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Long considered a veterinary disease,
cryptosporidiosis has emerged as an important
infectious disease in humans (1). In immunocom-
petent persons, the disease is usually self-
limiting; however, in the immunocompromised,
it is frequently chronic, more severe, and
sometimes fatal. Cryptosporidiosis is one of the
major secondary diagnoses in people with AIDS
and is associated with a twofold greater hazard of
death than other AIDS-defining diagnoses (2).

A number of major waterborne outbreaks of
cryptosporidiosis have occurred in urban settings
(3); however, the disease also occurs sporadically.
Since most Cryptosporidium parvum infections
are self-limiting and symptomatically similar to
other diarrheal diseases, the disease may often
be undiagnosed or misdiagnosed in the absence of
a recognized outbreak. Consequently, the actual
incidence of cryptosporidiosis and the relative
importance of each of its many modes of
transmission are largely unknown. For these
reasons, laboratory tools are needed for
quantitative and qualitative environmental
sampling and for strain analysis of
Cryptosporidium isolates. These tools would be
extremely valuable for source identification and
outbreak investigations, for correlation with
clinically important phenotypes, and for deter-
mining risk factors in nonepidemic settings.

A number of new nucleic acid-based
approaches have been developed for detection,
diagnosis, and typing of C. parvum, among them
polymerase chain reaction (PCR)-based tests
that focus either on random amplification of DNA
polymorphisms or on specific polymorphic
genetic loci (4-7). These PCR-based tests suggest
the existence of strain variation and the
possibility of two distinct transmission cycles
among C. parvum isolates that infect humans. In
this study, we examined genetic polymorphism
among C. parvum isolates from human and
nonhuman sources to identify strain-specific
markers that could be correlated with epidemio-
logically important phenotypes.

Analytic Approach

Parasite Isolates
Thirty-nine isolates were examined from

stool samples positive for C. parvum: 17 were
obtained from humans or calves during
outbreaks in the United States and Canada
(Table 1); one was a calf isolate (Iowa calf)
routinely passaged in neonatal Holstein calves in
our laboratories; and 21 were obtained from
cattle from Georgia, Alabama, Ohio, Oklahoma,
Kansas, Iowa, Idaho, Utah, and Washington. All
samples were collected and placed directly into a
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2.5% potassium dichromate solution and were
stored at 4°C. Oocysts were purified by using
discontinuous sucrose and Percoll or cesium
chloride gradients (8,9).

Isolation of Genomic DNA
Parasite DNA was isolated as described by

Kim et al. (10). Briefly, oocysts were ruptured by
using five freeze-thaw cycles (dry ice ethanol
bath and 65°C) in a lysis buffer (120 mM NaCl, 10
mM EDTA, 25 mM Tris pH 7.5, 1% Sarkosyl)
containing proteinase K. The samples were
incubated for 1 hour at 55°C to inactivate
nucleases. Then DNA was extracted with phenol/
chloroform/isoamyl alcohol (25:24:1) and chloro-
form/isoamyl alcohol (24:1), precipitated with
absolute ethanol, washed with 70% ethanol,
and resuspended in TE buffer (10 mM Tris pH
8.0, 1 mM EDTA).

PCR Amplification and Sequencing
and Analysis

The gene fragment of interest, a 369-bp
region of the thrombospondin-related adhesive
protein (TRAP-C2) of C. parvum, was amplified
with the following primers: 5'-CAT ATT CCC
TGT CCC TTG AGT TGT-3' and 5'-TGG ACA
ACC CAA ATG CAG AC-3', which correspond,
respectively, to positions 812 to 835 on the coding
strand and positions 1,161 to 1,180 on the
negative strand, of GenBank sequence X77586.
The reactions were performed with Perkin-Elmer
(Perkin-Elmer Corporation, Foster City, CA)
PCR reagents, including 1X PCR buffer, 2.5 mM

MgCl2, 0.2 mM each dNTP, 0.4 mM of each
specific primer, and 2.5 U of Taq DNA
polymerase. After a 1-minute hot start at 94°C,
the reactions went through 35 to 40 cycles of
denaturing at 94°C for 30 seconds, annealing at
45°C for 30 seconds, and extension at 72°C for 1
minute, followed by a 72°C incubation for
strand completion.

