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Abstract

In specialized fields like the scientific domain, constructing large-
scale human-annotated datasets poses a significant challenge due
to the need for domain expertise. Recent methods have employed
large language models to generate synthetic queries, which serve
as proxies for actual user queries. However, they lack control over
the content generated, often resulting in incomplete coverage of
academic concepts in documents. We introduce Concept Coverage-
based Query set Generation (CCQGen) framework, designed to
generate a set of queries with comprehensive coverage of the docu-
ment’s concepts. A key distinction of CCQGen is that it adaptively
adjusts the generation process based on the previously generated
queries. We identify concepts not sufficiently covered by previous
queries, and leverage them as conditions for subsequent query gen-
eration. This approach guides each new query to complement the
previous ones, aiding in a thorough understanding of the document.
Extensive experiments demonstrate that CCQGen significantly en-
hances query quality and retrieval performance.
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Figure 1: A conceptual comparison of (a) the existing ap-
proach for query set generation and (b) our concept coverage-
based query set generation. Best viewed in color.

1 Introduction

Scientific document retrieval is a fundamental task that accelerates
scientific innovations and access to technical solutions [17]. Re-
cently, pre-trained language models (PLMs) have largely enhanced
various ad-hoc searches [12, 18]. PLM-based retrievers are initially
pre-trained on massive textual corpora to develop language under-
standing. They are then fine-tuned using vast datasets of annotated
query-document pairs, enabling the models to accurately assess the
relevance between queries and documents. However, in specialized
domains like scientific document retrieval, constructing large-scale
annotated datasets is challenging due to the need for domain ex-
pertise [4, 14, 22]. While there are a few general domain datasets
(e.g., web search [2, 19]), they often fail to generalize to specialized
domains [4, 47]. This remains a major obstacle for applications.
Recently, large language models (LLMs) [5, 40, 48, 51] have been
actively utilized to generate synthetic data. Given a document and
a prompt including an instruction such as “generate five relevant
queries to the document” [9, 41], LLMs generate synthetic queries
for each document (Figure 1a). The generated queries serve as
proxies for actual user queries. Recent developments in prompting
schemes have largely improved the quality of these queries. [4, 9]
show that incorporating a few examples of actual query-document
pairs in the prompt leads to the generation of queries with similar
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Table 1: An example of synthetic queries. The queries are
generated sequentially from ¢! to ¢>. CCQGen is applied after
generating q'. Repeated keywords are denoted in red, while
newly covered concepts are denoted in blue. Details of the
generation process are illustrated in Figure 2.

Document

Automated music playlist generation is a specific form of music recom-
mendation. Collaborative filtering methods can be used to ... However, the
scarcity of thoroughly curated playlists and the bias towards popular songs
... we propose an alternative model based on a song-to-playlist classifier, ...
while leveraging song features derived from audio, ... robust performance
when recommending rare and out-of-set songs. ...

Generated queries for the document

q' How can song-to-playlist classifiers enhance automated music playlist
generation?

q° How can automated playlist creation be boosted through song-to-
playlist classification and feature exploitation? (w/o any condition)

q°> How does song-to-playlist classifier differ from traditional collabora-
tive filtering for music recommendation? (w/o any condition)

q° What techniques can be used to overcome filter bubbles and recom-
mend out-of-set songs? (w/ CCQGen)

q°> How to leverage mel-spectrogram features to mitigate the cold-
start problem in playlist recommendation? (w/ CCQGen)

distributions (e.g., expression styles) to actual queries. The state-of-
the-art method [6] employs a pair-wise generation that instructs
LLMs to generate relevant queries first and then relatively less
relevant ones. These less relevant queries serve as natural ‘hard
negatives’, further improving the efficacy of fine-tuning [6].
Though effective in generating plausible queries, the existing
methods lack control over the content generated, which can lead to
incomplete coverage of the academic concepts in a document. Aca-
demic concepts refer to fundamental ideas, theories, and method-
ologies that form the contents of scientific documents. A scientific
document typically explores various concepts. For example, in Ta-
ble 1, the document addresses the primary task of music playlist rec-
ommendation, along with the design of classification-based models,
solutions for popularity biases and data scarcity, and the utilization
of audio features. For a thorough understanding of the document,
training queries should comprehensively cover these concepts.
However, in the absence of control over the content generated,
the queries often repeatedly cover similar aspects of the document,
showing high redundancy. For example, in Table 1, the generated
queries (g2, ¢°) repeat keywords such as ‘automated playlist cre-
ation’ and ‘song-to-playlist classification’ already present in the
previous query (¢q1). While these concepts are undoubtedly relevant
to the document, such redundant queries cannot effectively bring
new training signals. Furthermore, the queries exhibit a particu-
larly higher lexical overlap with the document, compared to the
actual user queries (§4.2.1). We observe that the queries tend to
repeat only a few terms extracted from the document. Given that
users express the same concepts using various expressions in their
queries, this limited term usage may not effectively simulate actual
queries, reducing the efficacy of fine-tuning. As a naive solution,
one might consider adding more instructions to the prompt, such
as “use various terms and reduce redundancy among the queries”.
However, this still lacks systematic control over the generation and

SeongKu Kang et al.

fails to bring consistent improvements (§4.1.1); the improved term

usage often appears in common expressions (e.g., advance, enhance,

and reinforce), not necessarily enhancing concept coverage.

