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ABSTRACT
Generating convincing music via deep neural networks is a
challenging problem that shows promise for many applica-
tions including interactive musical creation. One part of
this challenge is the problem of generating convincing ac-
companiment parts to a given melody, as could be used in an
automatic accompaniment system. Despite much progress
in this area, systems that can automatically learn to gener-
ate interesting and harmonically plausible accompaniments
remain somewhat elusive. In this paper we explore sys-
tems where a user provides a sequence of notes, and a
neural network model responds with an accompanying se-
quence of equal length. We consider two popular sequence-
to-sequence models; one featuring standard unidirectional
long short-term memory (LSTM) architecture, and the other
featuring bidirectional LSTM. These are evaluated and com-
pared via a qualitative study that features 106 respondents
listening to eight random samples from our set of generated
music, as well as two human samples. From the results we
see a preference for the sequences generated by the bidirec-
tional model as well as an indication that these sequences
sound more human.

Author Keywords
Music Generation, Sequence Learning, Recurrent Neural
Networks

CCS Concepts
•Applied computing → Sound and music comput-
ing; Performing arts; •Computing methodologies →
Neural networks;

1. INTRODUCTION
Consider the concept of a melody—a sequence of notes con-
nected and spaced out over time by a set of rules. The par-
ticular rules are arbitrary, but clearly defined through cen-
turies of musical history. From this concept of melody, the
idea of harmony arises as separate melodies played simul-
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Figure 1: A musical sequence-to-sequence archi-
tecture to generate an accompaniment to a lead
melody part. The lead is first converted an array
with integer MIDI values (elaborated on in section
3.1). The encoder transforms the melody into a
compact representation, which is used as input for
the decoder to generate the integer array represen-
tation of the accompaniment.

taneously are attempted. This necessitated a set of rules,
not only for notes played in sequence, but for notes played
together. Earlier work with machine learning and music
has shown that deep neural networks (DNNs) can indeed
produce sequences of notes that in large part adhere to the
melodic and harmonic rules of western music [7, 9] and re-
cent work [22] has demonstrated the potential to recreate
and vary musical phrases using a sequence-to-sequence ar-
chitecture.

While automatic accompaniment systems are widely used
(e.g., [27, 16]), these usually generate music from a score
or rules of musical theory. We propose that DNNs could
be used in such a system to automatically learn to gener-
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ate accompanying melodies that will both respect the rules
of harmony and sound convincingly musical. This process
can be modelled as a sequence-to-sequence machine learn-
ing problem between matched examples of melodies and ac-
companying parts and can be considered to be similar to the
problem of translating text between different languages [2,
24] where remarkable progress has been made using DNNs.
In machine translation, one sequence is generated based on
the other, which are both derived from a common set of
symbols. We ask the following; can a neural network model
be used to “translate” one sequence of notes into another in
a way that makes them both harmonically compatible and
convincingly human?

In this research, we propose and compare two sequence-
to-sequence models to accomplish this task. Both models
are recurrent neural networks (RNNs) applying long short-
term memory (LSTM) cells [11], and both consist of two
modules; an encoder network, that compresses the input
melody into a low-dimensional representation, and a de-
coder, that stochastically generates an output melody using
this representation as an input (see Figure 1). The models
are distinguished by the structure of their decoder compo-
nents: the unidirectional decoder can only view the musical
sequence in a forward temporal direction (left-to-right in
standard notation), the bidirectional network has modules
that view the input sequence in both directions, combin-
ing this knowledge into the low-dimensional representation.
Neither are novel models, thus showing the applicability of
popular and established RNN designs for this task. For both
models, our system takes a sequence of notes as input, and
outputs a sequence of equal length where the notes (mostly)
respect the rules for harmonies with respect to the input.
The desired effect is that the input sequence can then be
played simultaneously with the output sequence and be per-
ceived as harmonically sensible by the human listener.

