Vero細胞

細胞系
(重定向自Vero细胞

Vero細胞亦稱綠猴腎細胞[1],是一種非整倍性的非洲綠猴(屬名:Chlorocebus細胞系,最初由日本千葉大學的安村美博於1962年3月27日,分離自正常成年非洲綠猴的腎臟上皮細胞[2]。「vero」即「verda reno」的縮寫,其中「verda reno」在世界語中有「綠色的腎臟」的意思,而「vero」則在世界語中表示「真相」[3]

在綠燈下放大了100倍的Vero細胞

特徵

编辑

Vero細胞是連續的非整倍性細胞系,這意味着它的染色體數目異常,而且已知連續的細胞系可以通過許多分裂週期,不會老化,Vero細胞的干擾素分泌出現缺陷。它們與正常的哺乳動物細胞不同,在被病毒感染時不會分泌干擾素α/β[4]。然而,它們仍然具有干擾素-α/β受體英语Interferon-alpha/beta receptor(IFNAR),因此當將重組干擾素添加到其培養基中時,它們仍然可以作出反應。

Sun等合成了五種不同尺寸的草酸鈣(COM)晶體,包括50 nm、200 nm、1 μm、3 μm、10 μm,並且比較這五種尺寸的草酸鈣晶體對Vero細胞的損傷差異[5][6]實驗結果表明,COM的尺寸和聚集程度是影響晶體細胞毒性的重要原因,而細胞對晶體的內吞方式與晶體尺寸存在密切的關係[5]。Vero細胞內吞50nm和100 nm的COM晶體主要以網格蛋白介導的途徑,內吞1 μm的COM晶體則主要以巨胞飲(macropinocytosis)的形式進行內吞作用,而Vero細胞難以內吞尺寸更大的微米晶體[7]

2014年,有日本的研究人員確定Vero細胞的整個基因組序列[8]。Vero細胞的12號染色體具有純合的〜9-Mb缺失,導致基因組中I型干擾素基因簇和細胞週期蛋白依賴性激酶抑製劑CDKN2A英语CDKN2ACDKN2B英语CDKN2B的丟失[8]。儘管非洲綠猴先前被歸類為草原猴(Cercopithecus aethiops),但是它們已經被歸類為綠猴屬(Chlorocebus)[9]。有基因組分析表明,Vero細胞源自雌性綠猴(Chlorocebus sabaeus)[8]

細胞培養

编辑

Vero細胞在傳代培養時的生長狀況良好,並且發現細胞膜界線清晰和胞漿透明度較好的現象。Vero細胞的形態較為完整,細胞增殖的速度較快。Vero細胞傳代後的第三天開始形成單層,傳代細胞在第七天形成致密單層,此種致密單層在連續培養第十二天後逐漸老化,細胞在第十六天開始從培養瓶壁上脫落[10]

Vero細胞在轉瓶後,可以在細胞培養二十四小時後出現貼壁,細胞在培養三天後可以達到相對靜止期,細胞培養的第五天可以長成單層,細胞培養到第十二天時發現其生長致密,而細胞培養至第十四天時則開始出現老化。轉瓶後的細胞生長速度比轉瓶前緩慢,然而單層細胞持續的時間比轉瓶前更持久。進行支原體檢查時未發現有支原體的生長及污染。細胞型分析結果表明Vero 細胞的核型沒有發現明顯的異常之處,而染色體數目也沒有明顯變化[10]

研究用途

编辑

Vero細胞可以用於多種研究用途。Vero細胞在建立後不久,就被發現對多種類型的病毒高度敏感,其中包括猿猴空泡病毒40[11]麻疹病毒[12]風疹病毒英语Rubella virus[13]節足動物攜帶性病毒英语Arbovirus[14]腺病毒[15]等。後來被發現也容易感染細菌毒素,包括白喉毒素英语Diphtheria toxin[16]、不耐熱腸毒素(heat-labile enterotoxins)[17]和志賀氏樣毒素[18][19]等。

Vero細胞可以篩選大腸埃希氏菌毒素。在Vero細胞被建立後,這些毒素亦可以稱為「Vero毒素」。由於與痢疾志賀氏菌英语Shigella dysenteriae(Shigella dysenteriae)分離出的志賀氏毒素英语Shiga toxin相似,因此後來被稱為志賀氏樣毒素(Shiga-like toxin)[8]

