

between the corresponding vertices with respect to a rigid trans-

formation. We propose a novel method to compute the best rigid

transformation. Although the ℓ2-norm error is minimized by [Singh

and Schaefer 2010], the termination condition is that our defined

error is less than a specified threshold. It is inconsistent with their

optimization goal.

Triangular remeshing. Many triangular surface remeshing tech-

niques have been proposed in the last two decades (cf. the surveys

in [Alliez et al. 2008; Botsch et al. 2010]). Different applications

require different properties. There are many requirements, such

as generating fairly regular triangles [Jakob et al. 2015; Yan et al.

2009], maximizing the minimum angle [Hu et al. 2017; Wang et al.

2018], bounding the approximation errors [Cheng et al. 2019; Wang

et al. 2020], and matching the input Riemannian metric [Fu et al.

2014; Zhong et al. 2013]. The fabrication error drives our remeshing

process. Since the fabrication error appears on a certain triangle,

the local remeshing operations [Botsch and Kobbelt 2004; Hoppe

et al. 1993] are performed on that triangle to reduce it effectively.

3 METHOD
Problem. Given a triangular meshM and 𝐾 specified types of

2D triangles T = {t1, · · · , t𝐾 }, our goal is to generate a triangular

mesh R = (V, F ) satisfying three requirements:

• Closeness requirement: each triangle in F = {f𝑖 } is as close as
possible to one triangle in T .
• Approximation requirement: R lies in the envelope of thick-

ness 𝜖
envelope

built aroundM, where 𝜖
envelope

is a user-defined

threshold.

• Smoothness requirement: there are no flipped or zigzagged

triangles in R.

Formulation. The generation of R is a remeshing process ofM,

including topological and geometric modifications. It can be formu-

lated as a constrained optimization problem:

min

V, F
𝑑
fab
(R,T)

𝑠 .𝑡 . ℎ(R,M) ≤ 𝜖
envelope

,

𝑔
smooth

(R) < 0,

(1)

where 𝑑
fab
(R,T) measures the closeness from the triangles in R to

the template triangles, ℎ(R,M) denotes the one-sided Hausdorff

distance from R toM, and the constraint 𝑔
smooth

(R) < 0 indicates

that there are no flipped or zigzagged triangles in R.

(a) (b)
v0 v1

v2

a0

𝜃

a1

a2

u0

u1

u2
o

c

Fig. 3. Best rigid transformation to compute 𝑑max (f, t) . (a) △v0v1v2 is a
triangle of R and △a0a1a2 indicates the template triangle △p0p1p2 after a
rigid transformation 𝑅, b. (b) Move the starting points of the three vectors
(v0 − a0, v1 − a1, v2 − a2) to the origin o. The orange circle is the MCC of
△u0u1u2 and c is its center. Here △u0u1u2 is an obtuse triangle and c is the
midpoint of its longest edge. The transparent figures show another case
with a different rotation, where △u0u1u2 is an acute triangle and the MCC
is its circumcircle.

3.1 Fabrication error
Similarity metric. To facilitate the definition of the closeness met-

ric from an output triangle to the predefined templates set T , we
first define the similarity metric between two triangles from the

perspective of physical manufacturing. Given an output triangle

f = △v0v1v2 and a specified triangle t = △p0p1p2, we assume the

two triangles are coplanar and v𝑖 corresponds to p𝑖 , for simplicity.

Then, without loss of generality, f and t can be considered to be in

the 2D plane. The similarity error for f and t is defined by minimiz-

ing the maximum distance between the corresponding vertices:

𝑑max (f, t) = min

𝑅, b
max

𝑖∈{0,1,2}
{∥𝑅p𝑖 + b − v𝑖 ∥2}, (2)

where 𝑅, b represent a 2D rigid transformation.

3.1.1 Best rigid transformation. To compute the best rigid transfor-

mation to obtain 𝑑max (f, t), we integrate the three position devia-

tions into a vector 𝜉 := (∥v0 − a0∥2, ∥v1 − a1∥2, ∥v2 − a2∥2) , where
a𝑖 = 𝑅p𝑖 + b. Then the optimization problem can be converted to

the following formulation:

{𝑅, b} = argmin

𝑅, b
∥𝜉 ∥∞, (3)

Computing b. Move the starting points of the three vectors, i.e.,

(v0 −a0, v1 −a1, v2 −a2) to the origin o. Let △u0u1u2 be the triangle
formed by tail endpoints of the three vectors, and𝐶 be the minimum

covering circle (MCC) of △u0u1u2.
Proposition 1. The shape of △u0u1u2 is independent of the trans-

lation b, and so do 𝐶 . Given any 𝑅, the best b minimizing ∥𝜉 (𝑅)∥∞
is the vector from the origin o to the center c of 𝐶 , and the minimum
∥𝜉 (𝑅)∥∞ is the radius 𝑟𝑐 of 𝐶 .

We prove Prop. 1 in the supplementary material. Based on Prop. 1,

the optimization problem of min𝑅, b ∥𝜉 ∥∞ is equivalent to min𝑅 𝑟𝑐 .

After solving min𝑅 𝑟𝑐 , we compute b = c − o.

Computing 𝑟𝑐 . The methods to compute 𝑟𝑐 are different for acute

triangles and obtuse triangles:

• Acute case: MCC is the circumcircle of △u0u1u2, thus we have:
𝑟𝑐 =

∥u1−u0 ∥2 · ∥u2−u1 ∥2 · ∥u0−u2 ∥2
4Area(△u0u1u2) .

• Obtuse case: 𝑟𝑐 is the half of the longest side of △u0u1u2.
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Acute case. To solve min𝑅 𝑟𝑐 for the acute case, 𝑟𝑐 can be refor-

mulated as a function 𝑓 (𝜃 ) of 𝜃 , where 𝜃 is the rotation angle of

𝑅. We solve min𝜃 𝑓 (𝜃 ) using the following two steps: (1) compute

the roots of a tenth degree polynomial and (2) compare the func-

tion value at the ten roots to find the minimum (see details in the

supplementary material).

Obtuse case. To solve min𝑅 𝑟𝑐 for the obtuse case, we propose the

following proposition to simplify the calculation process:

Proposition 2. The longest edge of △u0u1u2 corresponds to an
edge of f (denoted as e𝑓 ) and an edge of t (denoted as e𝑡 ), respec-
tively. Then, if △u0u1u2 is an obtuse triangle when ∥𝜉 ∥∞ reaches the
minimum, then e𝑓 and e𝑡 coincide and their midpoints coincide.

We provide the proof of Prop. 2 in the supplementary material.