The main contributions of our work are implementations
of these two models, and a strategy for data-augmentation
of small music datasets, that can easily be integrated into
interactive music tools, as well as a novel evaluation of these
models through a qualitative study with 106 participants.
This study sought to understand which model produces the
most convincing results, and which generated accompani-
ments sound most human. From our results we conclude
that there is a clear preference for the sequences generated
by the bidirectional model, scoring well above its unidirec-
tional counterpart in all three dimensions of assessment:
overall preference, perceived degree of harmonic compati-
bility and whether the sequence seemed human-generated.

2. BACKGROUND
A melody is a sequence of notes; moreover, it is a sequence
where the order of the elements is crucial for whether or
not a human listener will consider it to be music or not.
Machine learning models of melodies can learn to predict
what note to add next based on both the current input
and the previous predictions made, in order to achieve the
musical coherency that a good ordering of the notes will
provide. Markov models [1] have often been used to achieve
this task, but recurrent neural networks (RNNs) are able to
learn more distant dependencies between current and pre-
vious notes [20] and are a focus of much recent work in
musical modelling. While other types of neural network
(e.g., Music Transformer [12]) can be applied to music, the
musical RNNs discussed in this research are accessible via
frameworks such as Keras [3] for inclusion in interactive ap-
plications.

2.1 Recurrent Neural Networks
An RNN is a neural network designed to work with sequen-
tial data [3]. It achieves this by maintaining a hidden state
that depends on both the input at the current time step,
as well as the state given by the previous inputs. The ef-
fect is an internal memory; the network remembers inputs
from the previous time steps. This means that a state at
any given time step holds the information from each past
time step, making it able to learn temporal, or sequential,
structures.

2.2 Long Short-Term Memory
Although the RNN architecture can indeed predict sequences
with internal dependencies with high accuracy, it is limited
in regards to how long-term these dependencies can be. The
cause for this limitation is linked to the problem of vanishing
or exploding gradients; parameters are shared across time
steps, so as the number of time steps increase the chain rule
products in the gradient calculation become proportionately
long, causing the gradients to either approach zero or grow
exponentially [7]. A solution to this was proposed in 1997
by Hochreiter and Schmidhuber [11]. Dubbed long short-
term memory (LSTM), their design mitigates the issue of
the vanishing gradient by implementing a set of multiplica-
tive gates to control the flow of information, and thereby
increasing the prediction potential for longer sequences.

2.3 Bidirectional LSTM
The idea behind a bidirectional LSTM (BLSTM) [23] is to
make use of all the information from both past and present
in an input sequence by seeing it in both positive and nega-
tive time directions. This can be achieved by connecting two
separate RNNs (one for each direction) to the same output
layer. It has been shown that combining the idea of a bidi-
rectional RNN with LSTM can give significantly improved
results over unidirectional architectures in tasks where con-
text is important [8]. In music, melodies and harmonies are
affected by both previous and future events. This makes
BLSTMs good candidates for music applications, such as
generating chords to a monophonic melody [14].

2.4 Sequence to Sequence Learning
Sometimes it is desirable to have a network output a target
sequence given a certain source sequence, such as in ma-
chine translation. One way to achieve this is with an RNN
encoder-decoder architecture. This architecture consists of
two separate recurrent neural nets; an encoder and a de-
coder, as illustrated in Figure 1. The idea is to encode a
variable-length input sequence to a fixed-length state vector
(denoted by “encoded representation” in Figure 1) that the
decoder can use to extract the output sequence. The result
is an output that is conditioned on the input sequence. This
type of architecture has been shown to perform well in both
translation tasks [2, 24] and event prediction [21].

2.5 Temperature
When constructing the output sequence, the softmax acti-
vation function is used to turn the scores for each possible
output into a probability distribution. Before applying soft-
max in LSTMs (and neural networks in general) the balance
of these scores can be scaled to control the randomness of
the sampled output. This scaling value is commonly called
“temperature”.