We propose Concept Coverage-based Query set Generation (CC-
QGen) framework to meet two desiderata for training queries: (1)
The queries should cover complementary aspects, enabling compre-
hensive coverage of the document’s concepts, and (2) The queries
should articulate the concepts in various related terms, rather than
merely echoing a few phrases from the document. A key distinction
of CCQGen is that it adaptively adjusts the generation process based
on the concept coverage of previously generated queries (Figure 1b).
We introduce a concept extractor to (1) identify the core concepts
of each text and (2) uncover concept-related terms not explicitly
mentioned in the document. Using this information, we discern the
concepts not sufficiently covered by previous queries, and leverage
them as conditions for the subsequent query generation. Table 1
shows that the queries generated with CCQGen (qz/, q3') cover
complementary concepts using more various related terms. Fur-
thermore, we introduce new techniques to filter out low-quality
queries and enhance retrieval accuracy using the obtained concept
information. Our primary contributions are:

e We show that existing query generation methods often fail to
comprehensively cover academic concepts in documents, leading
to suboptimal training and retrieval performance.

e We propose CCQGen framework, which adaptively imposes con-
ditions for subsequent generation based on the concept cover-
age. CCQGen can be flexibly integrated with existing prompting
schemes to enhance concept coverage of generated queries.

o We validate the effectiveness of CCQGen by extensive experi-
ments. CCQGen brings significant improvements in query quality
and retrieval performance over existing prompting schemes.

2 Preliminaries

2.1 Fine-tuning Retrieval Model

To perform retrieval on a new corpus, a PLM-based retriever is
fine-tuned using a training set of annotated query-document pairs.
For each query g, the contrastive learning loss is typically applied:

eStext (g, dr)

L=-1lo (1)

8 stent (@ d) 1Y | eotent (@ )
where d* and d~ denote the relevant and irrelevant documents.
srext (g, d) represents the similarity score between the query and a
document, computed by the retriever. For effective fine-tuning, a
substantial amount of training data is required. However, in special-
ized domains such as scientific document search, constructing vast
human-annotated datasets is challenging due to the need for do-
main expertise, which remains an obstacle for applications [14, 22].

2.2 Prompt-based Query Generation

Several attempts have been made to generate synthetic queries
using LLMs. Recent advancements have centered on advancing
prompting schemes to enhance the quality of these queries. We
summarize recent methods in terms of their prompting schemes.

Few-shot examples. Several methods [4, 6, 7, 9, 13, 38] incor-
porate a few examples of relevant query-document pairs in the
prompt. The prompt comprises the following components: P =
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{inst, (d, qi)le, d; }, where inst is the textual instruction?, (di, qi)f:1
denotes k examples of the document and its relevant query, and d;
is the new document we want to generate queries for. By providing
actual examples of the desired outputs, this technique effectively
generates queries with distributions similar to actual queries (e.g.,
expression styles and lengths) [9]. It is worth noting that this tech-
nique is also utilized in subsequent prompting schemes.

Label-conditioning. Relevance label [ (e.g., relevant and irrele-
vant) has been utilized to enhance query generation [4, 7, 38]. The
prompt comprises P = {inst, (I;, d;, qi)le, (I, dy)}, where k label-
document-query triplets are provided as examples. [; represents
the relevance label for the document d; and its associated query g;.
To generate queries, the prompt takes the desired relevance label I;
along with the document d;. This technique incorporates knowl-
edge of different relevance, which aids in improving query quality
and allows for generating both relevant and irrelevant queries [7].

Pair-wise generation. To further enhance the query quality, the
state-of-the-art method [6] introduces a pair-wise generation of
relevant and irrelevant queries. It instructs LLMs to first generate
relevant queries and then generate relatively less relevant ones.
The prompt comprises P = {inst, (d;, qi, qi’)fle, d;}, where g; and
g; denote relevant and irrelevant query for d;, respectively. The
generation of irrelevant queries is conditioned on the previously
generated relevant ones, allowing for generating thematically sim-
ilar rather than completely unrelated queries. These queries can
serve as natural ‘hard negative’ samples for training [6].

Remarks. Though effective in generating plausible queries,
there remains substantial room for improvement. We observe that
existing techniques often generate queries with limited coverage of
the document’s concepts. That is, the queries frequently cover simi-
lar aspects of the document, exhibiting high redundancy and failing
to add new training signals. Furthermore, the queries show a high
lexical overlap with the document, often repeating a few keywords
from the document (§4.2.1). Considering that the same concepts
are expressed using diverse terms in actual user queries, merely
repeating a few keywords may limit the efficacy of fine-tuning.

3 Methodology

We present Concept Coverage-based Query set Generation (CC-
QGen) framework, designed to meet two desiderata of training
queries: (1) The concepts covered by queries should be complemen-
tary to each other, enabling a comprehensive coverage of the doc-
ument’s concepts. (2) The queries should articulate the document
concepts in various related terms, rather than merely repeating
phrases from the document. CCQGen consists of two major stages:
e Concept identification and enrichment (§3.1): We first iden-
tify the core academic concepts of each document. Then, we
enrich the identified concepts by assessing their importance and
adding related concepts not explicitly mentioned in the document.
This information serves as the basis for generating queries.

o Concept coverage-based query generation (§3.2): Given the
previously generated queries Q;"’l = {q{li, e qg”l}, we com-
pare the concepts of the document d with those covered by Q:i"’l

For example, “Given a document, generate five search queries for which the document

can be a perfect answer”. The instructions vary slightly across methods, typically in
terms of word choice. In this work, we follow the instructions used in [6].
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to identify uncovered concepts. These uncovered concepts are

then leveraged as conditions for generating the subsequent query

g}, allowing ¢7" to cover complementary aspects of Q;”_l.
Moreover, we propose a new technique, concept similarity-enhanced
retrieval (CSR), that leverages the obtained concept information for
filtering out low-quality queries and for improving retrieval
accuracy (§3.2.3). Figure 2 provides an overview of CCQGen.