To make the corresponding edges of t and f coincide and their

midpoints coincide, there are three rigid transformations. We denote

Γcon as a set to include these three rigid transformations. Let Γ
obtuse

be a rigid transformation set, each of which makes △u0u1u2 be an
obtuse triangle. For a rigid transformation 𝑅, b in Γ

obtuse
, we define

𝑖𝑅,b ≠ 𝑗𝑅,b ∈ {0, 1, 2} as the indices of the longest edge u𝑖𝑅,bu𝑗𝑅,b of
the obtuse triangle △u0u1u2. By Prop. 2, if △u0u1u2 is an obtuse

triangle, and no corresponding edges of t and f coincide and their

midpoints coincide, then ∥𝜉 ∥∞ does not reach the minimum. Thus,

the elements in Γcon∩ Γobtuse are the potential rigid transformations

to achieve the minimum 𝑟𝑐 .

Computing 𝑅 by solving min𝑅 𝑟𝑐 . Based on the above analyses,

the optimization problem min𝑅 𝑟𝑐 is converted to the following

problem:

min{min

𝜃
𝑓 (𝜃 ), min

𝑅,b∈Γcon∩Γobtuse

1

2

∥u𝑖 (𝑅,b) − u𝑗 (𝑅,b) ∥2}. (4)

In practice, we first solvemin𝜃 𝑓 (𝜃 ) andmin𝑅,b∈Γcon∩Γobtuse
1

2
∥u𝑖 (𝑅,b)−

u𝑗 (𝑅,b) ∥2 separately, and then compute the smaller one to obtain the

resulting rotation 𝑅.

3.1.2 Definition of fabrication error.

Matching error. If the correspondence between vertices of f and t
are not specified, we should enumerate all correspondences. Similar

to [Singh and Schaefer 2010], there are six correspondences between

the vertices, denoted as {𝜙1, · · · , 𝜙6}. If the template triangle t is not
determined, then all of the specified templates should be enumerated.

Combining these two situations, the matching error for an output

triangle f is defined as:

𝑑
match

(f,T) = min

t∈T
𝑗∈{1,··· ,6}

𝑑max (f, t𝜙 𝑗 ), (5)

where t𝜙 𝑗
possesses the same shape as t, and the vertex correspon-

dences between f and t𝜙 𝑗
are specified by the index map 𝜙 𝑗 . If f is in

3D space, we isometrically flatten f onto the 2D plane before com-

puting 𝑑
match

(f,T), and without the loss of generality, the flattened
triangle is still denoted as f .

Fabrication error. When performing real fabrication, the trian-

gle with the largest matching error is the worst case. Thus, the

ALGORITHM 1: Modeling with Specified Discrete Equivalence

Classes

Input :3D triangular meshM, 𝐾 predefined template triangles, and

the distance bound 𝜖
envelope

Output :A remeshed mesh R
R ← PreProcess(M) ;
Initialize 𝑘 = 0; converged = false;
//𝑄 is a priority queue of triangles sorted by matching errors;

for each face f in F do
compute the matching error 𝑑

match
(f, T) via Eq.(5);

𝑄 ← f with 𝑑
match

(f, T) ;
end
while !converged do

lr_state← true;
while lr_state do

c_state← true; f_state← true;
while c_state or f_state do

f𝑡 ← POPTriWithMaximumError(𝑄) ;
c_state← Collapse(f𝑡 ) ;
if !c_state then

f_state← Flip(f𝑡 ) ;
end
UpdatePriorityQueue(𝑄) ;

end
lr_state← LocalPerturbation(f𝑡 ) ;
UpdatePriorityQueue(𝑄) ;

end
GlobalRelocation(R) ;
UpdatePriorityQueue(𝑄) ;
converged← (topology fixed and

∑
v𝑖 ∈V ∥v

𝑘+1
𝑖
− v𝑘

𝑖
∥2 ≤ 10

−4
);

𝑘 ← 𝑘 + 1;
end

fabrication error for the output mesh R is defined as:

𝑑
fab
(R,T) = max

f ∈F
𝑑
match

(f,T) . (6)

3.2 Challenges and methodology
Challenges. There are two challenges to solve the problem (6).

First, since the topology of R is a combinatorial variable, effec-

tively changing the topology to reduce 𝑑
fab
(R,T) is difficult. Sec-

ond, 𝑑
fab
(R,T) is numerically difficult to optimize. To compute

𝑑
match

(f,T), it is necessary to use enumeration and use numer-

ical methods to solve (4). It indicates that it is easy to evaluate

𝑑
match

(f,T) and 𝑑
fab
(R,T) and the optimization of 𝑑

fab
(R,T) is

difficult. As a consequence, it is non-trivial to update geometry and

topology to minimize 𝑑
fab
(R,T).

Key idea. Our key idea is to keep reducing the fabrication error

𝑑
fab
(R,T) using local topological and geometric operations, instead

of global optimization of geometry and topology. We observe that

since the fabrication error 𝑑
fab
(R,T) is the worst case on a certain

triangle, the local optimization operations performed on that trian-

gle are effective to reduce 𝑑
fab
(R,T). The local operations include

edge collapse and edge flip for topological modification, and vertex

relocation for geometric update.
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Error: 3.97%
Collapse: 2752
Flip: 45
Local Perturbation: 527
Global Relocation: 201

Error: 10.99%
Collapse: 2752
Flip: 45
Local Perturbation: 438
Global Relocation: 1

Error: 15.25%
Collapse: 2704
Flip: 34
Local Perturbation: 284
Global Relocation: 0

Error: 24.87%
Collapse: 2304
Flip: 32
Local Perturbation: 182
Global Relocation: 0

Error: 27.94%
Collapse: 1836
Flip: 28
Local Perturbation: 151
Global Relocation: 0

Error: 30.04%
Collapse: 1394
Flip: 18
Local Perturbation: 99
Global Relocation: 0

Error: 31.49%
Collapse: 956
Flip: 5
Local Perturbation: 47
Global Relocation: 0

Error: 33.54%
Collapse: 431
Flip: 1
Local Perturbation: 3
Global Relocation: 0

Error: 34.67%
Collapse: 137
Flip: 0
Local Perturbation: 1
Global Relocation: 0

Collapse: 1
Flip: 0
Local perturbation: 0
Global Relocation: 0

Error: 37.57%

Error , Count

12.5%, 1000

25%, 2000

37.5%, 3000

1000 2000 3000 3524 #Operation

Fig. 4. The graph plots the fabrication error and each operation count vs. the number of all operations. The red, green, blue, purple and orange curves denote
the fabrication error, collapse, flip, local perturbation and global relocation, respectively. The fabrication error is the percentage of the minimum length of the
template edges (denoted as 𝑙min). Ten progressive remeshing results are shown, and their fabrication error and operation counts are reported in the boxes.
Nine template triangles are shown in the middle with different colors. If the assembly error is larger than 5%𝑙min for a triangle in a remeshing result, we show
it in white; otherwise, we show it using its closest template triangle.

