
Our study was limited by having been conduct-
ed with animals consigned to the protection facili-
ties of the Seoul City Government and those whose 
tests were requested by their owners because of the  
animals’ clinical signs. Owner bias might have affect-
ed the population in this setting.

Our study could provide epidemiologically 
meaningful data for public health. As SARS-CoV-2 
spreads as a pandemic, reverse zoonotic infections 
will continue, and viruses will mutate to adapt to 
the new host. For companion animals living near hu-
mans, continuous epidemiologic investigations and 
monitoring will be needed.
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Table. Positivity rates for companion animals owned by SARS-CoV-2–positive persons in study of human-to-animal transmission of 
SARS-CoV-2, South Korea, 2021* 

Animal 
Test results, no. (%) 

χ2 distribution p value Positive Negative 
Dogs, n = 271 65 (24.0) 206 (76.0) 5.100 0.024 
Cats, n = 104 37 (35.6) 67 (64.4) 
Total, n = 375 102 (27.2) 273 (72.8) 

  

*Positivity rate for cats was significantly (p = 0.024) higher than that for dogs. 

 



Noroviruses are the leading cause of sporadic and 
outbreak-associated, acute, nonbacterial gastro-

enteritis (1). They are genetically diverse and are clas-
sified into 10 genogroups (GI–GX) representing >40 
genotypes, although most human noroviruses are GI 
and GII (2). Emergence of recombinant strains that 
have different combinations of the RNA-dependent 
RNA polymerase (RdRp) and viral protein 1 (VP1) 
genes can cause upsurge of new infections (3). In 
2020, during the early months of the COVID-19 pan-
demic, public health measures resulted in the dras-
tic reduction of norovirus outbreaks (4). We report 
a resurgence of norovirus in Chanthaburi Province, 
Thailand

During December 2021–January 2022, local health 
authorities in Chanthaburi Province contacted the 
university for assistance in investigating an increase 
of vomiting and diarrhea requiring hospitalization 
among healthy adults. Because preliminary findings 
by local officials over several weeks had not identi-
fied an obvious single-infection source, we suspected 
norovirus because of rapid widespread community 
infection. Subsequently, we obtained fecal samples 
from 34 patients for testing with the approval from 
the Institutional Review Board of Chulalongkorn 
University (approval no. 549/62).

Because many patients reported dining out at 
eateries serving uncooked vegetables, health officials 
suspected produce as a potential source of infection. 
Therefore, 24 samples of fresh produce (e.g., salad 
greens, basil, parsley, napa cabbage, and tomato) 
from open-air markets near the infection cluster were 
sent from local health officials for testing to determine 
a potential norovirus source.

We crushed vegetables in 1 mL nuclease-free wa-
ter before RNA extraction. We used a bag of ice cubes, 
which we melted and concentrated from 1 L to 1 mL 
by using an Amicon Centrifugation Filtration Device 
(Merck Millipore, https://www.emdmillipore.com) 
before testing. 

After we performed automated viral RNA ex-
traction by using a magLEAD 12 gC Instrument 
(Precision System Science, https://www.pss.co.jp), 
we tested for noroviruses by using a real-time re-
verse transcription PCR (RT-PCR) (5). We dual-
typed norovirus-positive samples for the RdRp and 
VP1 genes by using a conventional RT-PCR (6). We 
genotyped Sanger-sequenced nucleotide sequences 
by using the Norovirus Genotyping Tool (http://
www.rivm.nl/mpf/norovirus/typingtool) and de-
posited them in GenBank (accession nos. OP210707–
54, OP210788–834, OP218773–7, and OP218813–7). 
We performed phylogenetic analysis by using the 
maximum-likelihood method and 1,000 bootstrap 
replicates implemented in MEGA 11 (http://www.
megasoftware.net).

A total of 32/34 patients (age range 1–82 years, 
mean age ±SD 31.4 ±19.7 years) were positive for nor-
ovirus; they had GI only (2/32), GII only (23/32), and 
GI and GII (7/32) infections. We ascertained nucleo-
tide sequences for all 30 GII-positive samples (Table).