The outputs of a neural network layer produce a logit
vector z = (z1, . . . , zn). Given a temperature parameter
T , the softmax procedure produces a probability vector q =
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(q1, . . . , qn) by comparing zi with the other logits as follows:

qi =
exp(zi/T )∑
j exp(zj/T )

The qi parametrise a categorical probability distribution,
which can be sampled to produce an index between 1 and n.
With a temperature of 1, the softmax procedure is applied
directly on the output of the previous layers. Through trial-
and-error we chose to use a temperature parameter of 1.1
which results in slightly smaller values, and a softer proba-
bility distribution. This makes the model more sensitive to
low probability candidates, resulting in more diversity—but
also more mistakes.

For very high temperatures (T →∞), all predictions have
very similar probabilities and the lower the temperature, the
more the expected rewards affect the probability. With low
temperatures (T → 0+), the probability of the prediction
with the highest expected reward tends toward 1.

2.6 Neural Networks in Musical Interaction
Though many interactive music systems apply machine learn-
ing [18], the use of DNNs as part of an interactive sys-
tem is rare. Vogl and Knee’s intelligent drum machine [25]
generated drum patterns using a DNN, and the Piano Ge-
nie [6] applies a DNN to compose piano music based on
eight input keys. Data from touchscreens [19] and MIDI
controllers [10] has been generated by RNNs, and a sequence
varying RNN [22] has been integrated into a set of tools for
the Ableton Live software. So far, the generation of novel,
harmonically appropriate, accompanying sequences has not
been incorporated into interactive tools. We propose that
the sequence-to-sequence RNNs we compare would be ap-
propriate for this application.

3. METHOD AND SYSTEM DESIGN
3.1 Data and Augmentation
As the basis for our dataset, we used 405 Bach chorales from
Music21 [5]. From these 405 chorales, we separated out the
four parts (soprano, alto, tenor and bass) as several of the
scores included other solo instruments to accompany these.

Since the object was to train the RNN to learn to output
a sequence that is harmonically compatible with the input,
we trained the network on pairs of sequences. Each piece
in our data set consist of four parts (or four sequences),
soprano, alto, tenor and bass, so from each score we get
two sequence pairs. We consistently paired up soprano with
alto, and tenor with bass, where soprano and tenor were
used as training input and alto and bass as targets.

We had two datasets: augmented and non-augmented.
The non-augmented set consists of 810 sequence pairs taken
from the chorales. The augmented set applied inversion and
transposition to the parts of each chorale to produce a total
of 4860 pairs. 10% of each set was reserved for testing. Dur-
ing training, each sequence was split into shorter sequences
of 32 timesteps.

The chorales in our data set all have a certain structure;
they all consist of four parts, and they are in the major
or minor keys—meaning none of the samples are based on
modal keys or are atonal or bitonal, nor do they have any
complicated rhythmic features such as a polyrhythmic time
signature. This is significant, mainly for the augmentation
as this meant that inverting and transposing the parts would
provide new sequences for the data set that were still valid
for our training. We follow existing work [17, 15] to convert
MIDI streams into arrays of integers with values between
0–129, as shown in Figure 2. The encoded interpretations
are as follows:

Figure 2: Integer representation of a monophonic
melody. Values 0–127 represent MIDI “note on”,
128-“note off”, and 129-“no change”. The first quar-
ter note is represented by four integers where the
first denotes the MIDI pitch and the next three in-
dicate that there is no change for the next three
semi-quavers.

• 0–127, play a note corresponding to that MIDI values

• 128, play nothing

• 129, play the same as previous element

This monophonic representation assumes a minimum time
subdivision of 16th-notes (or semi-quaver), so that each
number in the array represents a pitch to be played for one
16th of the time of a bar.

3.2 Implementation Details
Our basic model is very similar to the architecture illus-
trated in Figure 1. The encoder and decoder both have one
layer of 256 hidden units, and there is a dense layer with the
softmax activation function at the output of the decoder.