3.1 Concept Identification and Enrichment

To measure concept coverage, we first identify the core academic
concepts of each document. We represent the concepts using a
combination of two different granularities: topic and phrase levels
(Figure 2a). Topic level provides broader categorizations of research,
such as ‘collaborative filtering’ or ‘machine learning’, while phrase
level includes specific terms in the document, such as ‘playlist con-
tinuation’ or ‘song-to-playlist classifier’, complementarily revealing
the document concepts.

A tempting way to obtain these topics and phrases is to simply
instruct LLMs to find them in each document. However, this ap-
proach has several limitations: the results may contain concepts
not covered by the document, and there is always a potential risk
of hallucination. As a solution, we propose a new approach that
first constructs a candidate set, and then uses LLMs to pinpoint the
most relevant ones from the given candidates, instead of directly
generating them. By doing so, the output space is restricted to the
predefined candidate space, greatly reducing the risk of halluci-
nations while effectively leveraging the language-understanding
capability of LLMs.

3.1.1 Core topics identification. To identify the core topics of
documents, we propose using an academic topic taxonomy [44]. In
the scientific domain, academic taxonomies are widely used for cat-
egorizing studies in various institutions and can be easily obtained
from the web.? A taxonomy refers to a hierarchical tree structure
outlining academic topics (Figure 2a). Each node represents a topic,
with child nodes corresponding to its sub-topics. Leveraging tax-
onomy allows for exploiting domain knowledge of topic hierarchy
and reflecting researchers’ tendency to classify studies.

Candidate set construction. One challenge in finding candidate
topics is that the taxonomy obtained from the web is often very
large and contains many irrelevant topics.To effectively narrow
down the candidates, we employ a top-down traversal technique
that recursively visits the child nodes with the highest similarities
at each level. For each document, we start from the root node and
compute its similarity to each child node. We then visit child nodes
with the highest similarities.? This process recurs until every path
reaches leaf nodes, and all visited nodes are regarded as candidates.

The document-topic similarity s(d, c¢) can be defined in various
ways. As a topic encompasses its subtopics, we collectively consider
the subtopic information for each topic node. Let N denote the
set of nodes in the sub-tree having c as a root node. We compute
the similarity as: s(d, c) = ﬁ 2jeN, cos(eg, ej), where eg and e;

2E.g., IEEE Taxonomy (link), ACM Computing Classification System (link).

3We visit multiple child nodes and create multiple paths, as a document usually covers
various topics. For a node at level [, we visit [ +2 nodes to reflect the increasing number
of nodes at deeper levels of the taxonomy. The root node is level 0.


https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/ieee-taxonomy.pdf
https://dl.acm.org/ccs

WSDM °25, March 10-14, 2025, Hannover, Germany

SeongKu Kang et al.

*
computer | . |
S | _ science biology
Target corpus computer| | data machine | : recommendation. ...
; minin learning :

« data scarcity .| topic |[recommender | reinforcement |:>
« audio features ’ system learnin;

“Automated music playlist
generation is a form of music

the scarcity of curated playlists
and the bias towards popular
songs. ... We propose a model
song-to-playlist
leveraging song
features derived from audio ... ”

Topics | collaborative filtering (0.18), machine learning (0.12),
recommender system (0.28), classification (0.16), data scarcity

However, (0.14), audio feature analysis (0.07), item-based filtering (0.05)

Phrases| playlist continuation (0.18), song-to-playlist
classifier (0.14), out-of-set songs (0.1), data scarcity (0.12),
playlist coherence (0.12), cold-start problem (0.08),
popularity bias (0.08), filter bubble (0.06), audio features
(0.05), listening logs (0.04), mel-spectrogram (0.03) ...

(a) Concept identification and enrichment

red: enrichment results (importance)

: rating collaborative based on
- mel-spectogram prediction rediction filterin classifier, ...
Phrase set Academic topic taxonomy
3 prompt

> r—ﬁ% “How to leverage mel-spectrogram features

(concept- to mitigate the cold-start problem in playlist
based) recommendation?”

N G | LLM |
document
Ct:] Concept conditioning
|

“How can song-to-playlist
E‘?Q classifiers enhance automated
- music playlist generation?”

“What techniques can be used
R

playlist continuation (|), song-to-playlist !
classifier (|), out-of-set songs (),

data scarcity (1), playlist coherence (}),
cold-start problem (1), popularity bias (|),

Concept coverage-based
consistency filtering

to overcome filter bubble and filter bubble (|), audio features (1),
recommend out-of-set songs?” listening logs (1), mel-spectrogram (1) ... Q “How can automated playlist creation be
—¢ Previously generated queries Concept adjusting sampling probability (w/o any ~ boosted through song-to-playlist .
comparison based on query coverage condition) classification and feature exploitation?

(b) Concept coverage-based query set generation

Figure 2: The overview of Concept Coverage-based Query set Generation (CCQGen) framework. Best viewed in color.

denote representations from PLM for a document d and the topic
name of node j, respectively.*

Core topic selection. We instruct LLMs to select the most relevant
topics from the candidates. An example of an input prompt is:

You will receive a document along with a set of candidate topics. Your
task is to select the topics that best align with the core theme of the doc-
ument. Exclude topics that are too broad or less relevant. You may list
up to [k?] topics, using only the topic names in the candidate set. Docu-
ment: [DocuMENT], Candidate topic set: [CANDIDATES]

In this work, we set k! = 10. For each document d, we obtain core
topics as yzl € {0, 1}!71, where yéli = 1 indicates i is a core topic of
d, otherwise 0. 7~ denotes the topic set obtained from the taxonomy.

