Synthesizing abstract transformer

PANKAJ KUMAR KALITA, Indian Institute of Technology Kanpur, India
SUJIT KUMAR MUDULI, Indian Institute of Technology Kanpur, India
LORIS D’ANTONI, University of Wisconsin-Madison, USA

THOMAS REPS, University of Wisconsin-Madison, USA

SUBHAJIT RQY, Indian Institute of Technology Kanpur, India

CONTENTS
Contents 1
1 Getting Started 1
1.1 Starting with the Docker 1
1.2 Artifact structure 2
1.3 Running a small set of benchmarks for AMURTH 3
1.4 Running a small set of benchmarks for SAFEg, 3
1.5 Claims supported by this artifact 3
2 Step by step instructions 4
2.1 Experiment for transformer synthesis using AMURTH 4
2.2 Running experiment for SAFE, 6
2.3 Structure of the AMURTH 7
2.4 Structure of the SAFE;, 7
References 8

1 GETTING STARTED

This section provides instructions for setting up the artifact and running the evaluation. The artifact
is packaged as a docker image and Section 1.1 provides steps to setting up docker-engine in your
system. Your system should meet the following minimum requirements for artifact evaluation.

e OS : Ubuntu 18.04.

e RAM : 32GB or higher is recommended.

e CPU (cores): CPU with eight or more logical cores. (Intel i7 8th Gen or higher.)

e Secondary Memory: We recommend at least 20 GB of free space for all the experimental

evaluations to be conducted.
o Internet Access: We require a working internet connection to download the artifact.

Extended version of the paper is available here [1]

1.1 Starting with the Docker

Use the following instructions to install Docker in Ubuntu. One can skip the following instructions
to install docker if it is already installed.

$ sudo apt-get install docker.io

One can verify whether docker has been installed or not.



$ sudo docker run hello-world

1.1.1  Running Docker from Zenodo. Download the tar file containing docker image from the
Zenodo. Now open terminal from the downloaded folder and type following command to load the
image.

$ sudo docker load < amurth_oopsla2022.tar.gz

This will load the docker image. Use following code to run the image.

$ mkdir genResult
$ sudo docker run -it -v $(pwd)/genResult:/root/genResult amurth_image:V1.0

1.1.2  Docker pull from the Docker Hub. Please pull our docker image from the docker hub using
the following code snippet.

$ sudo docker pull pkalita595/amurth_oopsla22

After completion of the docker download, we are ready to start the docker using the following
command.

$ mkdir genResult
$ sudo docker run -it -v $(pwd)/genResult:/root/genResult pkalita595/amurth_oopsla22

Directory genResult can be used to store relevant logs/plots to be accessed from outside the

container. After starting the docker, please change the working directory to /root using the
following.

$ cd /root

1.2 Artifact structure

In /root directory of the artifact, there are three directories as shown below.

$ 1s
amurth genResult safe-alpha

There are two types of experiments that have been reported in the paper. They are described as
follows.

(1) First, we synthesize different transformers for string, arithmetic, and logical operations,
as shown in Sections 6.1 and 6.2 of the paper, using our tool AMURTH. Implementation of
AMURTH is in the amurth directory.

(2) Second is the analysis of synthesized transformers of string domain in a string analyzer,
i.e., SAFE, in Section 6.1.3 in the paper. Implementation of the synthesized transformer in
the string domain inside SAFE, can be found in the safe-alpha directory.In safe-alpha
directory, we have provided scripts to generate plots shown in Figure 10 from the paper,
Figures 11, 12, 13 from the extended version [1].



1.3 Running a small set of benchmarks for AMURTH

In this section, we will get start running AMURTH to synthesize a few transformers. We have
provided a script run_mini_ex.sh inside /root/amurth/src directory. Running this script will
run amurth.py on the given subset of benchmarks. This script will take around 15-20 minutes to
produce output. The reviewer can run this file using bash as shown below.

$ pwd

/root

$ cd amurth/src

$ bash run_mini_ex.sh

This command will print transformers of each benchmark while running, and at the end of
execution, it will produce two tables, the same as shown in Table 2 and Table 3 from the paper.
Produced output will have fewer entries as run_mini_ex.sh runs few benchmarks only. Details
of each benchmark as shown in Table 3 and 5 from the extended version [1] can be found in

detailedLog inside amurth/log directory. In Section 2.1.1 we have shown how to run a single
benchmark.

1.4 Running a small set of benchmarks for SAFE,

This section will show how to run SAFE, for a small set of benchmarks. Implementation of SAFE,
is present in the /root/safe-alpha .

Please change the directory to /root/safe-alpha as shown below.

$ cd /root/safe-alpha/

We have provided a script run_small_exp.sh in the safe-alpha/benchmarks directory. Please
run the following commands to generate the plots. This will take around 15-20 minutes to generate
the plots.