Generally, melodies are set in a sequential order, and the
notes are affected by both forward and backward dependen-
cies. They also often include periodic patterns which can
be easier to predict when analyzed in both directions [4].
To explore the effect of analyzing sequences in both direc-
tions, we implemented the encoder as a bidirectional LSTM
in one of our models. The forward and backwards state vec-
tors from the encoder in this model are concatenated into a
single vector of length 512, and the number of hidden units
in the decoder is increased to 512 to account for this.

In a language model, sentences will usually be of different
lengths, so one must use some form of strategy to tell the
model when a sequence ends, such as end-of-sentence tokens
or zero-padding to create fixed-length sequences. We made
the assumption that since the target sequence is to be played
alongside the input sequence, they must be of equal length.
The decoder will then stop predicting after the generated
output sequence has reached the same length as the input.

During training, the decoder learns to turn a target se-
quence into the same sequence, but offset one timestep for-
ward using a method called teacher forcing [26]. Normally,
the output at time t is fed into the network at time t + 1.
With teacher forcing, the input at time t + 1 is instead re-
placed by the expected value from the training data.

We used a categorical cross-entropy loss function and
ADAM optimizer [13] when training the models. The batch
size was set to 128. The unidirectional model trained for
400 epochs on both datasets. The bidirectional model takes
more time to train, so the final number of epochs was 248
for the non-augmented dataset and 200 for the augmented.

Both models start overfitting quite early, most noticeably
in the bidirectional model. We attempted to combat this by
using recurrent dropout with a fairly low probability of 0.2
in both the encoder and decoder network. This somewhat
reduced the problem, but it also drastically increased the
number of epochs required for the loss to converge. We
decided to use the weights with the lowest training loss and
disregard the increasing validation loss, as we evaluate the
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model qualitatively and the results should sound pleasing
to the human ear.

3.3 Qualitative study
Our goal was to compare the performance of unidirectional
and bidirectional predictive models, and so we devised a
qualitative study to achieve a measurable indication of their
respective results. The study took the form of a question-
naire where participants revealed whether or not they ac-
tively played an instrument and if they had any training or
education within musical theory.

The participants were then played 10 short examples of
2-part music (i.e., two sequences of notes were played si-
multaneously). Of these 10, there were 8 examples in which
the second parts were generated by applying our models
to randomly selected melody lines in the test sets, and the
remaining 2 had both parts written by a human (i.e., the
original matching part from J. S. Bach). For each example,
the participants were:

• asked to rate how much they liked the music
(scale 1 to 5)

• asked how well they thought the parts harmonized
(scale 1 to 5)

• asked whether or not they thought the example was
human made, or if one of the two parts were machine
made.

A quantitative study for evaluating the performances was
not devised, the reasoning for which lies in the observation
that there are multitudes of possible sequences that could
strictly be considered correct, (i.e., they are in the right key)
but do not sound convincingly musical to the average human
listener. Calculating the accuracy of these predictions is
therefore not considered to be of interest.

The machine generated examples that the subjects lis-
tened to were created by taking the human-made melody
sequence passed as input to the model, and the sequence
generated as a result, and pairing them up. These were then
played simultaneously creating a two part musical example,
where the input melody sequence is considered part I and
the generated output is considered part II. Of the 8 exam-
ples where part II was a sequence generated by the model,
half were from the unidirectional model and the other half
from the bidirectional model. Two of the examples from
each model were sampled with a temperature value of 1.1,
and the others with a value of 1.0. The temperature in-
creases the randomness of predictions by a small amount,
allowing the outputs to not always predict the notes with
the highest probability.

4. RESULTS AND DISCUSSION
Since we want the model to learn the patterns and rules of
music, and not necessarily create the same output as the
targets, we focus on the human evaluation of the musicality
of our results.