Type 1 Type 2 Type 3

(a) (b) (c) (d)

𝜃2

𝜃12𝜋

2𝜋

𝜋

𝜋

Fig. 5. Smoothness constraints. The white region is feasible (a). We show
the typical examples for the first (b), second (c), and third constraints (d).

Workflow. According to our key observation, we propose a prac-

tical algorithm to greedily reduce the fabrication error 𝑑
fab
(R,T)

while not violating the approximation and smoothness constraints

(see the pseudocode in Alg. 1). Since the input mesh quality and

resolution may vary greatly, we first resample the input to a mesh

whose edges lengths are less than half of the shortest edge length

of the specified templates (Sec. 3.3.1). Then, the local topological

operations, including edge collapse and edge flip, are used to change

the topology to decrease the fabrication error 𝑑
fab
(R,T) (Sec. 3.3.2).

Since the solution space explored by the topological operations is

limited, we further propose local perturbation and global relocation

for optimization (Sec. 3.3.3).

3.3 Optimization details
Approximation constraints. The method of [Wang et al. 2020] is

used to check whether the approximation constraint ℎ(R,M) ≤
𝜖
envelope

is satisfied. If the approximation constraint is satisfied

after performing one local operation, this operation is accepted;

otherwise, we reject the operation.

Smoothness constraints. The dihedral angles between neighbor

triangles are used to formulate the smoothness constraints. In de-

tail, for a triangle strip with three triangles, we enforce a set of

constraints over the two dihedral angles 𝜃1, 𝜃2 (Fig. 15 (a)). The

constraint set contains three types:

(1) To avoid two adjacent triangles with nearly opposite normals,

we constrain 𝜃
low

< 𝜃𝑖 < 𝜃high, 𝑖 = {1, 2} (Fig. 15 (b)).
(2) Two triangles that share the same neighbour triangle are not

allowed to intersect each other, 𝜃𝑐
low

< 𝜃1 + 𝜃2 < 𝜃𝑐
high

is

enforced (Fig. 15 (c)).

(3) A zigzag formed by the triangle strip should be prohibited,

thus we set |𝜃1 − 𝜃2 | < 𝜃𝑧 (Fig. 15 (d)).

For a triangle, its any two different adjacent triangles and itself form

a triangle strip. We traverse all triangles to find all strips of this

type to form a strip set. The smoothness constraint 𝑔
smooth

(R) < 0

includes the smoothness constraints on all strips in that set. In

practice, we set 𝜃
low

= 𝜋/18, 𝜃
high

= 35𝜋/18, 𝜃𝑐
low

= 𝜋 , 𝜃𝑐
high

= 3𝜋 ,

and 𝜃𝑧 = 10𝜋/9.

3.3.1 Initialization. Since the input triangles may deviate signifi-

cantly from the prescribed template triangles, we split the edges until

each edge length is shorter than half of the templates’ shortest edge

length. The approximation constraint is not violated after conduct-

ing the split operations. If the input mesh violates the smoothness

constraint, we smooth it as input via Laplacian smoothing.

3.3.2 Topological optimization. Each time we locally adjust the

topology around the triangle with the maximum matching error.

Edge collapse. Given the triangle f𝑡 withmaximummatching error,

i.e., 𝑑
fab
(R,T), there are six candidates for collapse operation, i.e.,

two opposite collapse directions for an edge. We use the following

steps to implement the collapse operation:

(1) Filter out the candidate collapse operations that lead to a

non-manifold mesh or cause R to violate the smoothness

constraints or to not meet the approximation constraint.

(2) Virtually perform each remaining candidate and record the

fabrication error for the new mesh R̂.
(3) Find theminimumvalue (denoted as𝑑

fab
(R̂,T)) of the recorded

errors and record the corresponding collapse operation.
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(4) If 𝑑
fab
(R̂,T) > 𝑑

fab
(R,T), no collapse operation is per-

formed and set 𝑐_𝑠𝑡𝑎𝑡𝑒 = false; otherwise, the corresponding

collapse operation is conducted and set 𝑐_𝑠𝑡𝑎𝑡𝑒 = true.

Edge flip. Given the triangle f𝑡 with the maximummatching error,

its each edge has a candidate flip operation. The steps to perform the

flip operation are similar to the collapse operation. We set 𝑓 _𝑠𝑡𝑎𝑡𝑒 =

true if the flip operation succeeds to reduce the fabrication error,

and the smoothness constraint and the approximation constraint

are still satisfied; otherwise, 𝑓 _𝑠𝑡𝑎𝑡𝑒 = false.

3.3.3 Geometric optimization.

Local perturbation. Since the space explored by the topological

operations is only a finite discrete set, it easily gets stuck in the local

minimum. Thus, when the topological operations stops to reduce

the fabrication error, we enlarge the solution space by perturbing

vertices locally to further reduce the fabrication error.

𝜃2 𝜃1
v1

v𝑚

v2

v𝑗

∠pvv𝑗

n𝑗

e𝑥

e𝑦

v

p
𝜃𝑚

A probability-guided perturba-

tion method is used to update

the geometry of the triangle f𝑡
with the maximum matching er-

ror. For each vertex v of f𝑡 , we de-
note the one-ring vertices of ver-

tex v as {v1, · · · , v𝑚} and the an-

gles of the incident triangles at

v as {𝜃1, · · · , 𝜃𝑚}. Then, we pa-

rameterize a point p in the one-

ring of v as follows:

p = v + 𝑟 cos(𝜃 −
𝑗−1∑
𝑖=0

𝜃𝑖 )e𝑥 + 𝑟 sin(𝜃 −
𝑗−1∑
𝑖=0

𝜃𝑖 )e𝑦, (7)

where 𝜃 =
∑𝑗−1
𝑖=0

𝜃𝑖 + ∠pvv𝑗 ∈ [
∑𝑗−1
𝑖=0

𝜃𝑖 ,
∑𝑗

𝑖=0
𝜃𝑖 ), 𝑟 = ∥p − v∥, e𝑥 =

v𝑗−v
∥v𝑗−v∥ , and e𝑦 = n𝑗 × e𝑥 . Here 𝜃0 = 0, n𝑗 is the normal of the 𝑗 th tri-

angle, and 𝑗 ∈ {1, · · · ,𝑚}. We sample a point as follows:

(1) Sample an angle 𝜃 uniformly in [0,∑𝑚𝑖=0 𝜃𝑖 ) and a radius 𝑟

using a Gaussian distribution N(0, 𝜎2), where 𝜎 is set as
1

7

times the average length of the one-ring edges of v.
(2) Use the angle 𝜃 and the radius 𝑟 to obtain a 3D point x via (7).