$ cd benchmarks
$ rm -rf plots/*
$ bash run_small_exp.sh

This will make a job list of a few benchmarks using a combination of constant string and char-
acter inclusion domain (coci) and run SAFEg, for those benchmarks. In SAFEg,, id for constant
string is co instead of CS. It will generate plots similar to Figure 10 of the paper inside the direc-
tory /root/safe-alpha/benchmarks/plots . For this case, plots are being stored in the directory

/root/safe-alpha/benchmarks/plots/coci as the experiment was on constant string and charac-

ter inclusion domains. One can copy the content of the plots to the directory /root/genResult/
to access from outside of the docker.

1.5 Claims supported by this artifact

This artifact supports two claims in the paper



(1) AMURTH can synthesize each L-transformer for fixed-bitwidth interval and string
domains within 2000s and can produce Table 2, 3 form the paper, Table 3, 5 from
the extended version [1] and Figure 10 from the paper, Figures 11, 12, 13 from the
extended version [1]. One can observe a more prolonged time taken by AMURTH in
your machine due to the docker container.

(2) AMURTH generates sound and precise abstract transformers for different operations
across various domains discussed in the paper.

2 STEP BY STEP INSTRUCTIONS
2.1 Experiment for transformer synthesis using AMURTH

2.1.1 Running a simple example. In this section we will see how to run a single benchmark using
AMURTH. Please change the directory to amurth .

$ cd /root/amurth

In config directory we put json files for all the operations we have synthesized. For each

domain and each operation we have provided a json file. All of our source code present in src
directory. Please change the current directory to src .

$ cd src

We have provided the python script run_single_ex.py to run a single benchmark from the set
of benchmarks present in config directory. This script takes two arguments, i.e., <domain name>

and <operation name> . If we want to synthesize transformer for absolute ( abs ) operator in
signed interval domain (SI) you will type as follows.

$ python run_single_ex.py SI abs

This will run amurth.py with the json file related to the abs operator for signed interval
domain (SI). This will run for some time and in the end, will produce the transformer.

Following is the list of domains and operators AMURTH supports along with the IDs to pass to
the run_single_ex.py . Please refer to Sections 6.1 & 6.2 and Table 1 in the paper for the details of
the domains.

Domain name | CS | S8y | CI | PS | SH | Avinto | Asinto | W
ID CS | SSK | CI | PS | SH Ul SI WI

Following is the list of IDs of all the operations.

Arithmetic add sub mul and or xor | shl | 1shr | ashr
and logical
String concat | charAt | contains | toLower | toUpper | trim

AMURTH generates some temporary files while running. Sketch files generated during each
iteration of precision check, MaxSAT synthesize can be found in amurth/temp/sketch . If reviewer

runs experiment using run_single_ex.py , then complete log of the operation can be found in
amurth/temp/ directory. Naming convention of the log will be like 1og_<operation name>.txt.



Here <operation name> is the name of operation present in the tosynthesize field in the respec-

tive json file. In case of failure please run again.

2.1.2 Synthesizing transformer for all the operation and domains. We provide a script to run all the
json files (benchmarks) which will synthesize the transformer for each operations.

$ cd /root/amurth/src
$ bash run_all.sh

This script will run for around 14 hours, and in the end, it will produce a table, as shown in
Table 2 and Table 3 from the paper. detailedLog and log files generated during the run will be

stored in /root/amurth/log/ . Entries shown in Table 3 and 5 in the extended version [1] can be

found in detailedlLog .
We have also provided following additional scripts for different types of benchmarks.

e run_string_domains.sh : Runs all the string domains benchmarks.
e run_unsigned_interval.sh : Runs all the unsigned interval domain benchmarks.
e run_wrapped_interval.sh : Runs all the wrapped interval domain benchmarks.

e run_all_interval.sh : Runs all the interval domain benchmarks.
2.1.3  Understanding input and output of AMURTH.

Understanding input. AMURTH ( amurth/src/amurth.py ) takes a json file. josn file for
addition in signed interval is shown below.

{
"basepath": "/root/amurth/",
"dsl": "interval/L_arithmetic.sk",
"abstract_domain": ["interval/arithmetic.sk", "interval/plus.py",
["absleft", "absright"1],
"abstract_value": [ ["left", ["int", "0"]1,
["right", ["int", "@"111],
"aux_fun": ["aux_function.c", "aux_function.sk"],
"tosynthesize": { "add":["int", "int", "int"]}
}

Let us describe each element of the json file one by one.

e basepath: It is the basepath of the tool installed

e dsl: It shows the file present in /root/amurth/dsl/ which contains the dsl of the given
domain for the operation in sketch.

e abstract_domain: First element interval/arithmetic.sk contains the partial order of lat-
tice, template of abstract transformers, different functions to define the domain etc. for sketch
synthesis engine.

interval/plus.py contains the bootstrapping example to start the synthesis.

Files related to these field will be available in /root/amurth/abstract_domain directory.
Last element ["absleft", "absright"] shows the name of the transformer to be synthe-
sized. Since we are currently talking about the interval domain, it needs two transformers
for both left and right limits.

e abstract_value: Defines the abstract value and its type.

e aux_fun: Describes the file containing auxiliary functions required for synthesis.



e tosynthesize: This contains the function to be synthesized and its prototype. For example,
here add takes two integer and returns an integer. Definition of these functions are present

in amurth/external_lib/logicalSpecx.sk .
To try out new function, one need to change the name of the function in tosynthesize field with
its prototype and need to add its definition in amurth/external_lib/logicalSpec.sk for interval
and amurth/external_lib/logicalSpecString.sk for string domains. One also has to update DSL

and domain defining files inside amurth/abstract_domain according to the requirements.

