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ABSTRACT

Instead of mining coherent topics from a given text corpus in a com-
pletely unsupervised manner, seed-guided topic discovery meth-
ods leverage user-provided seed words to extract distinctive and
coherent topics so that the mined topics can better cater to the
user’s interest. To model the semantic correlation between words
and seeds for discovering topic-indicative terms, existing seed-
guided approaches utilize different types of context signals, such as
document-level word co-occurrences, sliding window-based local
contexts, and generic linguistic knowledge brought by pre-trained
language models. In this work, we analyze and show empirically
that each type of context information has its value and limitation
in modeling word semantics under seed guidance, but combining
three types of contexts (i.e., word embeddings learned from lo-
cal contexts, pre-trained language model representations obtained
from general-domain training, and topic-indicative sentences re-
trieved based on seed information) allows them to complement
each other for discovering quality topics. We propose an iterative
framework, SEEDTOPICMINE, which jointly learns from the three
types of contexts and gradually fuses their context signals via an
ensemble ranking process. Under various sets of seeds and on mul-
tiple datasets, SEEDTOPICMINE consistently yields more coherent
and accurate topics than existing seed-guided topic discovery ap-
proaches.
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1 INTRODUCTION

To efficiently grasp the information in a large collection of doc-
uments, it is of great interest to automatically discover a set of
coherent topics from the corpus. Besides capturing meaningful
structures in massive text data [11], topic discovery also widely
benefits downstream text mining tasks such as taxonomy construc-
tion [20] and document classification [5].

Unsupervised topic models, from LDA [4] to embedding-based (8,
44] and pre-trained language model-enhanced [29, 39] approaches,
have been extensively studied for decades as the mainstream ap-
proach to topic discovery. Despite their efficacy in uncovering
prominent themes of a corpus, such models tend to retrieve seman-
tically general topics that may not align well with users’ specific
interests, as explained in [13, 27]. Motivated by this, rather than
finding arbitrary topics in a fully unsupervised manner, seed-guided
topic discovery [10, 13, 15, 27, 47] aims to extract topics along a cer-
tain dimension based on user-provided seeds, and the top-ranked
words under each topic should be discriminatively relevant to the
corresponding seed. For example, given a collection of restaurant re-
views, if a user would like to explore topics of food types (e.g., by pro-
viding the seeds “noodles”, “steak”, and “pizza”), then a seed-guided
topic discovery model should discover topic-indicative terms for
each input seed (e.g., “ramen” and “pasta” under “noodles”), instead
of finding terms that are relevant to multiple seeds (e.g., “beef”) or
retrieving topics along other dimensions (e.g., “good” or “bad” as
topics of sentiments).

Recent studies on seed-guided topic discovery [13, 20, 27, 47]
have been focusing on utilizing different types of context infor-
mation so that they can go beyond the “bag-of-words” generative
assumption in LDA and learn more accurate word semantics for
topic discovery. To be specific, there are three major types of context
signals used in related studies.

Skip-Gram Word Embeddings. Different from LDA which infers
topics based on the global document-word frequency matrix, skip-
gram embedding learning [31] assumes that words occurring in
similar local contexts (e.g., +5 words) tend to have similar semantic
properties. Following this assumption, each word in the corpus
can be represented by an embedding vector in a latent space. To
incorporate skip-gram signals in topic discovery, the word embed-
dings can be injected into the LDA backbone [13] or jointly learned
by viewing documents and seeds also as contexts [27]. However,
skip-gram embeddings are less helpful in disambiguating word
meanings because only one vector is learned for each word given
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the whole corpus. Indeed, Sia et al. [39] show that clustering skip-
gram embeddings underperforms clustering output representations
of contextualized language models such as BERT [7] in unsuper-
vised topic modeling.

Pre-trained Language Model Representations. Pre-trained lan-
guage models (PLMs) [7, 23, 33] have revolutionized the text mining
field by learning contextualized word embeddings. The Transformer
architecture [43] used in many PLMs can capture long-range and
high-order context signals, and the knowledge learned by PLMs
from web-scale corpora can complement contexts in the input cor-
pus in topic discovery [47]. Meanwhile, related studies have ob-
served several cases where PLMs generate noticeably bad topics.
For example, Meng et al. [29] show that PLM representations suffer
from the curse of dimensionality and do not form clearly separated
clusters; Thompson and Mimno [42] find that GPT-2 representa-
tions [33] work well only if the outputs of certain layers are taken,
and RoBERTa-induced topics [23] are consistently of poor quality.

Topic-Indicative Documents. Although skip-gram embeddings
and PLMs are powerful in representing each word based on its
contexts, neither of them considers whether the contexts they use
are topic-indicative (i.e., semantically close to a certain seed). In
fact, skip-gram embedding learning always takes the +x words
as contexts, regardless of whether they are relevant to any seed;
a PLM will always output the same representation for a word if
the input corpus is fixed, no matter what the seeds are. To tackle
this problem, supervised topic models [17, 25] propose to leverage
document-level training data (i.e., each document belongs to which
seed or semantic category). However, such information relies on
massive human annotation, which may be difficult to obtain in
practical applications (e.g., weakly supervised text classification
[26, 28, 46]). Moreover, a document may be too broad to be viewed
as a context unit because each document can be relevant to multiple
topics simultaneously.