Vero細胞又可以作為錐蟲目英语Trypanosomatida等真核寄生蟲宿主細胞[8]。此外,Vero細胞被廣泛應用於病毒感染分子機制研究、疫苗及重組蛋白的生產[20][21][22]世界衛生組織甚至認可其作為疫苗生產細胞系,建議將其作為流感疫苗生產的替代基質。目前已知Vero細胞可以協助生產狂犬病[23]及水貂犬瘟熱等疫苗[24],而用Vero細胞培養的流感疫苗可以更好地介導人體產生對流感的免疫應答[25]

豬流行性腹瀉病毒

编辑

Hofmann等通過在培養基中添加胰蛋白酶,證實豬流行性腹瀉病毒(PEDV)除了能夠在天然宿主的初始靶細胞英语Codocyte上增殖外,還可以在Vero細胞中增殖。同時又發現胰蛋白酶對PEDV纖突糖蛋白的切割作用,增強病毒對Vero細胞的感染力[26]。Ye等通過構建穩定表達PEDV ORF3蛋白的Vero細胞,發現ORF3蛋白能夠促進PEDV的增殖[27]。然而有研究顯示不同的結果,例如Chen等發現orf3基因轉譯的提前終止,有利於PEDV適應Vero細胞,並且可以提高其在Vero細胞上的複製能力[28];而Sun等對非胰蛋白酶依賴PEDV 85-7的Vero細胞的研究表明,PEDV的複製並沒有被orf3基因的突變或轉譯的提前終止顯著影響[29]。另外,Li等構建缺失orf3基因的重組PEDV,發現orf3基因缺失株和攜有全長orf3基因的重組病毒,在Vero細胞上的滴度相同,故而推測orf3基因不影響其在Vero細胞上的增殖[30]