(3) Project x back to the input meshM. Denote the normal of

the triangle, where the projection point is located, as n.
(4) Sample a value 𝜂 evenly between -1/2 and 1/2 and obtain the

final sampling point as x + 𝜂𝜖
envelope

n.
In practice, we sample 𝑁

sample
new triangles for f𝑡 and filter out tri-

angles that violate the smoothness constraint or the approximation

constraint. Then, we compute the fabrication error for each remain-

ing triangle and then find the minimum fabrication error. If the

minimum fabrication error is less than the fabrication error before

the local perturbation, we conduct the corresponding local pertur-

bation and set 𝑙𝑟_𝑠𝑡𝑎𝑡𝑒 = true. Otherwise, we set 𝑙𝑟_𝑠𝑡𝑎𝑡𝑒 = false

and keep f𝑡 unchanged. In our experiments, 𝑁
sample

= 2000.

Global relocation. For each triangle inR, we compute the template

triangle t and the best rigid transformation 𝑅, b by solving (5) before
updating the geometry of R. Then, each vertex v𝑖 of R is updated

by performing the following steps (Fig. 6):

(a) (b) (c)

v𝑖

c𝑖

M

Fig. 6. Global relocation for the vertex v𝑖 . (a) The one-ring triangles of the
vertex v𝑖 and their corresponding templates. Color encodes the type of
template. (b) The point set 𝑆 (v𝑖 ) consists of the blue points, which are the
corresponding vertices of the vertex v𝑖 (magenta) on templates. The grey
sphere indicates theminimum bounding sphere of𝑆 (v𝑖 ) and the red point c𝑖
is the center of the sphere. (c) A backtracking line search is used to relocate
v𝑖 while not violating the approximation and smoothness constraints.

(1) Collect a point set 𝑆 (v𝑖 ) that consists of the templates’ ver-

tices corresponding to v𝑖 ;
(2) Compute a moving direction d = c𝑖−v𝑖 , where c𝑖 is the center

of the minimum bounding sphere of 𝑆 (v𝑖 );
(3) Update v𝑖 to v𝑖 + 𝛼d, where 0 ≤ 𝛼 ≤ 1 is determined by

a backtracking line search procedure to guarantee that the

approximation and smoothness constraints are satisfied.

(4) Solve the template triangle and the best rigid transformation

for each triangle in the one-ring of v𝑖 .

In practice, we update each vertex only once and use the updated po-

sitions of the previously processed verticeswhen treating a new point.

We propose the following proposition to prove that the fabrication

error is guaranteed to decrease after the global relocation.

Proposition 3. For each vertex v𝑖 , the maximum assembly error
on the one-ring triangles (denoted as Ω𝑖 ) of v𝑖 is:

𝑑 (𝛼𝑖 ) = max

f ∈Ω𝑖

𝑑assembly (f) = max

f ∈Ω𝑖

min

t∈T
𝑗∈{1,··· ,6}

𝑑max (f, t𝜙 𝑗 ) (8)

where 0 ≤ 𝛼𝑖 ≤ 1 is the step size. Then, 𝑑 (𝛼𝑖 ) monotonically decreases
with respect to 𝛼𝑖 .

The proof is provided in the supplementary material.

Complementarity. The two relocation methods are not in con-

flict. The local perturbation is to enlarge the solution space and pre-

vent our algorithm from falling into an early trap (Fig. 16). After

performing many local relocation steps, the algorithm is trapped

by a local minimum, and the local perturbation cannot effectively

reduce the fabrication error (see Fig. 4 and the supplementary video).

Then, the global relocation is applied to reduce the fabrication error

further. They complement each other in our pipeline.

4 FABRICATION
Physical assembly. After the optimization process terminates, the

template triangle for each output triangle is determined. Then, we

assemble the determined template triangles to form the resulting

shape during the real manufacturing process. The core challenge

of physical fabrication is to fix adjacent template triangles. We use

hinges as connectors between adjacent triangles and resolve the

challenge as follows (Fig.7 (c)):
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(a) (b) (c)
Fig. 7. (a) The digital assembly model is generated via mapping the tem-
plates to the corresponding output triangles using the best rigid transfor-
mations. The color encodes the type of templates. (b) The parameterization
of the cut R attached with auxiliary information is used to assist the real
fabrication. The zoom-in view shows the extra information, including the
orientation (blue for convex and orange for concave), the dihedral angles,
and the type of templates. (c) The detailed assembly process of two adjacent
triangles and the bent hinge.

Fig. 8. Real materials and tools used in the real fabrication, including nine
stainless steel triangle plates, nylon cable ties with self-locking, stainless
steel hinges, and pliers.

(1) Adjust the opening angle of the hinge to match the dihedral

angle of the adjacent triangles.

(2) Use ties to bind the hinges and triangles together.

Then, we assemble the templates one by one based on this strat-

egy. To assist the fabrication, we print the parameterization with

additional auxiliary information (Fig.7), including the placement

and type of templates, the orientation, and the dihedral angles. The

cut is generated by [Zhu et al. 2020] and the parameterization is

computed by [Su et al. 2020]. See more details in the supplementary

video.

Real materials and tools. To support adaptive adjustment of the

opening angle of the hinge, we use stainless steel hinges and modify

the opening angle by pliers. The template triangles are stainless steel

triangle plates in practice. We use nylon cable ties with self-locking

for binding. The real materials and tools are shown in Fig. 8. We

should punch holes in the hinge and the plate to bind the hinge

and plate together with a tie. In practice, two assembly holes are

sufficient to fix them.

4.1 Computing holes
Holes. We can not precisely assemble all hinges and plates by only

two points due to the fabrication error. Thus, we use two rounded

rectangular holes for self-adaptation. The sizes and positions of

the holes are related to the fabrication error. To ensure reusability,

hinges have the same holes, and so do each template plate.