To summarize, each type of context signals has its specific ad-
vantages and disadvantages. Therefore, a topic discovery method
purely relying on one type of context information may not be ro-
bust across different datasets or seed dimensions. Meanwhile, it is
worth noting that the three types of contexts strongly complement
each other. For example, PLMs have contextualization power which
skip-gram embeddings are short of; skip-gram embeddings usu-
ally have fewer dimensions than PLM representations and are less
prone to the curse of dimensionality; topic-indicative documents
are not naturally available, but they can be retrieved by applying
skip-gram embeddings and PLMs.

Contributions. Motivated by the complementarity of context sig-
nals, in this paper, we propose SEEDTOPICMINE, an effective seed-
guided topic discovery framework by integrating multiple types of
contexts. SEEDTOPICMINE iteratively retrieves and updates the set of
topic-discriminative terms for each seed. In each iteration, we first
jointly leverage seed-guided skip-gram embeddings and PLM-based
representations to discover a set of topic-indicative terms. Then,
using these terms, we retrieve a set of topic-indicative sentences.
Here, we consider sentences rather than documents because each
sentence, as a more fine-grained unit, is more likely to concentrate
on one topic. Finally, the derived topic-indicative sentences and
the other two types of contexts are cooperatively utilized through
an ensemble ranking process, after which the topic-discriminative
terms will be updated and used for the next iteration.

Yu Zhang, Yunyi Zhang, Martin Michalski, Yucheng Jiang, Yu Meng, & Jiawei Han

Extensive experiments on real-world datasets show that SEED-
ToricMINE effectively discovers discriminative terms under each
seed to form coherent topics. Our human evaluation quantitatively
validates the superiority of SEEDTOPICMINE over baselines that rely
on a single type of contexts. In the ablation study, we observe that
even in the same dataset, if we consider different dimensions of
seeds, the contributions of different context signals vary signifi-
cantly, which confirms our key motivation that any single type of
context signal is insufficient for discovering seed-discriminative
topics stably.

2 PROBLEM DEFINITION

Following [27], we assume a seed can be either a unigram or a
phrase. Given an input corpus and a set of seeds, our goal is to find
a set of terms under each seed to form a coherent topic. Conforming
to the assumption of seeds, each term can also be a unigram or
a phrase. In practice, given a raw corpus, one can adopt existing
phrase chunking tools [24, 38] to obtain phrases in it.

Definition 2.1. (Problem Definition) Given a corpus D = {dj, ...,
d|p|} and a set of seeds S = {s1, ..., 5| 5|}, seed-guided topic discov-
ery aims to find a set of terms 75 = {ti1, tiz, .., t;| 77| } appearing in
D for each seed s; (1 < i < |S|), where the term ¢;; is semantically
close to s; and far from other seeds s; (Vj # i).

In other words, each seed s; represents a semantic category c;,
and the task is to find a set of terms 7; that discriminatively belong
to the category ¢; (1 <i < |S)).

3 FRAMEWORK

In this section, we first review various types of contexts utilized by
previous studies for topic discovery. Then, we present our frame-
work, SEEDTOPICMINE, that iteratively ensembles these types of
signals.

3.1 Types of Context Information

Previous studies on topic discovery, either unsupervised, seed-
guided, or supervised, propose to leverage different types of in-
formation such as skip-gram embeddings [8, 13, 27, 30, 44], pre-
trained language model representations [3, 29, 39, 42, 47], and topic-
indicative documents [17, 20, 25]. We now introduce three major
types of information sources, which are illustrated in Figure 1, and
how we propose to use them in SEEDTOPICMINE.

3.1.1  Seed-Guided Text Embeddings. Previous embedding-based
topic models [8, 13, 44] propose to incorporate word embeddings
to make up for the representation deficiency of the “bag-of-words”
generation assumption in LDA. The intuition of text embedding
learning is based on the hypothesis that semantically similar terms
share similar contexts. In unsupervised topic discovery, the contexts
of a term may refer to its skip-grams [31] and the documents it
appears in [19, 40]. In our task of seed-guided topic discovery,
we can further leverage seeds in the embedding learning process
by viewing the category that a term belongs to as its context. To
facilitate this goal, in SEEDTOPICMINE, we follow [27, 47] and unify
the three types of contexts into one objective. To be specific, we
aim to maximize the likelihood of observing a term’s skip-gram,
document, and category contexts given that term. Formally, the
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Figure 1: Overview of the SEEDToPICMINE framework.

embedding learning objective is:
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Here, C(w;) is the set of terms in w;’s skip-gram window. For exam-
ple, given a text sequence wiwz...wx, we have C(w;) = {wjli—x <
Jj <i+x, j# i}, where x is the skip-gram window size. 7;, as men-
tioned in Definition 2.1, is the set of terms related to the seed s; (i.e.,
belong to the semantic category c;). We adopt an iterative frame-
work to gradually expand 7;. At the very beginning, 7; = {s;} (i.e.,
the seed initially belongs to its corresponding topic). After each
iteration, terms close to the category c; in the embedding space will
be added to 7;.

There are various ways to define each likelihood in Eq. (1). Fol-
lowing previous studies on topic modeling [2, 16, 21, 27], we adopt
the von Mises-Fisher (vMF) distribution.