An aliquot of each PCR product was
examined by agarose gel electrophoresis; the
remaining PCR product was purified by using the
Wizard PCR Prep Kit (Promega Corporation,
Madison, WI). Purified PCR fragments were
sequenced directly on an ABI 377 automated
sequencer by fluorescent cycle sequencing using
dye-terminator chemistry with AmpliTaq FS
(Perkin-Elmer-Applied Biosystems) according to
the manufacturer’s recommended procedure.
The same primer sets used initially for PCR were
used again for sequencing, diluted to a
concentration of 10 pMoles in the final
sequencing reaction. Downstream analysis of
sequence data was accomplished by using the
Sequence Navigator program (Perkin–Elmer-
Applied Biosystems). Multiple sequence align-
ments were performed by using the Pileup
program (11). Animal isolates were manually
sequenced by the dideoxy chain-termination
method (12), using the Sequenase Version 2.0 kit
(J.T. Baker, Phillipsburg, NJ) with the sequences of
a few isolates confirmed by automated sequencing.

Experimental Infection Studies
Purified oocysts ranged in age from 1 to 6

months at the time of inoculation of cell cultures
or animals. This age range is well within the
storage time that maintains oocyst viability and
infectivity (e.g., laboratory-passaged isolates are
40% to 50% viable after storage for 6 months).
Approximately 106 oocysts were administered
orally to 2-day-old calves or to 4- to 6-day-old
BALB/c or SCID mice by using established
procedures (8,13). Beginning at day 5, stools were
collected and examined daily by light micros-
copy or by immunofluorescent flow cytometry
for C. parvum oocysts (14).

Findings

Sequence Determination and Analysis
A single specific band of 369 bp, correspond-

ing to bases 812 to 1180 of the 1.1 kb C. parvum
TRAP-C2 gene (GenBank accession number

Table 1. Cryptosporidium parvum isolates examined

Implicated
Isolate source Host Ref.

Maine,1993 apple cider human 16
Wisconsin, 1993 drinking water human   3
Wisconsin, 1996 drinking water human   *
Georgia (day person-to- human   *

care), 1995   person
Georgia (water- recreational human 17

park), 1995 water
Florida, 1995 drinking water human 18
British drinking water human 15

Columbia, 1996
Texas, 1996 unknown human   *
Pennsylvania, bovine contact human,   *

1997   calf

*Reference is this article.
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X77586) was amplified from 39 different isolates
(Figure 1). Although the sequence similarity was
very high among all gene fragments, multiple
alignments showed two primary genotypes.
These genotypes could be established on the basis
of nucleotide substitutions at five independent
positions, three being silent changes and the
other two resulting in amino acid changes
(Figure 2). Of the five changes, four were
transitions, and one was a transversion.

Genotype 1 included human isolates from
Wisconsin, Georgia, Florida, and Texas. Geno-
type 2 contained human isolates from Maine and
British Columbia, human and calf isolates from
Pennsylvania, the Iowa calf laboratory strain,
and 21 bovine isolates from various locations
around the country. Two human isolates (one
from Florida and the Texas isolate) appeared to
represent a variant of genotype 1. In both cases,
they shared the first four positions with the other
genotype 1 isolates. The fifth position, however,
was the same as that of genotype 2 isolates.

Experimental Infection Studies
The results of experimental infection studies

are shown in Table 2. The genotype 2 isolates
from human outbreaks in Maine and Pennsylva-

nia and from a calf in Iowa all readily infect both
mice and calves. The genotype 2 isolate from
British Columbia was also reported to be
infective to immunosuppressed C57BL/6 mice
(15). None of the genotype 1 isolates from
humans—from Wisconsin, Florida, a Georgia
day-care facility, and a Georgia water park—
could be established in either mouse or calf. A
single sample, the Georgia day-care isolate, was
examined for its ability to infect a neonatal pig.
This isolate caused a brief moderate infection in a
neonatal pig host (data not shown) but not in
calves or mice. One of the Wisconsin isolates and
the Georgia day-care isolate were tested for their
infectivity to MDCK cell cultures; both success-
fully infected this cell line (data not shown).

Conclusions
All isolates examined in this study could be

grouped easily into two distinct genotypes
defined by nucleotide substitutions at five
positions within the TRAP-C2 locus, with
genotype 1 containing a variant at the fifth
position that was represented by two isolates. All
isolates in genotype 1 were from human stool.
The isolates in genotype 2, however, were from
both human and bovine sources. In the limited
number of isolates that were tested in
experimental infection studies, all genotype 2
isolates could be established readily in mice and
calves. None of the genotype 1 isolates, however,
could be shown to be infective to either of these
hosts. The genotype and experimental infection
data suggest the possibility of two distinct
populations of C. parvum cycling in humans. One
population appears to involve zoonotic transmis-
sion from calf-to-human with subsequent
human-to-human and human-to-calf transmis-
sion. The other population appears to involve an
anthroponotic transmission cycle, exclusively in
humans. This hypothesis is consistent with the
data from the epidemiologic investigations from
which the isolates were obtained.