𝑙2

𝑙1 𝑙1

𝛼
𝛽

a

b
a′ b′

𝐿1

𝐿2

Fig. 9. The design of the rectangular holes on templates and hinges. Left: An
output triangle (orange) and its corresponding template (blue). Right: Illus-
tration for the design of holes. e′ = a′b′ (blue) and e = ab (orange) are two
corresponding edges on the template and the output triangle, respectively.
The radius of the dash circle is the maximum allowable fabrication error. a, b
lie on the circle. 𝐿2 is parallel to a′b′ and the distance between them is 𝑙2.
𝐿1 is parallel to the perpendicular bisector of ab and the distance between
them is 𝑙1. Let 𝛼, 𝛽 vary in [0, 2𝜋 ], the trajectories of the intersections of
𝐿1 and 𝐿2 are shown as the green and red solid lines, respectively.

Notations. For an edge e = ab of R, we denote its one adjacent
triangle as f (see the notations in Fig. 9). The template triangle for f
is denoted as t, and the corresponding edge of e in t is denoted as

e′ = a′b′. In our experiments, the center of hinge coincides with

the midpoint of e, and the middle axis of the hinge aligns with e.
Due to symmetry, we can ignore another adjacent triangle of e for
determining the holes. For convenience, we assume that the holes

as line segments, the holes on hinge are perpendicular to e, and the

holes on template are parallel to e′. We denote the distance from

hinge holes to the perpendicular bisector of e as 𝑙1 and denote the

distance from template holes to e′ as 𝑙2.

Intersections. The intersections between hinge holes and template

holes are different for different pairs of e and e′. The range of the in-
tersections determines the hole locations. We denote the maximum

allowable fabrication error as 𝑑𝑏 . To compute the intersection range,

we take the extreme case, where ∥a − a′∥2 = 𝑑𝑏 and ∥b − b′∥2 = 𝑑𝑏 .
It indicates that a (or b) lies on the circle with a′ (or b′) as the center.
Suppose that the polar angles of a and b are 𝛼 and 𝛽 , respectively.

Then, we have

a = a′ + 𝑑𝑏
(
cos𝛼

sin𝛼

)
, b = b′ + 𝑑𝑏

(
cos 𝛽

sin 𝛽

)
. (9)

The two linear equations for hinge holes are:

(a − b)𝑇
(
x −

(
a + b
2

± 𝑙1
a − b
∥a − b∥2

))
= 0. (10)

The linear equation for template holes is:(
(a′ − b′)⊥

)𝑇 (
x −

(
a′ + b′

2

+ 𝑙2
(b′ − a′)⊥
∥(b′ − a′)⊥∥

))
= 0, (11)

where ⊥ denotes a counterclockwise rotation by 𝜋/2. Given a′, b′,
𝑙1, 𝑙2, and 𝑑𝑏 , the intersections are the functions of 𝛼, 𝛽 . When 𝛼, 𝛽

vary in [0, 2𝜋], we use the Nelder-Mead method [Nelder and Mead

1965] to solve the range of the intersections for hinge holes (denoted

as 𝐻
hinge

) and template holes (denoted as 𝐻
template

).

Final holes. We use the template holes with the same locations

and sizes for the edges of template triangles with the same length.

Since all hinges have the same holes, we set the union of all 𝐻
hinge

s
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(a) 𝑑
fab
(R, T) = 4.15% (b) 𝑑

fab
(R, T) = 2.70% (c) 𝑑

fab
(R, T) = 2.10%

Fig. 10. Different number of classes: 9 classes in (a), 19 classes in (a), and 34
classes in (c). The template triangles are shown below the model.

as the resulting holes, denoted as 𝐻u

hinge
. The width of the holes is

set slightly larger than that of the nylon cable ties.

Physical sizes and collision avoidance. Collisions between hinges

on a template triangle may appear, thereby making manufacturing

infeasible. In our real fabrication, nine template triangles from three

different edges (6cm, 9cm, and 12cm) are used. For the real fabrica-

tion example, the maximum fabrication error is 0.267cm; thus, 𝑑𝑏
is set as 0.3cm. In practice, we take 𝑙1 = 𝑙2 = 0.6cm. Consequently,

no collisions happen. The template hole sizes are 0.612cm for the

template edge of 6cm, 0.605cm for the template edge of 9cm, 0.603cm

for the template edge of 12cm. Besides, 𝐻u

hinge
= 0.600cm.

Supporting structures. Since the
mechanical properties are not con-

sidered, those physical manufac-

turing examples usually cannot

maintain their shapes and cannot

stand independently. We empiri-

cally handcraft an additional sup-

porting structure for each model

in practice. The right inset shows

the supporting structure for the

Venus model.

5 EXPERIMENTS
Wehave tested ourmodeling algorithmwith specified discrete equiv-

alence classes of triangles on various models to evaluate its perfor-

mance. We select the topology-fixed method [Singh and Schaefer

2010] and the Zometool-based method [Zimmer et al. 2014] as the

competitors. Our method was implemented in C++, and all of our ex-

periments were executed on a desktop PC with a 3.7 GHz Intel Core

i7-8700K and 32GB of memory. Without additional specification, the

fabrication error is measured as a percentage of the shortest edge of

the templates and the one-sided Hausdorff distance 𝑑𝐻 (R,M) from
R toM is measured as a percentage of the diagonal length of the

bounding box ofM. We visualize results by mapping the templates

to the corresponding output triangles using the best rigid trans-

formations. In our experiments, we set 𝜖
envelope

= 3% by default.

Table 1 summarizes the statistics of our results.

(a) 𝑑
fab
(R, T) = 4.07% (b) 𝑑

fab
(R, T) = 6.29% (c) 𝑑

fab
(R, T) = 8.15%

Fig. 11. Three templates with different shapes but the same number of
classes. The template triangles are shown below the model.

(a) #F = 460 (b) #F = 966 (c) #F = 1746 (d) #F = 2712

Fig. 12. Various sizes. From left to right, the fabrication errors are 3.93%,
3.93%, 4.53%, and 4.62%, respectively. #F indicates the number of triangles
in the output R.

5.1 Evaluations
Specifying template triangles. To make the template triangles as

consistent as possible on each edge of the output mesh, we specify

the template triangles using edge lengths. Given a set of edge lengths

L = {𝑙1, · · · , 𝑙𝑛}, the unique and valid triangles with three edge

lengths (that can be the same) in L forms T . Here the term “valid”

means that the three edge lengths satisfy the triangle inequality and

the word “unique” indicates that no two triangles are congruent.

There are two main factors that affect the representation ability of

the template: (1) the number of classes and (2) the template shapes.