参考文献

编辑
  1. ^ 存档副本. [2021-06-24]. (原始内容存档于2021-06-24). 
  2. ^ Yasumura Y, Kawakita M. The research for the SV40 by means of tissue culture technique. Nippon Rinsho. 1963, 21 (6): 1201–1219 [2020-02-22]. (原始内容存档于2021-02-17). 
  3. ^ Shimizu B. Seno K, Koyama H, Kuroki T , 编. Manual of selected cultured cell lines for bioscience and biotechnology. Tokyo: Kyoritsu Shuppan. 1993: 299–300 [2020-02-22]. ISBN 978-4-320-05386-1. (原始内容存档于2021-02-17) (日语). 
  4. ^ Desmyter, J.; Melnick, J. L.; Rawls, W. E. Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). Journal of Virology. 1968-10, 2 (10): 955–961 [2021-05-09]. ISSN 0022-538X. PMC 375423 . PMID 4302013. doi:10.1128/JVI.2.10.955-961.1968. (原始内容存档于2021-05-25). 
  5. ^ 5.0 5.1 Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells. Scientific Reports. 2017-02, 7 (1): 41949 [2021-05-09]. ISSN 2045-2322. PMC 5288769 . PMID 28150811. doi:10.1038/srep41949. (原始内容存档于2017-03-26) (英语). 
  6. ^ Sun, Xin-Yuan; Ouyang, Jian-Ming; Gan, Qiong-Zhi; Liu, Ai-Jie. Renal Epithelial Cell Injury Induced by Calcium Oxalate Monohydrate Depends on their Structural Features: Size, Surface, and Crystalline Structure. Journal of Biomedical Nanotechnology. 2016-11, 12 (11): 2001–2014 [2020-02-22]. ISSN 1550-7033. PMID 29364612. doi:10.1166/jbn.2016.2289. (原始内容存档于2021-05-09). 
  7. ^ 饒晨穎; 郭達; 孫新園; 歐陽健明. 納米和微米一水草酸鈣對Vero細胞毒性的濃度效應. 無機化學學報. 2019, (3): 467-476. 
  8. ^ 8.0 8.1 8.2 8.3 8.4 Osada N, Kohara A, Yamaji T, Hirayama N, Kasai F, Sekizuka T, Kuroda M, Hanada K. The genome landscape of the African green monkey kidney-derived Vero cell line. DNA Research. 2014, 21 (6): 673–83. PMC 4263300 . PMID 25267831. doi:10.1093/dnares/dsu029. 
  9. ^ Haus, Tanja; Akom, Emmanuel; Agwanda, Bernard; Hofreiter, Michael; Roos, Christian; Zinner, Dietmar. Mitochondrial Diversity and Distribution of African Green Monkeys ( Chlorocebus Gray, 1870). American Journal of Primatology. 2013-04, 75 (4): 350–360 [2021-05-09]. ISSN 0275-2565. PMC 3613741 . PMID 23307319. doi:10.1002/ajp.22113. (原始内容存档于2021-05-15) (英语). 
  10. ^ 10.0 10.1 陳靜行; 張文傑; 鄒超傑. Vero細胞培養特性的研究. 醫學美學美容. 2019, 28 (16): 26. 
  11. ^ Yasumura Y; Kawakita Y. Studies on SV40 in tissue culture - preliminary step for cancer research in vitro. Nihon Risnsho 21. 1963: 1201–1215 [2020-02-22]. 
  12. ^ Sasaki, K.; Makino, S.; Kasahara, S. Studies on measles virus. II. Propagation in two established simian renal cell lines and development of a plaque assay. The Kitasato Archives of Experimental Medicine. 1964-12, 37 (1): 27–42 [2020-02-22]. ISSN 0023-1924. PMID 5833688. (原始内容存档于2021-05-09). 
  13. ^ Liebhaber, H.; Riordan, J. T.; Horstmann, D. M. Replication of rubella virus in a continuous line of African green monkey kidney cells (Vero). Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1967-06, 125 (2): 636–643 [2020-02-22]. ISSN 0037-9727. PMID 4961494. doi:10.3181/00379727-125-32167. (原始内容存档于2020-02-22). 
  14. ^ Simizu, B.; Rhim, J. S.; Wiebenga, N. H. Characterization of the Tacaribe group of arboviruses. I. Propagation and plaque assay of Tacaribe virus in a line of African green monkey kidney cells (Vero). Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1967-05, 125 (1): 119–123 [2020-02-22]. ISSN 0037-9727. PMID 6027511. doi:10.3181/00379727-125-32029. (原始内容存档于2021-05-12). 
  15. ^ Rhim, J. S.; Schell, K.; Creasy, B.; Case, W. Biological characteristics and viral susceptibility of an African green monkey kidney cell line (Vero). Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1969-11, 132 (2): 670–678 [2020-02-22]. ISSN 0037-9727. PMID 4982209. doi:10.3181/00379727-132-34285. (原始内容存档于2021-05-13). 
  16. ^ Miyamura, K.; Nishio, S.; Ito, A.; Murata, R.; Kono, R. Micro cell culture method for determination of diphtheria toxin and antitoxin titres using VERO cells. I. Studies on factors affecting the toxin and antitoxin titration. Journal of Biological Standardization. 1974-07, 2 (3): 189–201 [2020-02-22]. ISSN 0092-1157. PMID 4214816. doi:10.1016/0092-1157(74)90015-8. (原始内容存档于2020-11-22). 
  17. ^ Speirs, J. I.; Stavric, S.; Konowalchuk, J. Assay of Escherichia coli heat-labile enterotoxin with vero cells. Infection and Immunity. 1977-05, 16 (2): 617–622 [2020-02-22]. ISSN 0019-9567. PMC 421001 . PMID 405326. doi:10.1128/IAI.16.2.617-622.1977. (原始内容存档于2021-05-13). 