€xp(Kay; €08 (Uay;, Oy, )

2w €Xp(Kay; cos(Uny;, 01))
where x,,, > 0 is the concentration parameter, indicating the se-
mantic specificity of w;; u,, and v,,; are the embeddings of w;
and wj, respectively. The vMF distribution can be viewed as an
analogue of the Gaussian distribution on a sphere. In Eq. (2), the
distribution concentrates around the mean direction u,,,, and is
more concentrated if k., is larger (i.e., w; is a more specific term).
Similar to Eq. (2), the other two likelihood terms in Eq. (1) can be
defined as

p(wjlwi) = = VMF (04 |ty Kay;), - (2)

exp Ky cos(ury, Ug))

dlw) = ~ VMF (v |ty Kw),
PN S expliccostun, gy M
_ exp(Kyy o8 ( Uy, ¢;)) N
P(Cllw) = Zc’ exp(KW cos(uw, Uc’)) = VMF(vci ‘uw,Kw),

where vy and o, are the embedding vectors of document d and
category c;, respectively.

To summarize, the seed-guided text embedding learning process
is cast as the following optimization problem:

max Jgmb s.t. ||t || = [lowl] = lloall = [loc]| =1, k3 20. (4)

We follow the optimization process of [27] to optimize Eq. (4).

After embedding learning, for each term w, we obtain two vec-
tors u,, and v, which, as they do in previous studies [27, 31, 40],
carry the semantics of w when it is viewed as a center term and a
context term, respectively. Given a term w and a seed s;, we calcu-
late the cosine similarity between their learned embeddings as the
first criterion of their semantic proximity, which will later be used
in topic discovery.

simgmb (W, $;) = cos(uy, usi)~ (5)

3.1.2  Pre-trained Language Model Representations. Recently, PLMs
such as BERT [7] have achieved great success in a wide spectrum of
text mining tasks. The Transformer architecture [43] used in many
PLMs is capable of capturing long-range and high-order context
signals. Moreover, the generic knowledge learned by PLMs from
web-scale corpora (e.g., Wikipedia) can complement the informa-
tion one can get from the input corpus. To utilize such signals in
topic discovery, for each term appearing in the input corpus, we
employ a PLM to derive its representation.

Suppose a term w appears M times in the corpus D. For each
of its mentions w (1 < i < M), we feed the sentence containing
this mention into a PLM. Note that w! may be segmented into

multiple word pieces Wl’ . wi according to the PLM tokenizer

5 -
[36, 37], and each word piece w} will have an output representation
vector PLM(wj.) after PLM encoding. Following previous studies

on topic discovery [39, 42], we take the average of these word piece
representations as the representation of the mention.

PLM(w') = ZPLM(W) (6)
] 1

The mention representation is contextualized given the sentence it
appears in. To get the corpus-level semantics of a term, we average
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the representations of all its mentions.

1Y A
By = M;PLM(W’). ™

In this way, for each w, we obtain a vector h,, whose dimension
is given by the adopted PLM. For example, if we use BERTpage [7],
then h,, € R7%8. Given a term w and a seed s;, we calculate the
cosine similarity between their PLM-based representations as our
second criterion of their semantic proximity.

simppm (W, i) = cos(hay, hs,-)- (8)

3.1.3 Topic-Indicative Context. Although seed-guided embedding
learning and PLM encoding are both powerful tools to represent
each term based on its contexts, neither of them considers whether
the utilized context information is topic-indicative or not. To be
specific, the PLM-based representation h,, is unaware of the seed
space S (in other words, no matter what the seeds S = {s1, ..., 5|5}
are, if the corpus D is fixed, then the same PLM will always generate
the same representation vector h,, for w); the embeddings u,, and
v, always take the skip-gram C(w) (i.e., +1, ..., £x terms) and the
document d containing w as contexts during learning, regardless
of whether such information is relevant to a certain seed/topic. To
alleviate this gap, we propose to use topic-indicative context to
derive the correlation between a term w and a seed s;.

For each seed s; € S, we assume it has a set of topic-indicative
sentences ©; = {0i1,....0;)9,|}. (Initially, ©; is not given as in-
put. We will discuss how to obtain and iteratively update ©; in
Section 3.2.2.) The reason that we consider sentences instead of
documents here is because a document is more likely to cover
multiple topics. Motivated by [20, 41], we calculate the semantic
closeness between w and ©; according to the following two criteria:
(1) Popularity: a term close to ®; should appear frequently in the
sentences in ©;. Formally, pop(w, ©;) = log(1 + tf(w, ©;)), where

0;
tf (-, -) denotes term frequency and tf(w, ®;) = ZL’:I‘ tf(w, 0;5). (2)
Distinctiveness: a term close to ®; should be much more relevant
to the sentences in ©; than it is to the sentences indicating other

topics. This can be characterized by the formula: dist(w, ®;) =

E;(lp(BMZS(W’@i)) , where BM25(-, -) denotes the BM25 rele-
1+Zi,:1 exp(BM25(w,0;))

vance function [34].

To jointly consider popularity and distinctiveness, the similar-
ity between a term w and a category c; based on topic-indicative
sentences is defined as follows.

simgnen (W, ¢;) = pop(w, ;)% - dist(w, ©;)' 7%, ©

where 0 < a < 1is a hyperparameter.

