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We previously reported use of genotype surveillance data 
to predict outbreaks among incident tuberculosis clusters. 
We propose a method to detect possible outbreaks among 
endemic tuberculosis clusters. We detected 15 possible out-
breaks, of which 10 had epidemiologic data or whole-genome 
sequencing results. Eight outbreaks were corroborated.

We previously reported use of data from the National 
Tuberculosis Genotyping Service in the United States 

to predict outbreaks among incident clusters of tuberculosis 
(TB), defined as clusters in which the initial case was pre-
ceded by at least 24 months of no genotype-matched cases 
within a geographic area (1). This method cannot be applied 
to endemic clusters (i.e., reported since current TB geno-
type surveillance began in 2009 with at least 1 case every 24 
months) because the initial case cannot be determined. These 
endemic clusters may be a combination of cases that are the 
consequence of reactivation of TB in persons who were pre-
viously infected and recent transmission of TB.

In this article, we postulate that a statistically driven 
method can determine the beginning of a TB outbreak in 
endemic clusters, referred to here as prevalent clusters. 
Our method searches for instances of excessive unexpected 
cluster growth above a background rate. We validated our 
approach by using a combination of epidemiologic data 
acquired during field investigations and whole-genome se-
quencing (WGS), which provides higher resolution of the 
bacterial genome than current genotyping methods (2,3). 
Our method systematically reviews data collected at the 
national level and local epidemiologic data when reported 
to the Centers for Disease Control and Prevention (CDC).

The Study
We used the US National Tuberculosis Surveillance Sys-
tem and the National Tuberculosis Genotyping Service 
datasets for 2009–2016 for this analysis (4). We defined 
prevalent clusters as having >1 TB case with a genotype-

matched case also reported in that county during 2009–
2010, and subsequent cases reported at least once every 
24 months (online Technical Appendix, https://wwwnc.
cdc.gov/EID/article/24/3/17-1613-Techapp1.pdf). Clus-
ters were reviewed during 2011–2013 for cluster growth. 
Case counts were aggregated by 3-month time periods, 
or the first through fourth quarters of each calendar year. 
We fit negative binomial hurdle models to each consecu-
tive group of eight quarter time intervals and calculated 
the 95th percentile of the resulting fit (online Technical 
Appendix). Unexpected growth in a prevalent cluster was 
defined as the earliest quarter where the number of TB 
cases exceeded the 95th percentile on the basis of fit to the 
previous 8 quarters (baseline period). For those prevalent 
clusters identified with unexpected growth, we defined 
a possible outbreak as a cluster that accrued >10 cases 
in excess of the quarterly average number of cases in the 
baseline period during the 3-year follow-up period after 
unexpected growth was first identified.

When available, we used epidemiologic data from on-
site investigations by CDC scientists in conjunction with lo-
cal TB programs and WGS results to refute or corroborate 
our classification of possible outbreaks. Studies of epidemio-
logically linked pairs have estimated Mycobacterium tuber-
culosis to accumulate ≈0.5 single-nucleotide polymorphism 
(SNP) differences per genome per year (or 1.5 SNPs per 
3-year observation period) and found that divergence rarely 
exceeds 5 SNPs in 3 years between pairs (5,6). As a conser-
vative estimate in this study, we defined isolates with 2 SNP 
differences within 3 years to indicate recent transmission 
(online Technical Appendix). We constructed a standard list 
to meet our definition of an outbreak, consisting of outbreaks 
investigated by CDC (7) and clusters with epidemiologic 
data and WGS results. Clusters with epidemiologic links or 
closely related WGS results (i.e., <2 SNP differences) among 
>50% of cases were corroborated as outbreaks.

Of 2,723 clusters determined during 2011–2016, a to-
tal of 706 clusters had >1 TB case in the initial baseline 
period (2009–2010). Among these 706 prevalent clusters, 
unexpected growth was identified in 174 (24.6%). Of these 
clusters, 15 accumulated >10 cases above the baseline av-
erage during the 3-year follow-up period after unexpected 
growth, meeting our definition of a possible outbreak. Of 
these clusters, 10 had WGS results and epidemiologic data, 
of which 8 met our definition of an outbreak, 1 was refuted 
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on the basis of diverse WGS results, and 1 was marginal 
in meeting our definition. The remaining 5 clusters were 
indeterminate because neither WGS results nor epidemio-
logic data were available to CDC at the time of publication. 
When we excluded indeterminate clusters, we found that 
our methods had a positive predictive value of 80%.