  18. ^ Konowalchuk, J.; Speirs, J. I.; Stavric, S. Vero response to a cytotoxin of Escherichia coli. Infection and Immunity. 1977-12, 18 (3): 775–779 [2020-02-22]. ISSN 0019-9567. PMC 421302 . PMID 338490. doi:10.1128/IAI.18.3.775-779.1977. (原始内容存档于2021-05-12). 
  19. ^ Remis, R. S.; MacDonald, K. L.; Riley, L. W.; Puhr, N. D.; Wells, J. G.; Davis, B. R.; Blake, P. A.; Cohen, M. L. Sporadic cases of hemorrhagic colitis associated with Escherichia coli O157:H7. Annals of Internal Medicine. 1984-11, 101 (5): 624–626 [2020-02-22]. ISSN 0003-4819. PMID 6385798. doi:10.7326/0003-4819-101-5-624. (原始内容存档于2020-02-22). 
  20. ^ Nikolay, Alexander; Castilho, Leda R.; Reichl, Udo; Genzel, Yvonne. Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells. Vaccine. 2018-05-24, 36 (22): 3140–3145 [2020-02-22]. ISSN 1873-2518. PMID 28343780. doi:10.1016/j.vaccine.2017.03.018. (原始内容存档于2021-05-09). 
  21. ^ Castrillón-Betancur, Juan Camilo; Urcuqui-Inchima, Silvio. Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication. Memorias Do Instituto Oswaldo Cruz. 2017-04, 112 (4): 281–291 [2020-02-22]. ISSN 1678-8060. PMC 5354610 . PMID 28327787. doi:10.1590/0074-02760160404. (原始内容存档于2021-05-14). 
  22. ^ Kulkarni, Prasad S.; Sahai, Ashish; Gunale, Bhagwat; Dhere, Rajeev M. Development of a new purified vero cell rabies vaccine (Rabivax-S) at the serum institute of India Pvt Ltd. Expert Review of Vaccines. 2017-04, 16 (4): 303–311 [2020-02-22]. ISSN 1744-8395. PMID 28276304. doi:10.1080/14760584.2017.1294068. (原始内容存档于2021-05-09). 
  23. ^ Hassanzadeh, S. Mehdi; Zavareh, Ali; Shokrgozar, M. Ali; Ramezani, Ali; Fayaz, Ahmad. High vero cell density and rabies virus proliferation on fibracel disks versus cytodex-1 in spinner flask. Pakistan journal of biological sciences: PJBS. 2011-04-01, 14 (7): 441–448 [2020-02-22]. ISSN 1028-8880. PMID 21902056. doi:10.3923/pjbs.2011.441.448. (原始内容存档于2020-02-22). 
  24. ^ 馮二凱; 易立; 羅國良; 王振軍; 郭利; 陳立志; 程世鵬; 程悅寧. 水貂犬瘟熱Vero細胞活疫苗(CDV3-CL株,懸浮培養)安全性評價. 中國獸藥雜誌. 2019, 53 (8): 15-22. 
  25. ^ Mochalova, Larisa; Gambaryan, Alexandra; Romanova, Julia; Tuzikov, Alexander; Chinarev, Alexander; Katinger, Dietmar; Katinger, Herman; Egorov, Andrej; Bovin, Nicolai. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs. Virology. 2003-09-01, 313 (2): 473–480 [2020-02-22]. ISSN 0042-6822. PMID 12954214. doi:10.1016/s0042-6822(03)00377-5. (原始内容存档于2021-05-09). 
  26. ^ Hofmann, M.; Wyler, R. Propagation of the virus of porcine epidemic diarrhea in cell culture. Journal of Clinical Microbiology. 1988-11, 26 (11): 2235–2239 [2020-02-22]. ISSN 0095-1137. PMC 266866 . PMID 2853174. doi:10.1128/JCM.26.11.2235-2239.1988. (原始内容存档于2021-05-13). 
  27. ^ Ye, Shiyi; Li, Zhonghua; Chen, Fangzhou; Li, Wentao; Guo, Xiaozhen; Hu, Han; He, Qigai. Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV. Virus Genes. 2015-12, 51 (3): 385–392 [2020-02-22]. ISSN 1572-994X. PMC 7088884 . PMID 26531166. doi:10.1007/s11262-015-1257-y. (原始内容存档于2020-02-22). 
  28. ^ Chen, Fangzhou; Zhu, Yinxing; Wu, Meizhou; Ku, Xugang; Ye, Shiyi; Li, Zhonghua; Guo, Xiaozhen; He, Qigai. Comparative Genomic Analysis of Classical and Variant Virulent Parental/Attenuated Strains of Porcine Epidemic Diarrhea Virus. Viruses. 2015-10-23, 7 (10): 5525–5538 [2021-05-09]. ISSN 1999-4915. PMC 4632399 . PMID 26512689. doi:10.3390/v7102891. (原始内容存档于2020-07-25) (英语). 
  29. ^ Sun, Min; Ma, Jiale; Yu, Zeyanqiu; Pan, Zihao; Lu, Chengping; Yao, Huochun. Identification of two mutation sites in spike and envelope proteins mediating optimal cellular infection of porcine epidemic diarrhea virus from different pathways. Veterinary Research. 2017-12, 48 (1): 44 [2021-05-09]. ISSN 1297-9716. PMC 5577753 . PMID 28854955. doi:10.1186/s13567-017-0449-y. (原始内容存档于2020-08-14) (英语). 
  30. ^ Li, Chunhua; Li, Zhen; Zou, Yong; Wicht, Oliver; van Kuppeveld, Frank J. M.; Rottier, Peter J. M.; Bosch, Berend Jan. Qiu, Jianming , 编. Manipulation of the Porcine Epidemic Diarrhea Virus Genome Using Targeted RNA Recombination. PLoS ONE. 2013-08-02, 8 (8): e69997. ISSN 1932-6203. PMC 3732256 . PMID 23936367. doi:10.1371/journal.pone.0069997 (英语). 

外部連結

编辑