Analysis of the RdRp gene identified GII.P25 
(10/30), GII.P7 (8/30), GII.P17 (6/30), and 2 each 
of GII.P12, GII.P21, and GII.P31 (Appendix Figure, 
https://wwwnc.cdc.gov/EID/article/29/5/22-
1291-App1.pdf). Analysis of the VP1 gene identi-
fied GII.3 (15/30), GII.6 (4/30), GII.21 (4/30), GII.17 
(2/30), GII.4 Sydney (2/30), GII.4 Hong Kong (2/30), 
and GII.7 (1/30). Defined genotypes were GII.6[P7] 
(3/30); 2 each of GII.3[P7], GII.3[P12], GII.17[P17], 
GII.21[P17], and GII.21[P21]; and 1 each of GII.3[P17], 
GII.3[P31], GII.4 Sydney[P7], GII.4 Sydney[P25], GII.4 
Hong Kong [P7], GII.4 Hong Kong [P31], GII.6[P17], 
and GII.7[P7]. We also observed the relatively rare 
GII.3[P25] genotype (9/30) (7).
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An increase in acute gastroenteritis occurred in Chantha-
buri Province, Thailand, during December 2021‒January 
2022. Of the norovirus genotypes we identified in hospi-
talized patients and produce from local markets, geno-
type GII.3[P25] accounted for one third. We found no 
traceable link between patients and produce but found 
evidence of potential viral intake.

 
Table. Detection of GII noroviruses in patients and produce samples, Chanthaburi Province, Thailand, 2022* 

VP1 
RdRp gene 

P7 P12 P17 P21 P25 P31 
GII.3 2/4 2/ND 1/1 ND 9/1 1/ND 
GII.4 Hong Kong 1/ND ND  ND/1 ND ND 1/2 
GII.4 Sydney 1/ND ND  ND ND 1/ND ND 
GII.6 3/5 ND 1/1 ND ND/1 ND 
GII.7 1/ND ND ND ND ND ND 
GII.17 ND ND  2/1 ND ND ND 
GII.21 ND/1 ND  2/ND 2/ND ND ND 
*Values indicate patient samples/produce samples positive for norovirus (e.g., the GII.3[P7] combination was detected in 2 patient and 4 produce 
samples). Several VP1 and RdRp combinations are detected in patient and produce samples. Produce samples were obtained from open-air markets 
near the infection cluster and sent by local health officials for testing to determine a potential norovirus source. ND, not detected; P, polymerase; RdRp, 
RNA-dependent RNA polymerase; VP, viral protein. 

 



Testing for a possible source showed that 8/24 
produce samples and ice were norovirus-positive; 
GII.3[P25] was identified in a tomato (Appendix Ta-
ble). Partial RdRp genes and entire VP1 genes showed 
closest phylogeny with unpublished GenBank se-
quences OL451532 and OL451533, which were depos-
ited by health authorities in China during November 
2021. GII.3[P25] from Thailand and China clustered 
away from global strains (Figure).

Although only 5 GII.3[P25] strains from Thailand 
yielded full-length VP1 sequences, deduced amino 
acid residues in the P2 domain (residues 385–420) 
were possible for all 10 strains. Alignments showed 
residue changes D388N, Q391M, N404T, E405D, 
S412I, N415R, and F420V compared with the proto-
typic GII.3/TV24 (GenBank accession no. U02030) 
and more recent GII.3 VP1 strains.

Many different norovirus genotypes found in 
samples from patients during this investigation did 
not implicate an overwhelmingly predominant strain 
responsible for the infection cluster. However, emer-
gence of GII.3[P25] in Thailand identified in patients 
and produce (sample C22) indicated a potential 

source of infection. The diversity of norovirus strains 
in produce sampled warrants increased awareness 
of food safety in preventing norovirus infection. In 
addition, we identified GII.4 Hong Kong [P31] and 2 
novel variants, GII.4 Hong Kong [P7] (patient B8045) 
and GII.4 Hong Kong [P17] (sample C30), which were 
reported recently (8,9), and GII.21[P17], previously 
reported in South Korea (10).