Genotype 2 characteristics were identified in
human isolates from the Maine 1993, British
Columbia 1996, and Pennsylvania 1997 out-
breaks, and in all isolates from bovine sources.
Both the Maine and Pennsylvania outbreaks
could be directly linked to a calf source of C.
parvum. The Maine outbreak was associated
with contaminated apple cider (16). Interest-
ingly, C. parvum oocysts were isolated directly
from apple cider, the press used for preparing the

Figure 1. Alignment of TRAP-C2 nucleotide positions
that show polymorphism among Cryptosporidium
parvum isolates from human and nonhuman sources.
Published calf sequence refers to Genbank accession
number X77586. Other bovine (n=21) refers to 21
samples (from Georgia, Alabama, Ohio, Oklahoma,
Kansas, Iowa, Idaho, Utah, and Washington) that
had the same genotype.

Position: 15 42  64 111 244
Isolate:

Milwaukee 93 /1  G  C   T   C   T   
Milwaukee 93 /2  G  C   T   C   T 
Milwaukee 93 /3  G  C   T   C   T 
Milwaukee 96  G  C   T   C   T 
Georgia-DC 95   G  C   T   C   T 
Georgia-WP 95 /1  G  C   T   C   T 
Georgia-WP 95 /2  G  C   T   C   T 
Florida 95 /1       G  C   T   C   T 
Florida 95 /2       G  C   T   C   T 
Florida 95 /3       G  C   T   C   T 
Florida 95 /4       G  C   T   C   T
Florida 95 /5       G  C   T   C   C
Texas 96           G  C   T   C   C

Maine Cider 93  A  T   G   T   C
B.C. Canada 96  A   T   G   T   C 
Pennsylvania 97 (H)  A  T   G   T   C 
Pennsylvania 97 (C)  A  T   G   T   C 
Iowa calf (CDC)  A  T   G   T   C 
Published calf  A  T   G   T   C  
Other bovine (n=21)  A  T   G   T   C

Human
Isolates

Calf
Isolates

Genotype 1

Genotype 2
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cider, and a calf stool specimen from the farm
that supplied the apples.

The Pennsylvania focus involved three
families that together purchased three young
calves that subsequently developed scours. Nine
members of three families had diarrhea, and two
were hospitalized. C. parvum oocysts were isolated
from two calves and five humans; all isolates
examined demonstrated the genotype 2 pattern.

The British Columbia isolate came from a
human patient infected in an outbreak
(approximately 2,000 cases) that occurred in
the small rural community of Cranbrook (15).
During the outbreak investigation,
Cryptosporidium oocysts were identified in
human fecal specimens, in cattle manure
specimens found near the watershed, and in
water samples from the reservoir intake.

Figure 2. DNA and putative amino acid sequences of Cryptosporidium parvum TRAP-C2 genotypes 1 and 2.
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Of the genotype 1 isolates examined,
epidemiologic investigations were conducted for
the Georgia water park 1995, Florida 1995, and
Wisconsin 1993 outbreaks. In the Georgia water
park outbreak, approximately 2,900 persons met
the case definition for clinical cryptosporidiosis.
In a sample of these patients, the following risk
factors were evaluated in telephone interviews:
swimming in lakes or pools, exposure to day care
or to persons with diarrhea, contact with young
animals, drinking water from various sources,
chronic illness, and water park attendance. The
only factor independently associated with diar-
rheal disease was water park attendance (17).

The Florida 1995 outbreak occurred at a day
camp in central Florida and had approximately
70 cases (18). Risk factors examined included
participating in camp activities, eating lunches
provided at the camp, and drinking water from
various specified sources. C. parvum oocysts
were observed in the stools of 16 persons and in
water from an outside tap. Fecal contamination
(of unknown origin) of the tap was the suspected
source of the outbreak. Five specimens were
examined from this outbreak, all of which
belonged to the genotype 1 grouping; one
displayed additional polymorphism at nucleotide
position 244 (Figure 1). The Texas 1995 isolate
showed this same polymorphism, which we think
is most accurately described as a subset of
genotype 1.

The Wisconsin 1993 outbreak, which affected
more than 403,000 people, is the largest
waterborne disease outbreak ever recorded in the
United States. Four isolates were examined,
three isolated during the original outbreak and a

fourth isolated in 1996 from an AIDS patient
with a chronic infection who had initially been
infected in the 1993 outbreak.