Our standard list included 3 outbreaks that were not de-
tected by our method. Two undetected outbreaks were initially 
reported during the baseline period (2009–2010) and grew 
quickly, setting a high starting baseline average. Although our 
method flagged these clusters for unexpected growth, they did 
not accumulate sufficient cases during the follow-up period to 
meet our threshold for excessive growth. Our method identi-
fied no unexpected growth in the remaining known outbreak.

We provide an epidemiologic curve (Figure 1) of the 
marginal cluster detected as a possible outbreak with WGS 
results and epidemiologic links reported. Our method iden-
tified unexpected growth in the second quarter of 2011, 
with 5 cases exceeding the 95th percentile of the hurdle 
model for the previous 8 quarters, calculating a baseline 
average of 1.25 cases per quarter. From this time point, we 
counted the number of cases that exceeded the baseline av-
erage: 3.75 in the second and third quarters of 2011, 1.75 
in the second quarter of 2012, 0.75 in the fourth quarter of 
2012, and 0.75 in the fourth quarter of 2013. The cluster ac-
cumulated 10.75 excess cases within 3 years of unexpected 
growth and met our criteria as a possible outbreak.

WGS results showed that, of the 20 isolates reported 3 
years after unexpected growth, a closely related group of 9 
isolates were within 2 SNPs of each other (Figure 2). Two 
additional isolates within the closely related group were 

outside the unexpected growth time window, and 2 other 
isolates, 1 reported during and 1 outside the time window, 
were within 3 SNPs of the closely related group.

Conclusions
This research continues our development of alerting clus-
ters of public health concern (8–10). We describe a statisti-
cal method that accurately detected TB outbreaks among 
endemic clusters. Our method, based on routinely collected 
surveillance data, can be prospectively implemented to de-
tect possible TB outbreaks. CDC plans to conduct universal 
WGS for all culture-confirmed TB case specimens, which 
would provide more precise molecular data for possible 
outbreaks. Our method will still be helpful in identifying 
when cluster growth exceeds an expected rate.

Genotype surveillance of TB cases is limited to cul-
ture-confirmed cases, which represent 78% of all cases 
(11). Therefore, we excluded non–culture-confirmed cases. 
In a similar manner, our validation was limited to epide-
miologic data available to CDC. In addition, our approach 
searches for outbreaks within a single county, but TB trans-
mission can cross county borders.

Our method for determining unexpected growth, based 
on the 95th percentile for a negative binomial hurdle mod-
el, serves only as an initial screening. Although our method 
can identify excessive unexpected growth, to confirm an 
outbreak requires epidemiologic investigation and increas-
ingly relies on WGS results. Even with universal WGS, 
outbreak confirmation requires epidemiologic investiga-
tions to distinguish recent transmission from reactivation 
of remotely acquired TB (12).
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Figure 1. Epidemiologic curve 
showing a prevalent (endemic) 
outbreak of tuberculosis, by 
case counts per 3-month period, 
United States, 2009–2016.  
Q, quarter.
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Our methods provide an approach to detect possible 
outbreaks among prevalent clusters. We expect to incorpo-
rate these methods into CDC’s existing surveillance system 
for large outbreaks of TB in the United States (13). We will 
explore additional approaches to evaluate initial cases of 
unexpected growth in all clusters, incident and prevalent, 
to develop an algorithm that can predict which clusters are 
most likely to become outbreaks.
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Figure 2. Whole-genome sequencing results for a prevalent 
(endemic) cluster detected as a possible tuberculosis outbreak, 
United States, 2009–2016. Values indicate number of SNPs. 
Shown is a closely related (<2 SNPs) group of 11 isolates 
(lower section of phylogenetic tree). Isolates reported during a 
3-year window of unexpected growth are indicated in gray. One 
isolate reported 1 quarter before and 1 isolate reported 1 quarter 
after the 3-year window of unexpected growth detection are 
indicated in white. An additional 2 isolates were 3 SNPs from 
this closely related group, 1 during (gray) and 1 outside (white) 
the unexpected growth window. MRCA, most recent common 
ancestor; SNP, single-nucleotide polymorphism.
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Technical Appendix 