3.2 The Iterative SEEDToPicMINE Framework

We lay out our framework in Figure 1. It has three major modules:
initial term ranking, topic-indicative sentence retrieval, and rank
ensemble. We now introduce these modules in detail.

3.2.1 Initial Term Ranking. Initially, we only have the seed s; for
each semantic category c;, and the topic-indicative sentences ©;
have not been derived yet. Therefore, we first use seed-guided text
embeddings (derived in Section 3.1.1) and PLM-based representa-
tions (derived in Section 3.1.2) to find terms that are relevant to
each category. To be specific, for each category c;, we calculate the
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Algorithm 1: SEEDTOPICMINE

Input: A corpus D; aset of seeds S = {s1,..., 55/ }-
Output: A set of terms 7; = {ti1, ti2, ---, ;77 } appearing in D for
each seed s;.
1 Ti={si};
2 h,, < Eq. (7);
3 for iter < 1 to N do

4 Learn seed-guided text embedding u,, by optimizing Eq. (4);
5 // Initial Term Ranking;

6 scoremi (w, ¢;) < Eq. (11);

7 7; « top-ranked terms according to scoren; (w, ¢;);
8 // Topic-Indicative Sentence Retrieval;

9 count (@, ¢;) « Eq. (12);

10 @;“ « top-ranked sentences according to Eq. (13);
1 @f’ —0;

12 for 0;; € @;4 do

13 for k < 1toydo

14 Denote the +k sentence of 0;; as 9:.;1‘;

15 if Vi’ # i, count(@lfjk, ci7) =0 then

16 ‘ @fi — G)IN U {O;rjk},

17 else

18 ‘ break;

19 for k < 1toy do

20 Denote the —k sentence of 0;; as 01._].";

21 if Vil # i, count(@;jk, cy) = 0 then

22 ‘ @fl — @f’ U {G;jk};

23 else

24 ‘ break;

25 Q; « G);.“ U @ﬁ.\’;

26 // Rank Ensemble;

27 scoreay (w, ¢;) < Eq. (14);

28 MRR(wlc;) « Eq. (15);

29 7i < Eq. (16);

30 73— Ti\{si};
31 Return 77, ..., 7|5

following score for each term w.

scorepi (w, ¢;) = simgpyp (w, s;) - simprav (W, Si), (10)
where simg (-, -) and simppp (-, -) are given in Egs. (5) and (8),
respectively. As mentioned in Section 3.1.1, the set of topic-related
terms 7; is expanded and updated iteratively. In later iterations,
when 7; is more than just {s;}, Eq. (10) can be generalized to

scorerni (W, ¢;) = Z simgmp (W, £) - Z simppm (w, 835). (1)
tij€T; tijeT;

For each category c;, we find top-7 terms according to scoreryj(w,
ci) to update the topic-indicative term set 7;.

3.2.2  Topic-Indicative Sentence Retrieval. Based on the set of up-
dated topic-indicative terms 7;, we now retrieve the set of topic-
indicative sentences ©; from the input corpus so that we can calcu-
late Eq. (9). The retrieval process is inspired by two assumptions: (1)
The sentences containing many topic-indicative terms from one cat-
egory and do not contain any topic-indicative term from other cate-
gories should be topic-indicative sentences. We call such sentences
“anchor” sentences. (2) The “neighbor” sentences of topic-indicative
“anchor” sentences should also be viewed as topic-indicative if they
do not contain topic-indicative terms from other categories.
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According to Assumption (1), we first retrieve “anchor” sentences
by counting the number of topic-indicative terms appearing in each
sentence. Formally, given a category c;, for each sentence 6 in D,
we calculate

count(0, ¢;) = Z tf(w, 0). (12)
weT;
Because category-indicative “anchor” sentences should have a high
count with ¢; and a count of 0 with any other category, we rank
the sentences using the following criterion.

glaj)(count(@, ci), where count(f,c;) =0 (Vj #1i). (13)
oy

We use 8‘1.4 ={0i1, ..., 9i|®,_4|} to denote the set of selected “anchor”

sentences for c;.

Then, according to Assumption (2), we find “neighbor” sentences
for each “anchor” sentence §; ;. To be specific, given an “anchor” sen-
tence, we check its +1, +2, ..., +y sentences in the document (if they
exist). If the +k (resp., —k) sentence contains topic-indicative terms
from other categories, we view it as not topic-indicative, and we
do not further check the +(k + 1), ..., +y (resp., —(k + 1), ..., —y) sen-
tences because they may have diverged to other topics. Otherwise,
we add the +k (resp., —k) sentence into the set of topic-indicative
“neighbor” sentences @ﬁ\] . A more formal description of this process
can be found in Lines 13-24 in Algorithm 1.

Finally, the set of retrieved topic-indicative sentences is the union
of “anchor” sentences and “neighbor” sentences (i.e., ©; = @‘;‘U@?I ).