During the Wisconsin outbreak, possible
sources of contamination of Lake Michigan with
Cryptosporidium oocysts included cattle along
two rivers that fed Milwaukee Harbor, slaughter-
houses, and human feces (3,19). The genotypic
and experimental infection data from the four
isolates we examined suggest a human rather
than bovine source. However, these results
come from the analysis of only four samples
from a massive outbreak, and the degree to
which these samples are representative of the
entire outbreak remains uncertain.

All genotype 2 isolates examined in this
study came from persons that had direct links or
potential exposure to C. parvum from an infected
animal. All samples tested in experimental
infection studies were also infective to both mice
and calves. In the genotype 1 isolates, however,
while the initial source of the cases was never
directly determined experimentally, no con-
firmed links to bovine sources were found, but
exposure to water contaminated with human
feces could have occurred. Furthermore, of the
isolates tested in experimental infection studies,
none could successfully infect laboratory ani-
mals. These results lead us to suggest the
possibility of a second transmission cycle that is
anthroponotic and maintained through person-
to-person contact or through human sewage
contamination of the water supply.

The observations reported here with respect
to genotypic variation among C. parvum isolates
from humans and animals are very similar to
those reported by other groups. These studies
generally reported one allozyme pattern or
genotype associated with human isolates and a
second genotype or allozyme in bovine samples
and a subset of human samples. The specific
genes or regions examined differed in each study
but included electromorphs of phosphoglucomu-
tase and hexokinase (20), random amplified
polymorphic DNA (RAPD) analysis of an
unspecified region (4), a repetitive DNA sequence
(6), the 18S rRNA gene and adjacent internal
transcribed spacer (ITS) region I (5), the
Cryptosporidium oocyst wall protein (COWP) locus
(7), and the dihydrofolate reductase-thymidylate
synthase (DHFR-TS) gene (21). At least two
additional studies suggest the possibilities of two
transmission cycles, on the basis of epidemiologic or

Table 2. Experimental infection studies with
Cryptosporidium parvum isolates from various sources

Experimental
Isolate host Infection
Maine, 1993 mouse +

calf +
Wisconsin, 1993 mouse -

calf -
Georgia (day care), 1995 mouse -

calf ND
Georgia (water park), 1995 mouse -

calf -
Florida, 1995 mouse -

calf ND
Iowa (bovine), 1984 mouse +

calf +
ND = not done
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experimental observations (22,23).
The TRAP-C2 protein is a member of a class

of proteins present in all apicomplexans
examined to date (24-26). This protein is
associated with the cell surface and micronemal
complex of these parasites and is thought to be
involved in surface attachment; consequently,
changes in this protein could affect attachment
specificity and the resultant host range. Were
this the case, such a mechanism could explain
why the host range of one genotype might be
different from that of a second genotype,
resulting in distinct transmission cycles. In the
two isolates that make up the variant of genotype
1, the T-to-C transition results in a change in the
amino acid sequence from tyrosine to histidine. If
variations in this protein affect host preference,
the histidine-to-tyrosine change would have to be
inconsequential with respect to protein function
and host specificity. Observations in Plasmo-
dium suggest that the WCSP motif in the TRAP
gene is the functional domain involved in
surface attachment; however, the polymor-
phism we observed in C. parvum did not
involve this region. Additional studies are
needed to clarify the relationship, if any, of
polymorphism in this gene to host range.

The conclusion that two transmission cycles
exist for C. parvum is now supported by the
results of independent groups, using markers at
six different genetic loci. This conclusion, if valid,
may have important implications for the
prevention and control of cryptosporidiosis in
urban settings. Cattle have been the most
commonly implicated source of water contamina-
tion in outbreaks outside the United States but
not conclusively within the United States.
Measures for preventing water contamination
have in some cases included the removal of cattle
from watershed areas in or around municipali-
ties. If, however, sewer overflows and inadequate
sewage treatment are the primary source of
water contamination in urban settings where
anthroponotic cycles are being maintained,
focusing solely on cattle could fail to eliminate a
very important source of infection.

The results of this study suggest the need to
1) combine the typing approaches of various
groups into a multilocus approach for genetic
typing of C. parvum that would result in a
reliable and robust method for strain typing, 2)
apply multilocus typing to a large number of C.

parvum isolates both from epidemic and isolated
cases and from a large geographic distribution to
determine the prevalence of these two genotypes
and their quantitative importance as indicators
of specific risk factors, and 3) identify additional
genetic loci that will allow more precise
determination of strain variation and linkage of
genotypic variation to specific clinical and
epidemiologically important outcomes.
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