In Fig. 10, we tested 9 templates withL = {2, 3, 4}, 19 templates with

L = {2, 8/3, 10/3, 4}, and 34 templates with L = {2, 2.5, 3, 3.5, 4}
on the cow model. From the results, the more classes, the smaller

the fabrication error. This is in line with common sense. In Fig.11,

we test our method with three different Ls on the cow model:

{2, 3, 4} for (a), {2, 2.5, 4} for (b), and {2, 3.5, 4} for (c). The template

triangles in Fig.11 (b) and (c) change greatly, thereby leading to a

large fabrication error. We use {2, 3, 4} by default.

Shape sizes. If a set of large templates is used to model and fab-

ricate a much smaller model, our algorithm fails to reduce the

fabrication error to a small level. At this time, we need to ad-

just the size of the template or the model. In our experiments,

we fix the size of the template and modify the input model size.

We provide a practical way to estimate the minimum allowable

size. First, an isotropic remeshing algorithm, which bounds the

one-sided Hausdorff distance and tries to minimize the number of
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(a) Input (b) 𝑑
fab
(R, T) = 4.84% (c) 𝑑

fab
(R, T) = 3.82% (d) 𝑑

fab
(R, T) = 3.70%

Fig. 13. Optimizing template triangles. (b) Our algorithm. (c) The first strat-
egy. (d) The second strategy. The red triangles in (c) and (d) are the templates
used by (b).

triangles, is performed. Second, compute the average edge length

of the isotropically remeshed result (denoted as 𝑙 iso
avg

) and the aver-

age edge length of the template triangles (denoted as 𝑙
temp

avg
). Third,

scale the model 𝑙
temp

avg
/𝑙 iso
avg

times. In practice, we use the remeshing

algorithm of [Yang et al. 2020] by setting the target edge length

field as a constant value function and bounding the one-sided Haus-

dorff distance, whose threshold is set as our defaulting 𝜖
envelope

. In

Fig. 12, we show an example with four different sizes. Our method

successfully achieves small fabrication errors for all cases.

Optimizing template triangles. We can modify our pipeline to

automatically optimize the templates to reduce the fabrication er-

ror with the given template number. The method to optimize the

templates without changing the number is as follows:

(1) For each triangle f in R, we first compute the matching er-

ror (5) to find the template that has the smallest similarity

metric and achieve the best rigid transformation between f
and the obtained template. Then, the best rigid transformation

is used to map f onto the plane.

(2) To update a vertex v of each template t, we first collect the
transformed vertices, which correspond v, into a point set

and then move v to the center of the minimum bounding

circle of the point set.

(3) If themaximummovement of the template vertices is less than

10
−6

times the shortest edge length of our default template,

stop the optimization process; otherwise, go to step 1.

We propose two strategies to modify our pipelines:

• The first strategy: We alternately run the default algorithm

and optimize the templates without changing the number.

The alternating process is stopped when the template opti-

mization procedure does not change the templates.

• The second strategy: We add the template optimization before

the global relocation step to modify the default pipeline. The

termination condition is the same as the default condition.

We show a comparison in Fig. 13. Both strategies achieve smaller

fabrication errors than our default algorithm.

Various initializations. In Fig.14, four types of tessellations repre-

senting one surface are tested. The results generated by our method

have similar fabrication errors 𝑑
fab
(R,T), which demonstrates the

robustness of our algorithm against irregular inputs. The fabrication

errors are all at a low level.

(a) Nonuniform-1 (b) Nonuniform-2 (c) Anisotropic (d) Uniform
𝑑
fab
(R, T) = 3.10% 𝑑

fab
(R, T) = 3.45% 𝑑

fab
(R, T) = 3.88% 𝑑

fab
(R, T) = 3.99%

Fig. 14. Different tessellations ofM. Top: The input meshes. Bottom: The
remeshing results.

(a) with all

𝑑
fab
(R, T) = 4.39%

(b) w/o second

𝑑
fab
(R, T) = 28.35%

(c) w/o third

𝑑
fab
(R, T) = 28.58%

Fig. 15. Necessities of the second and third smoothness constraints.

(a) Input (b) 𝑑
fab
(R, T) = 3.46% (c) 𝑑

fab
(R, T) = 13.75%

Fig. 16. Replacing the local perturbation with the vertex relocation method
of the global relocation strategy. (b) With local perturbation. (c) Using the
vertex relocation method.

Smoothness constraints. The second and third smoothness con-

straints are required. The second constraint gives a precaution

against intersections, and the third constraint avoids zigzags. With-

out them, the algorithm is stuck since the intersections of triangles

or sharp jagged shapes appear in the result (see the zoom-in views in

Fig. 15). For the second constraint, the intersection of triangles also

depends on the edge length. However, if the dihedral angles sat-

isfy the second smoothness constraint, there will be no intersec-

tion no matter how long the edges are.

Local perturbation. The local perturbation can be replaced by the

vertex relocation method of the global relocation strategy. Fig. 16

shows the comparison between the local perturbation and this strat-

egy. The local perturbation is able to make the algorithm produce

a much lower fabrication error. The vertex relocation method can

be treated as the exact position optimization, whereas the local

perturbation can be regarded as a kind of inexact sampling. The

inexact sampling enlarges the search space, thereby avoiding early

entrapment by local minimum.

Different models with a set of template triangles. We test our

method on 71 complex models using a set of discrete equivalence

classes of triangles, i.e., T based on L = {2, 3, 4}. The resulting
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Fig. 17. Gallery of our results for 13 selected models.

Fig. 18. Gallery of our digital results (top) and real fabrications (bottom) for seven models. The lampshade uses the templates with a specially designed hollow
structure. The actual lighting effect is shown on the far right.

fabrication errors are all lower than 5%. Fig. 17 shows 13 selected

models. The seven physically fabricated models are shown in Fig. 18.

5.2 Comparisons
Comparison with [Singh and Schaefer 2010]. Our motivation is

different from [Singh and Schaefer 2010]. Our method explores

whether the algorithm can be widely used in various models with a

set of predefined templates while they optimize different templates

for different input models. As a significant benefit, our method can

use pre-manufactured templates for different models, thus there is

no need to customize templates for each model. It further reduces

fabrication costs.

In Fig. 2 and 19, we compare with [Singh and Schaefer 2010].

The method of [Singh and Schaefer 2010] terminates when the

maximum distance between vertices of the optimized mesh and

the transformed templates is less than the user-specified thresh-

old. Their termination condition uses our 𝑑
fab
(R,T) for judgment.

Thus, for fair comparison, we first run our algorithm to achieve

𝑑ours
fab
(R,T), then set 𝑑ours

fab
(R,T) as the user-specified threshold

for [Singh and Schaefer 2010], and finally compare the number of

classes for two methods. Since the method of [Singh and Schae-

fer 2010] does not optimize the mesh topology, many classes are

required for the irregular meshes (Fig. 2 and Fig. 19 - top). Then,

we test their algorithm on an isotropic mesh (Fig. 19 - bottom).