3.2.3 Ensemble of Multiple Types of Contexts. After obtaining
topic-indicative context ®; of each category c;, we can now calcu-
late simgpy (w, ¢;) in Eq. (9). Then, we have a score measuring the
semantic proximity between a term w and a category c; by jointly
considering all three types of contexts.

scoreaq (w, ¢;) =

Z simgpp (W, 235) - Z simpy (W, ti7) - simgpen (W, €;). (14)
ti;€T; tij€Ti

By ranking all terms in a descending order of scorey (w, ¢;), we get
a ranking list where each term w has a rank position rpy (w|c;). Be-
sides, instead of incorporating topic-indicative context into ranking,
we can consider seed-guided text embeddings alone or PLM-based
representations alone. By ranking terms in a descending order
of Ztije’ﬁ simgy,p, (W, t;5) and Zt,-j g7 simppm (w, ti5), each term w
will have two more rank positions rgy,p(wlci) and rppa(wlc;), re-
spectively. Based on the three rank positions, we perform rank
ensemble by calculating the mean reciprocal rank (MRR).

1 1 1
+ + .
ran(wle)  remp(wlei) — rem(wle:)
In practice, instead of ranking all terms in the vocabulary, we only

check the top-p terms in each ranking list. If a term w is not among
the top-p (e.g., rann(wlci) > p), we simply set its reciprocal rank

MRR(w|c;) = % (15)

to be 0 (e.g., e = 0). Finally, we update 7; with the terms
whose MRR score exceeds a certain threshold 7.
7i = {w | MRR(wlc;) 2 n}, (1<i<]S). (16)

The updated term sets 71, ..., 7| 5| are then fed into the next iteration
of SEEDTOPICMINE.

We iterate the process of initial term ranking, topic-indicative
sentence retrieval, and rank ensemble for N iterations. The entire
SEEDTOPICMINE framework is summarized in Algorithm 1.
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Table 1: Dataset Statistics.

Dataset | NYT | Yelp
Dimension Topic Location Food Sentiment
#Docs 31,997 31,997 29,280 29,280

#Seeds 9 10 8 2

united states,
iraq, britain, | steak, seafood,
japan, canada, | pizza, desserts,
china, france, | salad, noodles,
italy, russia, | sushi, burgers
germany

arts, technology,
health, education,
Seeds sports, science,
business, politics,
real estate

good, bad

4 EXPERIMENTS
4.1 Setup

4.1.1 Datasets. Following [27], we conduct experiments on two
datasets from different domains.

e NYT! is a collection of news articles written and published by
the New York Times. It has two sets of seeds along the topic and
location dimensions, respectively.

e Yelp? is a corpus of restaurant reviews released by the Yelp
Dataset Challenge. It has two sets of seeds along the food and
sentiment dimensions, respectively.

For both datasets, we use AutoPhrase [38] to perform phrase chunk-
ing. Following [39], we adopt a 60-40 train-test split for both datasets.
The training set is used as the input corpus D, and the testing set is
used to calculate the topic coherence metric (see evaluation metrics
for details). Dataset statistics are summarized in Table 1.

4.1.2 Compared Methods. We compare our SEEDTOPICMINE with
the following baselines including seed-guided topic modeling meth-
ods and seed-guided embedding learning methods.

e SeededLDA [15] is a seed-guided topic modeling method. It
modifies the generative process of LDA by biasing each topic
to generate more seeds and by biasing each document to select
topics relevant to the seeds appearing in the document.

o Anchored CorEx [10] is a seed-guided topic modeling method.
It does not rely on generative assumptions. Instead, it leverages
seeds by balancing between compressing the input corpus and
preserving seed-related information.

o KeyETM [13] is an embedding-based topic model (ETM) assisted
by keyword seeds. It modifies the objective of ETM [8] to utilize
seeds in the form of topic-level priors over the vocabulary.

e CatE [27] is a seed-guided embedding learning method for dis-
criminative topic mining. It jointly learns term embedding and
specificity from the input corpus. Terms are then selected based
on both embedding similarity with the seeds and specificity.

For unsupervised topic discovery approaches (e.g., BERTopic
[12] and TopClus [29]), it is difficult to match their generated topics
to the given seeds, so we cannot calculate term accuracy-based
metrics (see evaluation metrics for details) for their output, and
hence we do include them into comparison.

4.1.3  Evaluation Metrics. Given the top-|7;| discovered terms un-
der each seed (|7;| = 20 in our experiments), we evaluate the results
based on two different criteria: topic coherence and term accuracy.

!https://catalog.ldc.upenn.edu/LDC2008T19
Zhttps://www.yelp.com/dataset/challenge
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Table 2: NPMI, P@20, and NDCG @20 scores of compared algorithms. NPMI measures topic coherence; P@20 and NDCG@20

measure term accuracy.

Method NYT-Topic NYT-Location Yelp-Food Yelp-Sentiment
NPMI P@20 NDCG@20| NPMI P@20 NDCG@20| NPMI P@20 NDCG@20| NPMI P@20 NDCG@20
SeededLDA [15] 0.0841 0.2389 0.2979 0.0814  0.1050 0.1873 0.0504  0.1200 0.2132 0.0499 0.1700 0.2410
Anchored CorEx [10] | 0.1325  0.2922 0.3627 0.1283  0.2040 0.3003 0.1204  0.3725 0.4531 0.0627  0.1200 0.1997
KeyETM [13] 0.1254  0.1589 0.2342 0.1146 0.0700 0.1676 0.0578 0.1788 0.2940 0.0327 0.4250 0.4994
CatE [27] 0.1941 0.8067 0.8306 0.2165 0.7480 0.7840 0.2058  0.6812 0.7312 0.1509  0.7150 0.7713
SEEDTOPICMINE 0.1947  0.9456 0.9573 0.2176  0.8360 0.8709 0.2018  0.7912 0.8379 0.0922  0.9750 0.9811

o NPMI [18] is a widely adopted metric in topic modeling to
measure topic coherence inside each topic. It is defined as the
average normalized pointwise mutual information of each pair
of terms in 7;.