Additional Methods 

Genotyping was performed by combining results of spoligotyping and 24-locus mycobacterial 

interspersed repetitive unit–variable number tandem repeat analysis (1,2). A tuberculosis cluster was 

defined as >2 genotype-matched cases reported from the same county or county-equivalent jurisdiction. 

(The equivalent of a county is a census area in Alaska and a parish in Louisiana.) Incident clusters were 

defined as those in which the initial case was preceded by a 24-month period of no reported genotype-

matched cases from the same county. Prevalent clusters become eligible to be incident clusters if 24 

months elapsed with no cases of the same genotype reported in that jurisdiction. A total of 2,017 

incident clusters were excluded from our analysis. 

All data were imported into and managed in SAS 9.3 (SAS Institute Inc., Cary, NC, USA) for 

analysis, particularly to designate prevalent from incident clusters and to construct a dataset to identify 

unexpected growth. Three-month time periods corresponded to each quarter in a calendar year (e.g., 

cases reported during April–June 2012 corresponded to the second quarter of 2012. Aggregate quarterly 

cases of each cluster were documented in a spreadsheet and saved as a comma-separated values file 

(.csv) which included the unique cluster identifier, year and quarter date, and case counts. These data 

were imported to the open source statistical software R, version 3.3.3 (3). 

Model fits for case counts were performed by using the packages zoo (4) for moving window 

calculations and pscl (5) for hurdle regressions. A negative binomial hurdle model was fit to each 

successive 8-quarter time-window of case counts. If all 8 quarters had cases (no zero quarters), a straight 

negative binomial model was fit. The negative binomial distribution closely approximates a Poisson 

when the dispersion parameter is large. Thus, our fitting procedure was sufficiently flexible to 

accommodate a negative binomial hurdle, a negative binomial, or a Poisson fit for case counts in each 

consecutive 8-quarter time-window. We calculated 95th percentiles for each fit. Negative binomial 

models accommodate over-dispersion (i.e., greater variability than expected on the basis of a given 

statistical model), which typically occurs in count data. Hurdle models (6) account for excess zeros in 

https://doi.org/10.3201/eid2402.171613
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count data, which is relevant for tuberculosis, given its generally low levels of incidence, even during 

outbreaks. 

Genomic DNA was extracted from Mycobacterium tuberculosis strains by using the Quick-DNA 

Fungal/Bacterial Kit (Zymo Research Corp., Irvine, CA, USA), and 1 ng was used to prepare 

sequencing libraries by using the NexteraXT Kit (Illumina, San Diego, CA, USA) according to the 

package insert. Libraries were sequenced on an Illumina MiSeq instrument to generate 250-bp paired-

end reads. The reads were aligned to the reference genome M. tuberculosis H37Rv (NC_000962.3) by 

using Lasergene Genomics Suite (DNASTARar Inc., Madison, WI, USA). 

Single-nucleotide polymorphisms (SNPs) were filtered to produce a list of high-quality, 

informative SNPs for each genotype-matched cluster. SNPs within repeat regions, insertion sequence 

elements, and the Pro-Pro-Glu (PPE) and Pro-Glu–polymorphic repetitive sequence class (PE-PRGS) 

gene families were not included. SNPs were then mapped on to a phylogenetic tree by using the 

neighbor-joining method in BioNumerics 7.6.2 (Applied Maths, Sint-Martens-Latem, Belgium). We 

designated isolates as being closely related if they were within 2 SNP differences of each other within 3 

years of being reported. Although there is no consensus in the literature regarding how many SNP 

differences would be considered as standard for likelihood of recent transmission, our designation of 2 

SNPs within 3 years is a conservative estimate (7–9). 
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