However, it still generates more classes than our method. Note that

both methods produce the comparable 𝑑
fab
(R,T); but the method

of [Singh and Schaefer 2010] gets smaller 𝑑
match

(f,T)/𝑁𝑓 , where
𝑁𝑓 is the number of triangles in the output mesh.

The similarity metric between two triangles in [Singh and Schae-

fer 2010] is: 𝑑sum (f, t) = min𝑅, b
∑
𝑖∈{0,1,2}{∥𝑅p𝑖 + b − v𝑖 ∥2

2
}. The

best rigid transformation for 𝑑sum (f, t) can be analytically obtained

(a) Input (b) [Singh and Schaefer 2010]

𝑁𝑐 = 91

𝑁𝑐 = 46

(c) Ours

𝑁𝑐 = 9

𝑁𝑐 = 9

Fig. 19. Comparisons with [Singh and Schaefer 2010] on David’s head using
nonuniform and isotropic tessellations. 𝑁𝑐 is the number of classes.

by [Arun et al. 1987]. 𝑑sum (f, t) can be used to replace 𝑑max (f, t) in
our algorithm. Fig. 20 shows the comparison on the Bimba model.

In Fig. 21, we show the detailed difference on a pair of triangles.

From these comparisons, optimizing 𝑑sum (f, t) may still lead to a

large 𝑑max (f, t). Therefore, 𝑑sum (f, t) is not directly used for physi-

cal fabrication. The minimizer of the two-sided Hausdorff distance

concerning a rigid transformation is a suitable metric to measure
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(a) Input (b) 𝑑
fab
(R, T) = 9.22% (c) 𝑑

fab
(R, T) = 4.36%

Fig. 20. Replacing 𝑑max (f, t) with 𝑑sum (f, t) . Given an input model (a), our
algorithm considers 𝑑sum (f, t) (b) and 𝑑max (f, t) (c), respectively.

Fig. 21. Difference between the optimization of 𝑑max (f, t) and 𝑑sum (f, t) .
Given two triangles and we fix one of them (grey), the orange and green tri-
angles are the other triangle after best rigid transformations by optimizing
𝑑max (f, t) and 𝑑sum (f, t) , respectively. The arrows indicate the correspond-
ing vertex pair with maximum distance.

(a) Input (b) [Zimmer et al. 2014] (c) Ours
Fig. 22. Comparison to [Zimmer et al. 2014] on two models. The results
of [Zimmer et al. 2014] are shown using their specified edges (left) and the
template polygons computed by us (right). The white quads are not planar.

the difference between two triangles. However, it is challenging

to numerically optimize the two-sided Hausdorff distance. Based

on the following proposition, our similarity metric optimizes the

tighter upper bound of the two-sided Hausdorff distance than the

similarity metric in [Singh and Schaefer 2010].

Proposition 4. Given two triangles △a𝑜a1a2 and △b0b1b2, let
𝑑𝐻 (△a0a1a2, △b0b1b2) be the two-sided Hausdorff distance between
two triangles and 𝜉 = (∥b0 − a0∥2, ∥b1 − a1∥2, ∥b2 − a2∥2). Then,

𝑑𝐻 (△a0a1a2, △b0b1b2) ≤ ∥𝜉 ∥∞ ≤ ∥𝜉 ∥2 . (12)

We prove it in the supplementary material.

Input (1, 26.84%) (4, 6.94%) (9, 4.29%)

(19, 2.69%) (34, 2.14%) (83, 1.19%) (164, 0.84%)

Fig. 23. Limited curvature and bumpy surfaces. The text below each model
indicates the number of templates and the fabrication error, respectively.

Comparison to [Zimmer et al. 2014]. We compare the Zometool-

based mehtod [Zimmer et al. 2014] one two models in Fig. 22. Our

methods uses 9 template triangles. The results of [Zimmer et al.

2014] are kindly provided by the authors. The Zometool system

uses nine prescribed edges and one predefined node to model the

shapes. The surface panels formed by the Zometool system implic-

itly consists of the 29 unique triangles and 118 different convex,

planar quads [Zimmer and Kobbelt 2014]. We determine the tem-

plate polygons and count the number of templates of their results.

We observe that: (1) there are non-planar quads in their results and

(2) their number of templates is much greater than ours.

6 CONCLUSION
We present a novel fabrication-error-driven remeshing algorithm

to model and fabricate shapes using a set of prescribed triangles.

Specifically, we propose a new similarity metric for measuring the

matching error between two triangles from a manufacturing per-

spective. Then, we present an easy-to-compute solution to com-

pute the new metric. Our greedy remeshing approach effectively

minimizes the fabrication error defined as the maximum match-

ing error of all triangles. We have demonstrated the feasibility and

practicability of our method using only nine template triangles for

manufacturing seven models physically.

Fabrication error. Although our algorithm can not explicitly con-

trol the fabrication error to be less than a user-specified threshold,

the maximum 𝑑
fab
(R,T) of our all examples in our experiment is

lower than 5%. According to our real manufacturing experience, this

error almost does not affect the manufacturing process. To explicitly

bound the fabrication error, a trivial solution is to add more discrete

equivalence classes during the optimization process automatically.

Bumpy surfaces. Due to the limited number of templates, the

limitation of curvature is inevitable. Thus, when the number of

template triangles is small, the resulting surfaces are slightly bumpy

(Fig. 23 - upper row). Besides, our algorithm fails to generate a low

fabrication error when the template number is extremely small. To

ameliorate the effects of the limited curvature, we apply the geo-

metric distance error and add smoothness constraints that force the

optimized surfaces to be not too rugged. Another practical solution
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Table 1. Statistics and timings. We report the number of triangles in the
output R (#F), the percentage of each class (𝑁 𝑐

stat), the fabrication error
measured as a percentage of the shortest edge of the templates (𝑑fab), the
one-sided Hausdorff distance from R toM measured as a percentage of
the bounding box diagonal of the input M (𝑑𝐻 ), and the computational
time in minutes.

