

RoCUS: Robot Controller Understanding via Sampling Yilun Zhou, Serena Booth, Nadia Figueroa, Julie Shah

MIT CSAIL

Trajectory Length

Average Velocity

Average Jerk

Dynamical System

Average Acceleration

Name

Near-Accident

Definition

Target behavior value $\hat{b} \mid b \sim \mathcal{N}(b, \sigma^2)$ $t, \tau \sim p(t, \tau \mid \hat{b} = b^*)$ $\propto p(\hat{b} = b^* \mid t, \tau) p$

Name

 $b = \int 1 \, \mathrm{d}s$ Straight-Line $b = \frac{1}{||\tau||} \int_{\tau} ||\dot{\mathbf{x}}|| \,\mathrm{d}s$ Obstacle Clear $b = \frac{1}{||\tau||} \int_{\tau} ||\mathbf{\ddot{x}}| |\,\mathrm{d}s$ Near-Obstacle

 $b = \frac{\mathbf{I}}{||\tau||} \int_{\tau} ||\mathbf{\ddot{x}}|| \,\mathrm{d}s$

Motion Legibil

Smoothing and Lidar

Imitation Learning

RRT Min EE Movement

Minimal straight-sine deviation on 2D navigation

 \mathbf{RRT}

How?	
$r value = b^*$:	Target behavior value = " $+\infty$ ":
)	$\beta(b) = \left(1 + e^{-(b - \mathbb{E}[b])/\mathbb{V}[b]}\right)^{-1}$
$b = b^*)$	$\hat{b} \mid b \sim \mathcal{N}(\beta(b), \sigma^2)$
* t, τ) $p(\tau \mid t) \pi(t)$	$t, \tau \sim p(t, \tau \mid \hat{b} = 1)$
Definition	
nt-Line Deviation	$b = \frac{1}{ \tau } \int_{\tau} \left \left \mathbf{x} - \operatorname{proj}_{\mathbf{x}_{f} - \mathbf{x}_{i}} \mathbf{x} \right \right ds$
ele Clearance	$b = \frac{1}{ \tau } \int_{\tau} \min_{\mathbf{x}_o \in \mathcal{O}} \mathbf{x} - \mathbf{x}_o \mathrm{d}s$
Obstacle Velocity	$b = \frac{\int_{\tau} \dot{\mathbf{x}} / \min_{\mathbf{x}_o \in \mathcal{O}} \mathbf{x} - \mathbf{x}_o \mathrm{d}s}{\int_{\tau} \frac{1 / \min_{\mathbf{x}_o \in \mathcal{O}} \mathbf{x} - \mathbf{x}_o \mathrm{d}s}$
a Legibility	$b = \frac{1}{ \tau } \int_{\tau} p(g \mathbf{x}) \mathrm{d}s$
d Lidar	<image/> <image/> <image/>
ovement RL Min EE Movement	Original DS Final Distance Improved DS Final Distance
Various b	ehaviors on

7DoF arm reaching