4.1 Comparison of individual sequences
The average rating of each sequence from our questionnaire
are listed in Table 1, and a more comprehensive overview of
the ratings of preference and musicality is shown in Figures
3 and 4.
Uni Notemp Norm: Unidirectional model without tem-
perature and non-augmented dataset. This is one of the
lowest rated sequences, but when examined by members
of the authorship with formal musical backgrounds, this se-
quence is considered very strong. What makes the sequence

Data/model Preference Musicality Human-like

uni notemp norm 2.59 2.44 16.81
bi temp norm 3.27 3.32 33.61
bi temp aug 3.11 3.17 35.29

bi notemp aug 2.91 2.89 31.09
uni notemp aug 2.66 2.82 33.61
uni temp norm 2.58 2.53 31.93
uni temp aug 2.54 2.37 15.97

bi notemp norm 3.04 3.07 36.13
Bach 1 3.20 3.62 36.97
Bach 2 3.96 4.04 63.87

Table 1: Mean ratings of each of our sequences from
the qualitative evaluation of our model. The gener-
ated sequences are listed in the same order as they
were presented to the critics. The best performing
sequence in each category is marked in bold, and
the worst in italics.

Figure 3: Stacked graph of the distribution of pref-
erence ratings on a scale from 1 to 5, 1 being the
darkest blue and 5 the lightest. Bi temp norm and
bi temp aug had the best rating for preference, sug-
gesting that the bidirectional model with tempera-
ture sounded the most pleasant.

Figure 4: Stacked graph of the distribution of har-
mony ratings on a scale from 1 to 5. Bi temp norm
and bi temp aug again show the highest scores, in-
dicating that the bidirectional model with temper-
ature is the most convincing in terms of harmony.
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Human-like (%) rated overall and by trained critics
Data/model All Musical training

Bidirectional 34.03 37.50
Unidirectional 24.58 28.95

Non-augmented data 29.62 30.92
Augmented data 28.99 35.53

Temperature 29.20 32.89
No temperature 29.41 33.55

Bach 50.42 50.00

Table 2: Table comparing the effects of the differ-
ent changes to the model on how human-like the
samples were rated, both overall and by the musi-
cally trained critics, with the best performing effect
marked in bold. While non-augmented received a
higher rating overall, the trained critics preferred
the results with the augmented data.

fail is how little it seems to relate to the input sequence.
The fact that it is this good on its own, but not so good in
relation to the input, makes it seem like a consequence of
over-fitting.
Bi Temp Norm: Bidirectional model with temperature
and non-augmented dataset. This is the sequence that was
rated highest in terms of preference and musicality, even
rated higher on preference than one of our Bach-sequences.
Bi Temp Aug: Bidirectional model with temperature and
augmented dataset. While being slightly outperformed by
other results, this sequence has high ratings across the board,
and demonstrates how proficient the bidirectional model is
at generating a well structured harmony, even when trained
on an augmented dataset.
Bi Notemp Aug: Bidirectional model without tempera-
ture and augmented dataset. This is the lowest rated bidi-
rectional sequence. This is likely because of insufficient
training time on augmented dataset for our bidirectional
model and possibly an unlucky sample.
Uni Notemp Aug: Unidirectional model without tem-
perature and augmented dataset. Some of the early predic-
tions in the sequence sound out of key, and the same notes
are often repeated throughout. The latter half achieves a
very human-sounding rhythmic structure which we believe
is the cause for it receiving a fair rating by respondents.
Uni Temp Norm: Unidirectional model with tempera-
ture and non-augmented dataset. Receiving average ratings
on preference and musicality, this sequence sounds largely
quite convincing. It suffers some decay during the latter
half where many of the predictions are out of key. It sounds
over-fitted on account of the very Bach-like middle part.
Uni Temp Aug: Unidirectional model with temperature
and augmented dataset. By far the lowest rated sequence,
and there are some notes here that sound unnatural to the
average listener. It seems that while adding temperature or
an augmented dataset works quite well with the unidirec-
tional model, adding both makes it perform worse.
Bi Notemp Norm: Bidirectional model without temper-
ature and non-augmented dataset. A fairly well rated se-
quence. It stays within the key throughout the sequence and
maintains mostly pleasant-sounding harmonies with the in-
put. The insistence on predicting off-beat rhythms may be
why it is not rated higher as it creates a sense of disjoint-
ment from the input sequence.