P(ij.tix)
S| log _hiptik)
1 P(t;;)P(t)
NPMI = “Tloo P(t:: t:1) a7
|S| Z \TI) zl-j,tzk:e’l; —log P(tij, tix)’ )

where P(t;}, t;) is the probability that t;; and ¢;; co-occur in a
document; P(t;;) is the probability that t;; occurs in a document.
P@k (also called MACC) [27] is a metric for term accuracy.
It measures the proportion of retrieved terms ¢;; that actually
belong to the semantic category c;.

IS

ISIZ 7]

where 1(t;; € c;) is the indicator functlon of whether t;; belongs
to ¢; (i.e., whether t;; is discriminatively relevant to the seed
s;i). This relies on human judgment, so we invite five annotators
to perform independent annotation. The reported P@k score is
the average P@k of the five annotators. A high inter-annotator
agreement is observed, with Fleiss’ kappa [9] being 0.896, 0.928,
0.800, and 0.909 on NYT-Topic, NYT-Location, Yelp-Food, and
Yelp-Sentiment, respectively. As mentioned above, we set |7;| =
20 in our experiments, so we report P@20.

NDCG @k is another metric for term accuracy. It gives higher
weights to higher-ranked terms by applying a logarithmic dis-
count.

Z 1tij € ca), (18)

|7 |73
1(tij € c;i) B 1
DCG; @k = Z og(s1)" IDCG@k—;m,
- (19)
|S|
1 O DCG;@k
NDCG@k = S ; DGOk

Following the case of P@k, we calculate NDCG@k based on
human annotations, and we report NDCG@20.

4.1.4  Hyperparameters and Implementation. The hyperparameter
settings of SEEDTOPICMINE are as follows. In seed-guided embed-
ding learning, the context window size x = 5; the embedding di-
mension is 100. In PLM encoding, we use BERTgase [7] as the PLM.
When computing simgpin (w, ¢;), we set @ = 0.2. In initial term
ranking, we select 7 = 20 terms for each seed. In topic-indicative
sentence retrieval, we retrieve |®‘l.4| = 500 “anchor” sentences; the
“neighbor” sentence window size y = 4. In rank ensemble, there are
p = 20 terms in each ranking list; the MRR threshold n = 0.1. We
run SEEDToPICMINE for N = 4 iterations.

The code, datasets, and annotation results are available at https:
//github.com/yzhan238/SeedTopicMine.

4.2 Performance Comparison

Table 2 shows the NPMI, P@20, and NDCG@20 scores of com-
pared algorithms on the two datasets. We can observe that: (1) On
NYT, SEEDTOPICMINE consistently achieves the best performance
in terms of all metrics. Among all the baselines, CatE is the most ef-
fective one, significantly outperforming “bag-of-words”-based topic
models such as SeededLDA and Anchored CorEx. However, since
CatE only uses one type of context information (i.e., skip-gram em-
beddings), SEEDToPICMINE can improve CatE by an evident margin
on term accuracy through integrating multiple types of signals. (2)
On Yelp, SEEDToPICMINE underperforms CatE in terms of NPMI but
significantly outperforms CatE in terms of P@20 and NDCG@20.
Note that NPMI is an automatically computed metric, and the other
two metrics rely on human annotation. Indeed, a recent study [14]
shows that automatic metrics such as NPMI may not align well
with human evaluation. From this perspective, we claim that SEED-
TorPicMINE performs better than CatE on Yelp, and our qualitative
analysis below will validate this claim.

Besides quantitative evaluation, we show the qualitative compar-
ison in Table 3. We randomly select two seeds from NYT-Location,
NYT-Topic, Yelp-Food, and Yelp-Sentiment, respectively. For each
seed, we show top-5 terms retrieved by each method. A term is
marked as incorrect (X) if and only if at least 3 of the 5 annotators
judge the term as irrelevant to the seed. Table 3 demonstrates that:
(1) SeededLDA, Anchored CorEx, and KeyETM tend to find irrel-
evant or very general terms. For example, both Anchored CorEx
and KeyETM retrieve the term “fish” under the seed “sushi”, but
“fish” is also relevant to the seed “seafood”, thus it does not discrim-
inatively belong to the sushi category. (2) Most terms discovered
by CatE are accurate. However, CatE still makes mistakes in all
four dimensions in Table 3. In contrast, SEEDTOPICMINE achieves
higher accuracy. If we further check the mistakes made by CatE,
we can find general terms such as “also” and “savoury”, which may
co-occur frequently with other top-ranked terms. This possibly
explains why CatE achieves higher NPMI than SEEDTOPICMINE on
Yelp since NPMI is based on the co-occurrence of retrieved terms.