3.1.2 Core phrases identification. From each document, we
identify core phrases used to describe its concepts. These phrases
offer fine-grained details not captured at the topic level. We note
that not all phrases in the document are equally important. Core
phrases should describe concepts strongly relevant to the document
but not frequently covered by other documents with similar topics.
For example, among documents about ‘recommender system’ topic,
the phrase ‘user-item interaction’ is very commonly used, and less
likely to represent the most important concepts of the document.

Candidate set construction. Given the phrase set # of the cor-

pus®, we measure the distinctiveness of phrase p in document d.
Inspired by recent phrase mining methods [20, 46], we compute the

distinctiveness as: exp(BM25(p, d))/ (1+ X g e p, exp(BM25(p,d’))).

This quantifies the relative relevance of p to the document d com-
pared to other topically similar documents Dy. D is simply re-
trieved using Jaccard similarity of core topics yfj. We set |Dy| = 100.
We select phrases with top-20% distinctiveness score as candidates.

“We use BERT with mean pooling as the simplest choice.
SThe phrase set is obtained using an off-the-shelf phrase mining tool [42].

Core phrase selection. We instruct LLMs to select the most rele-
vant phrases (up to k? phrases) from the candidates, using the same
instruction format used for the topic selection. We set k” = 15. The
core phrases are denoted by y‘s € {0, 1}!”!, where ij = 1indicates

Jj is a core phrase of d, otherwise 0.

3.1.3 Enriching concept information. We have identified core
topics and phrases representing each document’s concepts. We
further enrich this information by (1) measuring their relative im-
portance, and (2) incorporating strongly related concepts (i.e., topics
and phrases) not explicitly revealed in the document. This enriched
information serves as the basis for generating queries.
Concept extractor. We employ a small model called a concept
extractor. For a document d, the model is trained to predict its core
topics yg and phrases y‘s from the PLM representation e;. We for-
mulate this as a two-level classification task: topic and phrase levels.
Topics and phrases represent concepts at different levels of gran-
ularity, and learning one task can aid the other by providing a
complementary perspective. To exploit their complementarity, we
employ a multi-task learning model with two heads [28]. Each head
has a Softmax output layer, producing probabilities for topics 92

and phrases }75 respectively. The cross-entropy loss is then applied
for classification learning: — le-l‘ y;i log th - leg‘ ysj log g}sj.
Concept enrichment. Using the trained concept extractor, we
compute }AIQ and }AIZ which reveal their importance in describing the
document’s concepts. Also, we identify strongly related topics and
phrases that are expressed differently or not explicitly mentioned,
by incorporating those with the highest prediction probabilities.
For example, in Figure 2, we identify phrases ‘cold-start problem’,
‘filter bubble’, and ‘mel-spectrogram’, which are strongly relevant
to the document’s concepts but not explicitly mentioned, along
with their detailed importance. These phrases are used to aid in
articulating the document’s concepts in various related terms.
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We obtain k!’ enriched topics and k?" enriched phrases for each
document with their importance from }7; and )7‘2 We set the proba-
bilities for the remaining topics and phrases as 0, and normalize the
probabilities for selected topics and phrases, denoted by }'lél and }'75

3.2 Concept Coverage-based Query Generation

We present how we generate a set of queries that comprehensively
cover the various concepts of a document. We first identify concepts
insufficiently covered by the previously generated queries (§3.2.1)
and leverage them as conditions for subsequent generation (§3.2.2).
Then, a filtering step is applied to ensure the query quality (§3.2.3).
This process is repeated until a predefined number (M) of queries
per document is achieved. M is empirically determined, considering
available training resources such as GPU memory and training time.
For the first query of each document, we impose no conditions,
thus it is identical to the results obtained from existing methods.

3.2.1 Concept sampling based on query coverage. The en-
riched information y; reveals the core concepts and their impor-
tance within the document. Our key idea is to generate queries
that align with this distribution to ensure comprehensive coverage
of the document’s concepts. Let Q;”_l = {qtli, q(’;’_l} denote the
previously generated queries. Using the concept extractor, which
is trained to predict core concepts from the text, we identify the
concepts covered by the queries, i.e., y, and yp . We use the con-
catenation of queries as input, denoted as Q. A high value in y;
coupled with a low value in y, indicates that the existing queries
do not sufficiently cover the corresponding concepts.

Based on the concept coverage information, we identify concepts
that need to be more emphasized in the subsequently generated
query. We opt to leverage phrases as explicit conditions for genera-
tion, as topics reveal concepts at a broad level, making them less
effective for explicit inclusion in the query. Note that topics are
implicitly reflected in identifying and enriching core phrases. We
define a probability distribution to identify less covered concepts as:

7t = normalize( max(yg - 95, €)) (2)

We set € = 1073 as a minimal value to the core phrases for numerical
stability. We sample L%J different phrases from Multinomial(s),
where M is the total number of queries per document. Note that }'fz)
is dynamically adjusted during the construction of the query set.

3.22 Concept conditioning for query generation. The sam-
pled phrases are leveraged as conditions for generating the next
query q;”, There have been active studies to control the generation
of LLMs for various tasks. Recent methods [23, 57] have specified
conditions for the desired outputs, such as sentiment, keywords,
and an outline, directly in the prompts. Following these studies, we
impose a condition by adding a simple textual instruction C: “Gen-
erate a relevant query based on the following keywords: [SAMPLED
PHRASES]”. While more sophisticated instruction could be employed,
we obtained satisfactory results with our choice.