Model #F 𝑁𝑐
stat
(%) 𝑑

fab
(%) 𝑑𝐻 (%) Time (m)

Fig.2 1770 4.2/15.3/15.4/23.1/9.3/5.4/14.0/10.7/2.5 4.23 1.11 93.3

Fig.10 1292 6.7/17.3/15.4/24.0/9.4/5.0/11.0/8.3/3.1 4.15 1.54 84.1

Fig.11 1014 8.2/22.3/17.6/21.3/8.2/5.0/9.5/6.4/1.6 4.07 1.78 113.5

Fig.12 (a) 460 7.6/18.5/16.7/23.3/8.9/6.1/11.5/4.8/2.6 3.93 2.99 35.9

Fig.12 (b) 966 5.3/15.4/13.9/22.2/10.2/5.8/14.3/10.7/2.3 3.92 2.17 41

Fig.12 (c) 1746 5.6/15.7/15.9/24.1/7.6/5.6/13.6/8.8/3.2 4.52 2.72 65.2

Fig.12 (d) 2712 4.8/13.4/17.2/23.4/8.6/5.2/14.5/10.3/2.7 4.62 1.11 72.6

Fig.13 (b) 5086 15.5/26.4/18.8/19.6/5.2/4.0/6.4/3.6/0.5 4.84 0.95 123.5

Fig.14 (a) 502 5.4/19.7/19.3/23.5/7.6/6.0/9.2/7.8/1.6 3.10 2.72 56.3

Fig.14 (b) 518 8.3/20.5/20.1/21.2/6.8/5.0/11.2/5.0/1.9 3.45 2.98 66.8

Fig.14 (c) 508 7.9/23/16.9/19.7/7.9/4.9/11.6/6.7/1.4 3.88 2.30 66.6

Fig.14 (d) 564 10.8/26.6/19.3/20.2/5/5.5/8.2/3.7/0.7 3.99 1.86 63.5

Fig.15 (a) 1984 5.7/18.6/16.1/23.5/7.5/6/12.1/8.2/2.3 4.39 1.57 88.7

Fig.16 (b) 668 17.7/28.3/18.1/17.2/5.7/3.7/5.7/2.5/1.0 3.46 2.36 53.2

Fig.17 Doraemon 758 7.8/18.2/21.4/20.3/6.5/7.7/8.3/7.9/2.0 4.57 2.38 61.3

Fig.17 Dog 2738 10.8/26.2/20.4/20.7/4.9/4.8/7.6/4.2/0.4 4.69 1.04 80.1

Fig.17 Lion_recon 2202 9.8/20.6/18.0/21.8/6.2/4.5/10.9/6.9/1.4 4.37 1.19 125.1

Fig.17 Eros 3054 6.3/17.1/17.2/22.2/8.3/5.7/12.5/8.2/2.6 4.42 1.36 117.3

Fig.17 Sculpture 3846 5.2/14.7/16.3/23.3/8.2/6.4/12.9/10.2/2.8 4.37 1.06 115.3

Fig.17 Bulldog 1460 7.1/18.4/15.2/22.3/7.3/6.2/11.7/9.1/2.6 4.42 1.73 45.6

Fig.17 VaseLion 3664 9.0/23.0/18.5/21.3/7.4/4.9/8.8/5.6/1.4 4.57 1.27 115.4

Fig.17 Ramses 1762 8.6/20.6/18.2/22.9/6.8/4.3/9.6/6.9/2.1 4.36 1.70 113.6

Fig.17 Mickey 3078 7.2/18.5/16.7/23.1/8.5/5.6/11.1/7.6/1.7 4.04 1.12 119.6

Fig.17 Buddha 3538 6.3/16.2/15.5/22.2/8.9/5.6/11.8/10.7/2.9 4.43 1.61 122.5

Fig.17 Gargoyle 3008 7.5/18/16.3/22.7/7.7/5.4/11.6/8.4/2.5 4.17 1.39 143.4

Fig.17 SantaClaus 1472 8.4/19.6/17.1/23.4/8.3/4.5/10.2/6.8/1.9 4.02 1.94 87.5

Fig.17 Rocket 944 8.9/20.6/16.1/21.8/9.1/4.3/9.6/8.2/1.4 3.47 1.93 72.4

Fig.18 Bunny 912 14.1/27.1/18.4/19.1/5.4/4.3/7.6/3.3/0.8 3.97 2.25 76.6

Fig.18 David 1186 12.1/27.6/16.9/20.8/5.6/4.6/8.3/3.2/0.9 3.77 2.14 77.5

Fig.18 Kitty 530 13.2/25.5/17.9/20.0/5.1/5.8/7.7/3.8/0.9 4.21 2.21 30.1

Fig.18 Venus 860 14.0/25.1/20.7/18.1/4.0/6.5/7.9/3.3/0.5 4.00 1.99 66.3

Fig.18 Table 1012 6.7/20.8/17.8/20.8/7.4/5.3/11.5/7.4/2.3 4.10 1.62 85.6

Fig.18 Sofa 836 3.6/15.9/21.5/20.8/8.4/5.9/12.4/8.9/2.6 4.06 2.47 62.4

Fig.18 Lampshade 310 11.3/21.0/21.9/17.7/4.5/5.5/11/6.1/1.0 3.76 2.74 24.3

Fig.19 (top) 2116 7.0/18.4/16.2/23.3/7.6/6.1/11.9/7.7/1.9 4.16 1.28 101.2

Fig.19 (bottom) 2074 7.1/18.0/18.0/22.7/8.5/5.2/10.8/7.9/1.7 4.21 1.31 98.3

Fig.20 (c) 2060 7.7/20.5/16.8/21.7/7.1/6.5/10.6/7.1/1.8 4.36 1.22 81.3

Fig.22 (top) 1386 6.8/17.0/16.0/23.6/8.9/4.5/14.3/6.6/2.4 4.21 1.69 85.3

Fig.22 (bottom) 1466 7.4/18.8/17.7/20.7/7.2/5.3/12.4/8.5/2.0 4.40 1.33 91.2

Fig.23 (9 templates) 3216 5.3/15/16.6/22.1/8.4/5.4/13.3/10.9/3.1 4.28 1.26 54.3

to avoid bumpy surfaces is to increase the number of templates. As

shown in the bottom row of Fig. 23, a large number of templates

help to generate a smooth surface and reduce the fabrication error

to a very low level.

Physical considerations. Only the mesh topology and geometry

are considered in our algorithm. The mechanical equilibrium and

structural stability are not considered during optimization. Thus,

we made support structures inside the models for real fabrications.

In the future, FEM is required to obtain optimal mechanical per-

formance. Besides, our real fabrication method does not precisely

match the computed positions of templates, including the errors

caused by the mechanical deformation and gravity. Thus, the real

fabrication error is different from the prediction but is still under

control in our experiments. In the future, advanced manufacturing

methods, such as screwing screws with a robotic arm, can precisely

locate the positions of the templates to match the fabrication error

and the prediction.
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