Understanding output. Let us now try to understand the output of the tool. Running AMURTH
with a json file will produce the transformer in the end. For example, in the case of add we will
get the following transformer.

int absleft(int left1, int right1, int left2, int right2)

{
int _outl;
_outl = leftl + left2;
return _outl;
}
int absright (int left1, int rightl, int left2, int right2)
{
int _outl;
_outl = rightl - (0 - r2);
return _outl;
}

Now, absleft and absright are two transformer for both left and right limit of the signed inter-
val domain. Both transformer takes four argument, i.e., leftl, rightl, left2, right2. leftl,

right1 representslow and high limit of first argument of add , whereas left2, right2 represents
the second argument.

Encoding of string in AMURTH. In AMURTH we encode a string as an array of integers. For the
case of trim operation we consider one of the number, i.e., 10 as space. contains in CJ returns
T, 1,1 or 0. We used following encoding to distinguish between the return types.

#define FALSE 0
#define TRUE 1
#define TOP 2
#define BOT 3

2.2 Running experiment for SAFE,
In this section, we will try to run an experiment to get plots, as shown in Figure 10 from the paper,
Figures 11, 12, 13 from the extended version [1].

2.2.1 Plot for CS x CI ( coci ) as shown in Figure 9 in the paper. Please follow the instructions
below to run the experiment in SAFEg, for CS X CZ ( coci ) domain.

$ cd /root/safe-alpha/benchmarks
$ bash run_coci_exp.sh



Running run_coci_exp.sh will generate plot as shown in Figure 10 inside following directory.
/root/safe-alpha/benchmarks/plots/coci

This will take around 7 hours to completely execute the script.
Please copy the content of /root/safe-alpha/benchmarks/plots/coci to /root/genResult to
view the figures/plots.

2.2.2  Running full experiment in SAFEg, (For Figure 10 from the paper, Figures 11, 12, 13 from the
extended version [1]). Please follow the instructions below to run the entire experiment in SAFEg,.

$ cd /root/safe-alpha/benchmarks
$ bash run_full_exp.sh

The script run_full_exp.sh will take around 30 hours. After completion of execution of this
script, it will generate four directories inside safe-alpha/benchmarks/plots/ . Each directory in
plots ,ie., plots/coci, plots/cops, plots/co and plots/ss contains plots for Figure 10 from
the paper, Figures 11, 12, 13 from the extended version [1], respectively. Each figure contains four
plots, i.e., Fixpoint iteration, Time, Program States and Imprecision index. So each four directories
will contain four figures containing the plots.
Benchmarks for SAFE;, contains some HTML files and few JavaScript files. run_full_exp.sh
takes huge amount of time as JavaScript benchmarks are costly. We have also provided a script,
run_html_exp.sh inside /root/safe-alpha/benchmarks to only run HTML benchmarks.

2.3 Structure of the AMURTH

Directory /root/amurth contains all the source code and benchmarks for synthesizing abstract
transformers. Following is the detailed breakdown of the tool directory structure.

e abstract_domain : Contains files that defines the domains in sketch and files for bootstrap-
ping examples.

e aux_function : Contains auxiliary functions required during synthesis.

e config : It contains json files for each operation in different domains. In case AMURTH we
describe each input to the tool with the help of json files. One can assume that each json
file is one benchmark. json files for each domains are organised in the directories inside

config .

e dsl : It contains DSL (domain-specific language) for each domains in separate directories.

e external_lib : Contains definitions of the concrete operators.

e include : Include files for sketch to run.

e src : This contains all the source code for AMURTH. amurth.py is the main driver file to run
AMURTH.
e temp : Contains temporary files created during the running of the tool.

2.4 Structure of the SAFE,,
SAFEg, repository is available at /root/safe-alpha in the docker container.
e String domain implementation can be found inside following directory.

/src/main/scala/kr/ac/kaist/jsaf/analysis/typing/domain

e Benchmarks ( HTML, JavaScript ) can be found in /root/safe-alpha/benchmarks directory.



REFERENCES

[1] Pankaj Kumar Kalita, Sujit Kumar Muduli, Loris D’Antoni, Thomas Reps, and Subhajit Roy. 2021. Synthesizing Abstract
Transformers. https://doi.org/10.48550/ARXIV.2105.00493



	Contents
	1 Getting Started
	1.1 Starting with the Docker 
	1.2 Artifact structure
	1.3 Running a small set of benchmarks for Amurth
	1.4 Running a small set of benchmarks for SAFEstr
	1.5 Claims supported by this artifact

	2 Step by step instructions
	2.1 Experiment for transformer synthesis using Amurth
	2.2 Running experiment for SAFEstr
	2.3 Structure of the Amurth
	2.4 Structure of the SAFEstr

	References