The final prompt is constructed as [P; C], where P is an existing
prompting scheme discussed in §2.2. This integration allows us to
inherit the benefits of existing techniques (e.g., few-shot examples),
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while generating queries that comprehensively cover the docu-
ment’s concepts. For example, in Figure 2, C includes phrases like
‘cold-start problem’ and ‘audio features’, which are not well covered
by the previous queries. Based on this concept condition, we guide
LLMs to generate a query that covers complementary aspects to
the previous ones. It is important to note that C adds an additional
condition for P; the query is still about playlist recommendation,
the main task of the document.

3.2.3 Concept coverage-based consistency filtering. After
generating a query, we apply a filtering step to ensure its quality.
A critical criterion for this process is round-trip consistency [1]; a
query should be answerable by the document from which it was
generated. Existing work [7, 9] employs a retriever to assess this
consistency. Given a generated pair (g4, d), the retriever retrieves
documents for g4. Then, g is retained only if d ranks within the
top-N results. The accuracy of the retriever is crucial in this step; a
weak retriever may fail to filter out low-quality queries and also
only retain queries that are too easy (e.g., high lexical overlap with
the document), thereby limiting the effectiveness of training.

We note that relying on the existing retriever is insufficient for
measuring relevance. While it is effective at capturing similarities of
surface texts, the retriever often fails to match underlying concepts.
For example, in Figure 2, the generated query includes phrases ‘cold-
start problem’ and ‘mel-spectrogram’, which are highly pertinent
to ‘data scarcity’ and ‘audio features’ discussed in the document.
Nevertheless, as these phrases are not directly used in the docu-
ment, the retriever struggles to assess the relevance and ranks the
document low. Consequently, the query is considered unreliable
and removed during the filtering process.

Concept similarity-enhanced retrieval (CSR). We propose a
simple and effective technique to enhance retrieval by using con-
cept information. For relevance prediction, we consider both tex-
tual similarity from the retriever s;exs(q, d), and concept similarity
Sconcept (@, d). We measure concept similarity using core phrase dis-
tributions, i.e., sconcepr (. d) = sim(yg, 375), which reveals related
concepts at a fine-grained level.® sim(-, -) is the similarity function,
for which use inner-product. The relevance score is defined as:

relcsr(q. d) = f(stext(q, d), Sconcept(qs d)), (3)

where f(-,-) is a function that combines the two scores. We use
a simple addition after rescaling them via z-score normalization. We
denote this technique as Concept Similarity-enhanced Retrieval (CSR).
For filtering process, we assess the round-trip consistency us-
ing CSR. By directly matching underlying concepts not apparent
from the surface text, we can more accurately measure relevance
and distinguish low-quality queries. Additionally, for search with
test queries (i.e., after fine-tuning using the generated data), CSR
can be used as a supplementary technique to further enhance re-
trieval. It helps to understand test queries, which contain highly
limited contexts and jargon not included in the training queries, by
associating them with pre-organized concept information.

®Here, we compute the similarity for top-10% phrases (instead of kP,) to consider
concepts having a certain degree of relevance. We also tried using core topics. However,
it proved less effective as topics reveal concepts only at a broad level.
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4 Experiments

Datasets. We conduct a thorough review of the literature to find
retrieval datasets in the scientific domain, specifically those where
relevance has been assessed by skilled experts or annotators. We
select two recently published datasets: CSFCube [31] and DORIS-
MAE [49]. They offer test query collections annotated by human
experts and LLMs, respectively, and embody two real-world search
scenarios: query-by-example and human-written queries. For both
datasets, we conduct retrieval from the entire corpus, including all
candidate documents. CSFCube dataset consists of 50 test queries,
with about 120 candidates per query drawn from approximately
800,000 papers in the S20RC corpus [26]. DORIS-MAE dataset
consists of 165,144 test queries, with candidates drawn similarly to
CSFCube. We consider annotation scores above ‘2°, which indicate
documents are ‘nearly identical or similar’ (CSFCube) and ‘directly
answer all key components’ (DORIS-MAE), as relevant. Note that
training queries are not provided in both datasets.

Academic topic taxonomy. We utilize the field of study taxonomy
from Microsoft Academic [44], which contains 431, 416 nodes with
a maximum depth of 4. After the concept identification step (§3.1),
we obtain 1, 164 topics and 18, 440 phrases for CSFCube, and 1, 498
topics and 34, 311 phrases for DORIS-MAE.

Metrics. Following [14, 29], we employ Recall@K (R@K) for a large
retrieval size (K), and NDCG@K (N@K) and MAP@K (M@K) for
a smaller K (< 20). Recall@K measures the proportion of relevant
documents in the top K results, while NDCG@K and MAP@K
assign higher weights to relevant documents at higher ranks.

Backbone retrievers. We employ two representative models: (1)
Contriever-MS [12] is a widely used retriever fine-tuned using
vast labeled data from general domains (i.e., MS MARCO). (2)
SPECTER-v2 [45] is a PLM specifically developed for the scien-
tific domain. It is trained using metadata (e.g., citation relations)
of scientific papers. For both models, we use public checkpoints:
facebook/contriever-msmarco and allenai/specter2_base.

Baselines. We compare various query generation methods. For all

LLM-based methods, we use gpt-3.5-turbo-0125. Additionally,

we explore the results with a smaller LLM (L1ama-3-8B) in §4.2.3.