4.3 Ablation Study

One key design in SEEDTOPICMINE is the ensemble of multiple types
of contexts. Specifically, we utilize the context information from
three sources: seed-guided text embeddings (Emb), pre-trained lan-
guage model representations (PLM), and topic-indicative sentences
(Sntn). Now, we validate their contribution to the whole framework
through an ablation analysis. Specifically, we can ignore one of the
three sources while keeping all the other modules unchanged. This
yields three ablation versions: SEEDToPICMINE-NoEmb, SEED-
ToricMINE-NoPLM, and SEEDTorPicMINE-NoSntn.
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Table 3: Top-5 terms retrieved by different algorithms. x: At least 3 of the 5 annotators judge the term as irrelevant to the seed.

Method NYT-Topic NYT-Location Yelp-Food Yelp-Sentiment
health business france canada sushi desserts good bad
said () said (X) said (x) new (Xx) roll food (x) place (x) food (x)
dr (x) percent (X) new (X) city (x) good (x) us (X) food (x) service (X)
SeededLDA new (X) company state (X) said (x) place (x) order (X) great us (X)
would (X) year (X) would (X) building (x) food (x) service (X) like (X) order (X)
hospital billion (x) dr (x) mr (X) rolls time (X) service (X) time (X)
case (X) employees school (x) market (X) rolls also () definitely (x) one (X)
Anchored court (X) advertising students (X) percent (X) roll really (x) prices (x) would (X)
CorEx patients media (X) children (X)  companies (X) sashimi well (x) strip (X) like (x)
cases (X) businessmen education (X) billion (x) fish (x) good (X) selection (X) could (x)
lawyer (x) commerce schools (X) investors (X) tempura try (X) value (X) us (X)
team (X) percent (X) city (X) people (x) sashimi food (x) great food (x)
game (X) japan (x) state (X) year (X) rolls great (X) delicious place (x)
KeyETM players (x) year (X) york (x) china (X) roll place (x) amazing service (X)
games (X) japanese (X) school (x) years (X) fish (x) good (x) excellent time (X)
play (x) economy program (X) time (X) japanese service (X) tasty restaurant (X)
public health  diversifying (x) french alberta freshest fish (x) delicacies (x) tasty unforgivable
health care clients (X) corsica british columbia sashimi sundaes delicious frustrating
CatE medical corporate spain (X) ontario nigiri savoury (X) yummy horrible
hospitals  investment banking | belgium (X) manitoba ayce sushi pastries chilaquiles (x) irritating
doctors executives de (x) canadian rolls custards also (X) rude
medical companies french canadian maki rolls cheesecakes great terrible
hospitals businesses paris quebec sashimi croissants excellent horrible
SEEDTOPICMINE |  hospital corporations philippe (X) montreal ayce sushi pastries fantastic awful
public health firms french state toronto revolving sushi  breads (X) delicious lousy
patients corporate frenchman ottawa nigiri cheesecake amazing shitty

Table 4: Ablation study on different types of context infor-
mation used in SEEDTOPICMINE.

Yelp-Food Yelp-Sentiment
Method P@20 NDCG@20| P@20 NDCG@20
SEEDTOPICMINE 07912 0.8379 | 0.9750  0.9811

SeepToricMINE-NoEmb 0.4488 0.5335 0.9550 0.9646
SEEDTOPICMINE-NoPLM 0.6962 0.7602 0.7550 0.8029
SEEDTOPICMINE-NoSntn 0.7488 0.8029 0.9500 0.9631
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Figure 2: Effect of the number of iterations (N) on NPMI.

Table 4 demonstrates the term accuracy scores of the full SEED-
ToricMINE model and the three ablation versions. We can observe

that: (1) SEEDToPICMINE consistently outperforms all three abla-
tion versions, which implies the positive contribution of the three
types of context signals. (2) Even for the same dataset (i.e., Yelp),
the contribution of a certain type of context information varies
significantly with the input seeds. For example, in the food dimen-
sion, SEEDToPICMINE-NoEmb performs the worst, which indicates
that seed-guided embeddings are the most helpful signals. Mean-
while, in the sentiment dimension, the contribution of embeddings
becomes the smallest. In comparison, pre-trained language model
representations have the largest offering. This observation validates
the motivation of this work that each type of context information
has its specific value and limitation in topic discovery. None of
them can dominate the others across all dimensions. Therefore, it
becomes necessary to integrate them together, and our results show
that the integration does achieve consistently the best performance.

4.4 Parameter Study

Another key design in SEEDTOPICMINE is the iterative framework.
To verify the contribution of multiple iterations, we conduct a
parameter study by showing the NPMI of the discovered topics if
we run SEEDToPICMINE for different numbers of iterations (i.e., N).
Figure 2 shows the effect of N on NPMI across all four dimensions.

From Figure 2, we see that: (1) When N is small (e.g., N <
4), NPMI increases with N in most cases. When we run SEED-
TopricMINE for only one iteration, the performance is always sig-
nificantly lower than that when we run 3-4 iterations. This finding
validates our design choice that iteratively revising each topic can
boost the topic coherence. (2) When N becomes larger, the NPMI
curve starts to fluctuate, and the performance gain of running more
iterations is subtle. Moreover, more iterations will result in longer



WSDM °23, February 27-March 3, 2023, Singapore, Singapore

Yu Zhang, Yunyi Zhang, Martin Michalski, Yucheng Jiang, Yu Meng, & Jiawei Han

Table 5: Extended qualitative results. x: At least 3 of the 5 annotators judge the term as irrelevant to the seed.