Combined investigation of illness in patients 
and of potential sources of infection is often chal-
lenging. A limitation of our study was low viral 
loads (cycle threshold >30) for many of the samples, 
which hindered confirmation of minor recombi-
nants found. Our study was also limited by the lack 
of a definitive traceable link between patients and 
produce but does provide evidence of potential in-
gestion of the virus. Although contaminated fruits 
and vegetables can serve as a source of outbreaks in 
countries in temperate zones, this study paralleled 
similar transmission, but in a tropical country. Con-
tinuous molecular and epidemiologic surveillance 
of emerging norovirus variants is needed to detect 
future outbreaks.
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Figure. Phylogenetic analysis of norovirus strains, Chanthaburi Province, Thailand, 2022. A) Partial sequence of the RNA-dependent 
RNA polymerase gene (187 bp). B) Complete sequence of the capsid gene (1,644 bp). Strains identified in this study (black circles) 
were compared with the reference (bold) and global strains. GenBank accession numbers for strains are indicated in parentheses. 
Trees were generated by using the maximum-likelihood method with 1,000 bootstrap replicates implemented in MEGA 11 (https://www.
megasoftware.net). Bootstrap values >70 are indicated at the nodes. Only strains of sufficient nucleotide sequence length needed for 
analysis are included. Scale bars indicate nucleotide substitutions per site.
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Although coverage with 2 doses of COVID-19 vac-
cine rapidly reached >95% in adults in Austra-

lia by late 2021 (1), by December 4, 2022, uptake had 
slowed and plateaued at much lower levels for 2 doses 
among children 5–15 years of age (52.1%) and for boost-
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Using linked public health data from Australia to mea-
sure uptake of COVID-19 vaccination by infection status, 
we found coverage considerably lower among infected 
than uninfected persons for all ages. Increasing uptake 
of scheduled doses, including among previously infected 
persons after the recommended postinfection delay, is 
needed to reduce COVID-19 illness rates.  
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Appendix Table. Ice and produce tested for norovirus 

Sample code Description 
Detectable GII genotyping 

Ct value RdRp VP1 
C01 Ice cubes 33.1 P7 GII.3 
C10 Salad greens 32.9 P7 GII.6 
C11 Salad greens 33.0 P7 GII.6 
C12 Thai basil ‒ ‒ ‒ 
C13 Cabbage 30.3 P7 GII.6 
C14 Napa cabbage 32.7 P25 GII.6 
C15 Salad greens 32.3 P7 GII.21 
C16 Salad greens 33.0 P31 GII.4 Hong Kong 
C17 Celery ‒ ‒ ‒ 
C18 Water spinach 32.5 P7 GII.6 
C19 Holy basil ‒ ‒ ‒ 
C20 Thai basil 33.0 P17 GII.3 
C21 Cucumber 32.5 P7 GII.3 
C22 Tomato 30.7 P25 GII.3 
C23 Daikon radish 31.2 P31 GII.4 Hong Kong 
C24 Water spinach ‒ ‒ ‒ 
C25 Salad greens 36.0 P7 GII.3 
C26 Culantro ‒ ‒ ‒ 
C27 Cilantro 35.4 P7 GII.3 
C28 Napa cabbage 33.3 P17 GII.6 
C29 Chinese broccoli 34.1 P17 GII.17 
C30 Diplazium esculentum fern 34.9 P17 GII.4 Hong Kong 
C31 Pak choi ‒ ‒ ‒ 
C32 Culantro 36.5 P7 GII.6 
C33 Water spinach ‒ ‒ ‒ 

https://doi.org/10.3201/eid2905.2211291
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Appendix Figure. Phylogenetic analysis of norovirus strains from Chanthaburi Province, Thailand, 2022. 

A) Partial sequence of RdRp gene (187 bp). B) Partial sequence of VP1 gene (207 bp). Strains identified 

in this study (dotted) were compared with the reference (bolded) and global strains. Strain accession 

numbers are indicated in parentheses. Trees were generated by using the maximum-likelihood method 

with 1,000 bootstrap replicates implemented in MEGA11 (https://www.megasoftware.net). Bootstrap 

values >70 are indicated at the nodes. Scale bars indicate nucleotide substitutions per site. 