For each document, we generate five relevant queries [47].

e GenQ [47] employs a specialized query generation model, trained
with massive document-query pairs from the general domains.
We use T5-base, trained using approximately 500, 000 pairs from
MS MARCO dataset [32]: BeIR/query-gen-msmarco-t5-base-v1.

CCQGen can be flexibly integrated with existing LLM-based meth-

ods to enhance the concept coverage of the generated queries. We

apply CCQGen to two recent approaches, discussed in §2.2.

o Promptgator [9] is arecent LLM-based query generation method
that leverages few-shot examples within the prompt.

e Pair-wise generation [6] is the state-of-the-art method that
generates relevant and irrelevant queries in a pair-wise manner.

Additionally, we devise a new competitor that adds more instruc-
tion in the prompt to enhance the quality of queries: Promptga-
tor_diverse is a variant of Promptgator, where we add the instruc-
tion “use various terms and reduce redundancy among the queries”.

Implementation details. We conduct all experiments using 4
NVIDIA RTX A5000 GPUs, 512 GB memory, and a single Intel
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Xeon Gold 6226R processor. For fine-tuning, we use top-50 BM25
hard negatives for each query [10]. We use 10% of training data as a
validation set. The learning rate is set to 10~ for Contriever-MS and
10~7 for SPECTER-v2, after searching among {10_7, 107, ..., 10_3}.
We set the batch size as 64 and the weight decay as 1074, We
report the average performance over five independent runs. For
all methods, we generate five synthetic queries for each document
(M = 5). For the few-shot examples in the prompt, we randomly
select five annotated examples, which are then excluded in the
evaluation process [9]. We follow the textual instruction used in [6].
For other baseline-specific setups, we adhere to the configurations
described in the original papers. For the concept extractor, we
employ a multi-gate mixture of expert architecture [28], designed
for multi-task learning. We use three experts, each being a two-layer
MLP. For the consistency filtering, we set N = 5. We set the number
of enriched topics and phrases to k’ "= 15and kP’ = 20, respectively.

4.1 Performance Comparison

4.1.1 Effectiveness of CCQGen. Table 2 presents retrieval per-
formance after fine-tuning with various query generation methods.
CCQGen consistently outperforms all baselines, achieving signifi-
cant improvements across various metrics with both backbone mod-
els. We observe that GenQ underperforms compared to LLM-based
methods, showing the advantages of leveraging the text generation
capability of LLMs. Also, existing methods often fail to improve the
backbone model (i.e., no Fine-Tune), particularly Contriever-MS.
As it is trained on labeled data from general domains, it already cap-
tures overall textual similarities well, making further improvements
challenging. The consistent improvements by CCQGen support its
efficacy in generating queries that effectively represent the scien-
tific documents. Notably, Promptgator_diverse struggles to produce
consistent improvements. We observe that it often generates redun-
dant queries covering similar aspects, despite increased diversity
in their expressions (further analysis provided in §4.2.1). This un-
derscores the importance of proper control over generated content
and supports the validity of our approach.

Impact of amount of training data. In Figure 3, we further ex-
plore the retrieval performance by limiting the amount of training
data, using Contriever-MS as the backbone model. The existing
LLM-based generation method (i.e., Pair-wise gen.) shows limited
performance under restricted data conditions and fails to fully
benefit from an increasing volume of training data. This supports
our claim that the generated queries are often redundant and do
not effectively introduce new training signals. Conversely, CCQ-
Gen consistently delivers considerable improvements, even with
a limited number of queries. CCQGen guides each new query to
complement the previous ones, allowing for reducing redundancy
and fully leveraging the limited number of queries.

4.1.2 Effectiveness of CCQGen with CSR. In §3.2.3, we intro-
duce CSR, designed to enhance retrieval using concept information
from CCQGen. This technique aligns with the ongoing research
direction of enhancing retrieval by integrating additional context
not directly revealed from the queries and document [14, 29, 52, 56].
We compare CSR with two recent methods: (1) GRF [29] generates
relevant contexts by LLMs. For a fair comparison, we generate both
topics and keywords, as used in CCQGen. (2) ToTER [14] uses the
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Table 2: Retrieval performance comparison after fine-tuning with the generated queries. Red color denotes results that fail
to show improvements over no Fine-Tune.  and * indicate a statistically significant difference (p < 0.05) from no Fine-Tune
(one-sample t-test) and the applied query generation method (paired t-test), respectively.