Dataset ‘ Method ‘ Lower-ranked Terms
CatE sports: baseball, football, clubs (X), tennis, coaches, amateur (X), n.b.a, handball
. | SEEDTOPICMINE | sports: coaches, athletics, players, championships, sportsman, olympians, sporting events, tournament
NYT-Topic ips . . . o s .. . . . . .
CatE politics: rhetoric (X), constituencies (X), vitriolic (X), passivity (x), unprincipled (X), polarized (x), philosophically (), worldview (x)
SEepToPICMINE | politics: democratic, parties, conservative coalition, elected, liberal, electoral, leaders (X), political alliance
CatE desserts: churros, chocolate, omelettes (x), crepes, truffles (x), fondue (X), sweets, breakfasts (x)
SEEDTOPICMINE | desserts: candied, scones, truffles (x), tarts, crepes, coffees (x), doughnuts, candies
Yelp-Food
CatE seafood: oysters, softshell, paella, fishes, octopus, mussel, mackerel, crawfish
SEEDToPICMINE | seafood: lobster, clam, seafood, crawfish, blue crab, imitation crab, jumbo shrimp, sardines

running time. Therefore, we believe that setting N = 4 strikes a
good balance.

4.5 Case Study

We have shown the top-5 terms retrieved by different algorithms
in Table 3. One may ask about the quality of lower-ranked terms in
each topic. Thus, we conduct an extended case study by showing
the 8 lowest-ranked terms among the top 20. These terms are listed
in Table 5. Due to space limit, we only show the results of our
SeepToPICMINE model and the strongest baseline CatE, and two
topics are selected for NYT-Topic and Yelp-Food, respectively.
From Table 5, we observe that the accuracy of CatE deteriorates
for lower-ranked terms. For example, under the “politics” seed from
NYT-Topic, all of the 8 shown terms discovered by CatE are judged
as irrelevant. By contrast, SEEDTOPICMINE only makes one mistake
under the same seed. This observation implies that the efficacy
of SEEDTOPICMINE can be generalized to the relatively lower part
of the retrieved term list, which also reflects the robustness of
SEeDToPICMINE by integrating multiple types of contexts.

5 RELATED WORK

Seed-Guided Topic Discovery. Different from supervised topic
models (e.g., [17, 25]) that rely on a large number of human-annotated
documents, seed-guided topic discovery only requires a set of user-
interested seeds to find corresponding topics. In [1], seeds are incor-
porated as prior of topic modeling using must-link and cannot-link
constraints. SeededLDA [15] uses seeds to bias topics to produce
seed terms and documents to select topics containing them. An-
chored CorEx [10] discovers informative topics with correlation
maximization and leverages seeds by balancing corpus compression
and seed-indicative information. Recent studies also incorporate
embedding learning techniques to obtain more accurate semantic
representations. For instance, CatE [27] learns category-guided text
embeddings by enforcing distinctiveness among seeds in the embed-
ding space; SeeTopic [47] further utilizes the power of pre-trained
language models for better text representations and the ability to
handle out-of-vocabulary seeds.

Representation-Enhanced Topic Discovery. With the rapid de-
velopment in text representation learning, recent topic discovery
methods incorporate distributed representations to enhance the
modeling of text semantics. Earlier approaches incorporate context-
free word embeddings [31] into classic probabilistic topic models
(e.g., LDA [4]), including Gaussian LDA [6], LFTM [32], Spherical
HDP [2], and CGTM [45]. TWE [22] learns embeddings based on
associations between words and latent topics obtained by LDA.

CLM [44] collaboratively models topics and learns word embed-
dings by considering both global and local contexts. ETM [8] learns
topic embeddings in the word embedding space to improve LDA
for a better fit of a large vocabulary. More recent studies leverage
the contextualized representations generated by pre-trained lan-
guage models (e.g., BERT [7]) to facilitate the discovery of coherent
topics. These contextualized representations can be used either
at token-level for clustering to form topics [29, 39, 42, 49] or at
document-level for modeling document-topic correlations [3, 12].

6 CONCLUSIONS AND FUTURE WORK

In this work, we study seed-guided topic discovery by learning
from multiple types of contexts, including skip-gram embeddings
based on local contexts, pre-trained language model representa-
tions upon general-domain pre-training, and topic-indicative sen-
tences retrieved according to seed-distinctive terms. Our proposed
SEEDTOPICMINE framework jointly leverages these contexts via
an ensemble process for robust topic discovery under different
types of seeds. On two real-world datasets and across four sets
of seeds, SEEDTOPICMINE consistently outperforms existing seed-
guided topic discovery approaches in terms of topic coherence and
term accuracy.

For future studies, the promising topic discovery results achieved
by SEEDToPICMINE may further benefit keyword-based text classifi-
cation [26, 48] via expanding the seed word semantics and prompt-
based methods [35] via enriching their verbalizers. Also, SEED-
ToprICMINE can be extended to model input seeds organized in a
hierarchical manner by injecting hierarchy regularization or dis-
covering topics beyond the provided seeds by incorporating latent
topic learning in the corpus modeling process.
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