4.2 The effects of individual changes
We would like to highlight the effect each of the changes
we made to the model had on its performance. These are

Data/model Human-like (%)

Augmented / Temperature 25.63
Augmented / No temperature 32.35

Non-augmented / Temperature 32.77
Non-augmented / No temperature 26.47

Table 3: Comparative table of the effects of differ-
ent combinations of datasets and temperature to the
performance of the model. Adding either temper-
ature or augmented dataset produced much better
results than adding both or neither.

summarized in Table 2.
Bidirectional–Unidirectional: This has by far the biggest
impact on the rating of every criteria. Changing from a uni-
directional to a bidirectional model increases the average
rating as human-composed by 9.45 (38.45%). We can see
from Table 1 that most sequences generated by the bidirec-
tional model were competitive with the first Bach sequence,
which we consider a very positive outcome.
Augmented–Non-augmented: Overall this seemed to
change little in terms of performance. Using the smaller,
non-augmented dataset had a 0.63 (2.17%) increased rating
as human-composed. However, as you can see in the right
column in Table 2, this had more of an effect on the ratings
of critics with formal musical training. Here the augmented
dataset had the higher score, with a 4.61 (14.91%) increase
over the non-augmented dataset.
Temperature–No temperature: Like the augmented ver-
sus non-augmented datasets, this change shows little effect
on the rating of the sequences, with ratings of preference
and musicality slightly favoring temperature (Fig 3 and 4),
while no temperature was rated as slightly more human
(with a 0.66 or 2.01% increase). It may then seem as if the
choice of bidirectional or unidirectional model is the only
change that has any significant effect on the ratings, how-
ever if we look at the different combinations of temperature
and datasets from Table 3 we find some interesting results.
Adding both temperature and an augmented dataset, or
having neither produces relatively low ratings of “human-
ness”of 25.63 and 26.47 respectively, for an average of 26.05.
Now, if we add only one or the other, the average rating
increases significantly, with the addition of an augmented
dataset increasing the rating by 6.30 (24.18%), and includ-
ing temperature increases the rating by 6.72 (25.80%). This
difference was even greater among musically trained critics.
Naturally, the difference between these ratings are skewed
by the poor performance of our unidirectional model with
either both temperature and augmented dataset, or neither,
but it is worth further exploring the effects of these changes
with the bidirectional model.

5. CONCLUSIONS AND FUTURE WORK
From the results of our study it seems clear that the major-
ity of our respondents preferred the music generated by the
bidirectional LSTM model. We do note that there seems
to be a higher level of acceptance for musical “weirdness”
from the respondents that replied that they had some form
of musical training; this seems to be reflected in the fact
that these particular respondents believed the music to be
human-generated more often than those without such train-
ing. There may be a need for a longer training period,
particularly on the augmented dataset which could be ad-
dressed in future work. This makes us optimistic about the
possible results for the bidirectional model, especially when
looking at the second best sequence (sequence C). This se-
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quence was ranked almost as highly as the highest ranked
sequence even though its loss value had not had training
time to reach a suitably low value.

From the responses we conclude that the bidirectional
model is not only preferred by the majority of the 106 re-
spondents, but also appears as the most significant factor
in all three dimensions of assessment: preference, musical-
ity and its similarity to man-made music. This leads us to
recommend that bidirectional LSTM sequence-to-sequence
models could be profitably implemented as part of inter-
active music systems, for instance, a predictive loop-based
improvisation system, a topic that we intend to pursue in
future work. While this work has focussed on accessible
LSTM and BLSTM models, we could also explore emerg-
ing models such as musical variational autoencoders [22]
or transformer networks [12] for this task. Finally, this
research has shown that a musical sequence to sequence
BLSTM can achieve high qualitative ratings even when a
relatively small dataset is used for training.
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