. CSFCube DORIS-MAE
Query generation
N@10 N@20 M@10 M@20 R@50 R@100 N@10 N@20 M@10 M@20 R@50 R@100
no Fine-Tune 0.3313 0.3604 0.1525 0.1937 0.5783 0.7136 0.2603 0.2707 0.1177 0.1422 0.4509 0.5877
2 GenQ 0.3401 0.3495 0.1476 0.1841 0.5571 0.6843 0.2496 0.2647 0.1152 0.1396 0.4598 0.5805
& Promptgator_diverse 0.3539 0.3771 0.1606 0.2029 0.5950 0.7132 0.2461 0.2690 0.1143 0.1406 0.4645 0.5951
>
£ Promptgator 0.3441 03670 0.1538 0.1974 0.5928 0.7298 0.2526 0.2724 0.1161 0.1418 0.4718 0.5961
£ w/ CCQGen (ours) 036057 0.39917* 0.1614" 021947 0.63337* 0.74677 0.2697* 0.2883"* 0.12677* 0.1536"* 0.49837* 0.63277*
© Pair-wise generation  0.3418 0.3686 0.1522 0.1971 0.5961 0.7225 0.2541 0.2753 0.1177 0.1445 0.4809 0.5947
w/ CCQGen (ours)  0.3670"* 0.40637* 0.16567* 0.22287* 0.63627* 0.75267* 0.27837* 0.29437* 0.1308"* 0.15777* 0.5089"* 0.63317*
no Fine-Tune 0.3503 0.3579 0.1615 0.2043 0.5341 0.6859 0.2121 0.2283 0.0942 0.1147 0.4182 0.5441
& GenQ 0.3658 0.3659 0.1699 0.2083 0.5541 0.6836 0.2338 0.2525 0.1045 0.1287 0.4412 0.5613
& Promptgator diverse 0.3672 0.3801 0.1721 0.2157 0.5687 0.6972 0.2469 0.2733 0.1121 0.1401 0.4843 0.6102
5 Promptgator 0.3766 0.3886 0.1790 0.2245 0.5715 0.6962 0.2479 0.2713 0.1131 0.1398 0.4851 0.6064
g w/ CCQGen (ours)  0.41057* 0.4176™* 0.20857* 0.25497* 0.58867 0.73557* 0.26347* 0.28917* 0.1226" 0.15207* 0.4988"  0.6265"
Pair-wise generation  0.3870 0.3999 0.1966 0.2423 0.5722 0.6972 0.2523 0.2782 0.1163 0.1442 0.4885 0.6148
w/ CCQGen (ours)  0.40317* 0.4150"  0.20407  0.25347* 0.58447 0.73337* 0.26817* 0.29327* 0.12477  0.1546"* o0.50647 0.6304"

Table 3: Retrieval performance comparison with various enhancement methods. * indicates a significant difference (paired
t-test, p < 0.05) from the best baseline (i.e., the combination of the best existing query generation and enhancement methods).

Query Retrieval CSFCube DORIS-MAE
generation  enhancement N@10 N@20 M@10 M@20 R@50 R@100 N@10 N@20 M@10 M@20 R@50 R@100
Pair-wise Retriever 0.3418 0.3686 0.1522 0.1971 0.5961  0.7225 0.2541 0.2753 0.1178 0.1445 0.4809 0.5947
i w/ GRF 0.3401 0.3713 0.1540 0.2008 0.5778  0.7151 0.2535 0.2753 0.1147 0.1416 0.4832 0.6159
generation -y TGTER 03745 04072 0.1719 0.2267 0.6352 0.7606 0.2932 03138 0.1381 0.1680 0.5361  0.6579
Retriever 0.3670 0.4063 0.1656 0.2228 0.6362  0.7526 0.2783 0.2943 0.1308 0.1577 0.5089 0.6331
w/ CCQGen  w/ GRF 0.3741 0.4071 0.1715 0.2272 0.6288  0.7490 0.2709 0.2925 0.1262 0.1542 0.5138 0.6384
(ours) w/ ToTER 0.4023 0.4205 0.1844 0.2403 0.6441 0.7698 0.2965 0.3159 0.1394 0.1697 0.5391 0.6635
w/ CSR (ours) 0.4244* 0.4359" 0.2029* 0.2530* 0.6412 0.7792* 0.3034* 0.3237° 0.1438" 0.1745* 0.5588" 0.6818"
0.38 CSFCube CSFCube because the LLM-generated contexts are not tailored to target doc-
EEE Pair-wise gen. 0,775 || == Pairwise gen. uments; these contexts may be related but often not covered by
S, 036 || W/ CCQGen =3 B3 w/ccqten documents in the corpus, potentially causing discrepancies in fo-
2 S 0750 pus, p y g p
g e cused aspects. Lastly, ToTER only considers topic-level information,
2 g 0.7257 which may be insufficient for providing find-grained details neces-
= T . -
& 0.700 sary to distinguish between topically-similar documents.
10% 25% 50% 100% 10% 25% 50% 100%
DORIS-MAE DORIS-MAE 4.2 Study Of CCQGen
e gen. 4.2.1 Analysis of generated queries. We analyze whether CC-
o 9281 | e= / ccagen = QGen indeed reduces redundancy among the queries and includes
5 026 5 a variety of related terms. We introduce two criteria: (1) redun-
S no Fine-Tune = dancy, measured as the average cosine similarity of term frequency
9 . . o .
S 0.24 kY vectors of queries.” A high redundancy indicates that queries tend
to cover similar aspects of the document. (2) lexical overlap, mea-
10% 25% 50% 100% 10% 25% 50% 100% sured as the average BM25 score between the queries and the

Figure 3: Results with varying amounts of training data. x%
denotes setups using a random x% of generated queries.

topic distributions between queries and documents, with topics
provided by the taxonomy. Contriever-MS is used as the backbone.

Table 3 presents the retrieval performance with various enhance-
ment methods. CSR significantly improves the retrieval perfor-
mance. Notably, the combination of proposed concept-based query
generation (CCQGen) and enhancement (CSR) methods achieves
significant improvements over the best existing solutions (i.e., Pair-
wise gen. combined with ToTER). GRF often degrades performance

document. A higher lexical overlap indicates that queries tend to
reuse terms from the document.

In Table 4, the generated queries show higher lexical overlap
with the document compared to the actual user queries. This shows
that the generated queries tend to use a limited range of terms
already present in the document, whereas actual user queries in-
clude a broader variety of terms. With the ‘diverse condition’ (i.e.,
Promptgator_diverse), the generated queries exhibit reduced lexi-
cal overlap and redundancy. However, this does not consistently

7We use CountVectorizer from the SciKit-Learn library.
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Table 4: Analysis of generated queries. (a) Statistics of queries
generated by different methods. (b) Retriever performance
(SPECTER-v2 on NDCG@10) after fine-tuning using the
queries. The average lexical overlap of actual queries is 13.32
for CSFCube and 20.42 for DORIS-MAE.

CSFCube

(b) Retriever
performance

Query generation (a) Query statistics

redundancy (|) lexical overlap (|)

Promptgator 0.5072 31.51 0.3766
w/ diverse condition 0.4512 (-11.0%) 24.05 (-23.7%) 0.3672 (-2.6%)
w/ CCQGen 0.3997 (-21.2%)  24.41 (-22.5%) 0.4105 (+9.0%)

DORIS-MAE
(a) Query statistics

(b) Retriever

uery generation
Query g performance

redundancy (]) lexical overlap (])

Promptgator 0.4861 53.58 0.2479
w/ diverse condition 0.3958 (-18.6%)  41.56 (-22.4%) 0.2469 (-0.4%)
w/ CCQGen 03993 (-17.9%)  40.54 (-24.3%) 0.2634 (+6.2%)

S I Contriever-MS 0.06 I Contriever-MS
® 0.03 3 SPECTER-v2 ' [ SPECTER-v2
Q

O 0.02

[a]
Z 0.01
<

A Recall@100
o (=]
o
S

0.00

CSFCube

DORIS-MAE

CSFCube

DORIS-MAE
Figure 4: Improvements by concept coverage-based filtering.

lead to performance improvements. The improved term usage of-
ten appears in common expressions, not necessarily enhancing
concept coverage. Conversely, CCQGen directly guides each new
query to complement the previous ones. Also, CCQGen incorporate
concept-related terms not explicitly mentioned in the document via
enrichment step (§3.1.3). This provides more systematic controls
over the generation, leading to consistent improvements.

4.2.2 Effectiveness of concept coverage-based filtering. Fig-
ure 4 presents the improvements achieved through the filtering
step, which aims to remove low-quality queries that the document
does not answer (§3.2.3). As shown in Table 3, CSR largely en-
hances retrieval accuracy by incorporating concept information.
This enhanced accuracy helps to accurately measure round-trip
consistency, effectively improving the effects of fine-tuning.

4.2.3 Results with a smaller LLM. In Table 5, we explore the
effectiveness of the proposed approach using a smaller LLM, Llama-
3-8B, with Contriever-MS as the backbone model. Consistent with
the trends observed in Table 2 and Table 3, the proposed techniques
(CCQGen and CSR) consistently improve the existing method. We
expect CCQGen to be effective with existing LLMs that possess
a certain degree of capability. Since comparing different LLMs is
not the focus of this work, we leave further investigation on more
various LLMs and their comparison for future study.

5 Related Work

We provide a detailed survey of LLM-based query generation in §2.2.
PLM-based retrieval models. The advancement of PLMs has
led to significant progress in retrieval. Recent studies have intro-

duced retrieval-targeted pre-training [11, 12], distillation from cross-
encoders [54], and advanced negative mining methods [36, 53]
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Table 5: Retrieval performance with Llama-3-8B. We report
improvements over no Fine-Tune. * denotes p < 0.05 from
paired t-test with pair-wise generation.

Dataset Method N@10 N@20 R@100
Pair-wise generation +5.25% +0.94% -0.21%
CSFCube w/ CCQGen +6.55% +7.82%*  +5.48%"*

w/ CCQGen + CSR +27.92%"  +20.09%" +9.01%"

Pair-wise generation +0.00% +2.92% +5.43%
DORIS-MAE  w/ CCQGen +5.19%"  +9.57%*  +6.69%
w/ CCQGen + CSR +16.75%"  +20.87%" +14.65%"

There is also an increasing emphasis on pre-training methods specif-
ically designed for the scientific domain. In addition to pre-training
on academic corpora [3], researchers have exploited metadata as-
sociated with scientific papers. [37] uses journal class, [8, 34] use
citations, [30] uses co-citation contexts, and [25] utilizes venues,
affiliations, and authors. [45, 55] devise multi-task learning of re-
lated tasks such as citation prediction and paper classification. Very
recently, [14, 17] leverage corpus-structured knowledge (e.g., core
topics and phrases) for academic concept matching.

Synthetic query generation. Earlier studies [24, 27, 32, 33, 50]
have employed dedicated query generation models, trained using
massive document-query pairs from general domains. Recently,
there has been a shift towards replacing these generation models
with LLMs [4, 6, 9, 13, 38, 39], as discussed in §2.2. On the other hand,
many recent studies have focused on developing query generation
tailored to specific retrieval domains. [41] focuses on entity search
for virtual assistants, [43] improves the diversity of queries for
news article searches guided by a knowledge graph, [35] focuses
on enhancing the retrievability of entities on online content (e.g.,
Podcast) platforms. However, a dedicated method for scientific
document retrieval has not been studied well in the literature.

6 Conclusion

We propose CCQGen framework to generate a set of queries that
comprehensively cover the document concepts. CCQGen identifies
concepts not sufficiently covered by previous queries, and leverages
them as conditions for subsequent query generation. This approach
guides each new query to complement the previous ones, aiding
in a comprehensive understanding of the document. Extensive ex-
periments show that CCQGen significantly improves both query
quality and retrieval performance, even with limited training data.
Future work may explore its applicability across various domains.
In particular, e-commerce [15, 16, 21] presents a promising oppor-
tunity, as users often express multi-faceted needs involving desired
attributes, characteristics, or specific use cases. We expect CCQGen
to better simulate user queries in such scenarios and leave further
investigation for future work.
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